Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/1943
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodríguez Condia, Josie Esteban-
dc.date.accessioned2017-12-13T14:51:44Z-
dc.date.available2017-12-13T14:51:44Z-
dc.date.issued2017-
dc.identifier.citationRodríguez Condia, J. R. (2017). Establecimiento de características técnicas para el diseño e implementación de instrumentación geofísica de inspección y monitoreo a baja frecuencia. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Sogamoso. http://repositorio.uptc.edu.co/handle/001/1943spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/1943-
dc.description161 páginas : ilustraciones color, figuras, tablas.spa
dc.description.abstractLa instrumentación juega un papel importante en los procesos de exploración y monitoreo en estudios geofísicos. Un instrumento de exploración es el que se dedica a adquirir la información a partir de la cual se puede determinar la existencia de algún material de interés sobre el área de estudio; de la misma forma, un instrumento de monitoreo es el que permite observar comportamientos, anomalías y fenómenos naturales o culturales del subsuelo. Cuando se emplean sobre el terreno, este tipo de instrumentos efectúan un conjunto de mediciones que luego son analizadas e interpretadas por los expertos y sirven como base para la toma de decisiones en diversas actividades humanas desarrolladas con fines económicos, medioambientales y/o sociales. Como es natural, los principales fabricantes de instrumentos para estudios geofísicos buscan para mantener su dominio tecnológico y económico sobre la producción y comercialización de este tipo de equipos. Para esto emplean estrategias como el monopolio estratégico comercial, los secretos industriales, las patentes, etc., que hacen que buena parte de las características técnicas y aspectos clave del funcionamiento de los instrumentos sea desconocida total o parcialmente. Ante la relevancia de la instrumentación y sus potenciales campos de aplicación, este trabajo se centra en el estudio de los procedimientos técnicos requeridos para el diseño y construcción de los sistemas electrónicos que conforman los instrumentos de exploración y monitoreo geofísico. Particularmente, en este trabajo se aborda la realización de dos prototipos de instrumentación geofísica que exhiben características técnicas diferentes y representan retos distintos, como una manera de identificar y establecer los requisitos y consideraciones de diseño a tener en cuenta en el desarrollo de este tipo de equipos de instrumentación. En el primer caso, se plantea el desarrollo de un prototipo de instrumento de monitoreo de aceleración multicanal o acelerógrafo triaxial, empleado para establecer aceleraciones de la superficie y el subsuelo ante actividad símica. La realización de este prototipo involucra el desarrollo de sistemas de adquisición de señales, detección, almacenamiento y transmisión de datos. En el segundo caso, se plantea el desarrollo de un prototipo de instrumento de prospección geoeléctrica basado en resistividad, el cual es empleado como instrumento de caracterización del subsuelo. El procedimiento de diseño incluye el sistema electrónico encargado de la transmisión de las señales eléctricas hacia el terreno bajo estudio, así como los procedimientos de adquisición, almacenamiento y procesamiento de las señales recibidas a través de los electrodos dispuestos sobre este. El sistema electrónico debe estar en capacidad de realizar de forma automática la emisión de señales de voltaje y la posterior detección multicanal de tensión y/o corriente registradas en la zona bajo estudio. Cuatro etapas comunes requeridas para el desarrollo de los dos casos de estudio son: i) el reconocimiento de necesidades, ii) la determinación de las especificaciones de diseño, iii) el diseño conceptual y iv) el diseño detallado. Información más detallada acerca del proceso genérico de desarrollo de prototipos es presentado en el Anexo A.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleEstablecimiento de características técnicas para el diseño e implementación de instrumentación geofísica de inspección y monitoreo a baja frecuenciaspa
dc.typeTrabajo de grado - Maestríaspa
dcterms.bibliographicCitationKAMRANI, Ali K. y SALHIEH, Sa'ed. M., Product Design for Modularity, Springer US, 2013.spa
dcterms.bibliographicCitationURIBE P., Sandra, Diseño, eslabón perdido de la innovación en Colombia, UN Periódico, ed. Bogota: Unimedios, Universidad Nacional de Colombia, 2012.spa
dcterms.bibliographicCitationHOLGUIN, Víctor Manuel, A Colombia le falta mucha ciencia, UN Periodico, ed. Bogota: Unimedios, Universidad Nacional de Colombia, 2014.spa
dcterms.bibliographicCitationMEYERS, Robert A., Encyclopedia of Physical Science and Technology, Third Edition, vol. 3, Elsevier, 2001.spa
dcterms.bibliographicCitationREYNOLDS, John M., An Introduction to Applied and Environmental Geophysics, JOHN WILEY & SONS, 1998.spa
dcterms.bibliographicCitationKEAREY, Philip et al., An Introduction to Geophysical Exploration, Blackwell Science Ltd Editorial Offices, 2002.spa
dcterms.bibliographicCitationMAYA, Mario et al., Estado del conocimiento de la exploración de esmeraldas en Colombia, INGEOMINAS, Bogotá, 2004.spa
dcterms.bibliographicCitationGIRALDO, Jaramillo et al., Application of gravimetry and electric tomography methods to obtain stratigrafic profiles: case study at University of Quindío and Puerto Espejo area, Armenia-Colombia, Earth Sciences Research Journal, Vol. 9, 2005.spa
dcterms.bibliographicCitationSAINATO, Claudia M. et al., Assessment of contamination by intensive cattle activity through electrical resistivity tomography, Journal of Applied Geophysics, vol. 76, pp. 82-91, 2012.spa
dcterms.bibliographicCitationARRUBARRENA-MORENO, Manuel et al., Use of electrical resistivity tomography in the study of soil pollution caused by hydrocarbons: Case study in Puebla (Mexico), Bol. Soc. Geol. Mex, vol. 65, pp. 419-426, 2013.spa
dcterms.bibliographicCitationSCHMIDT-HATTENBERGER, C. et al., Electrical Resistivity Tomography (ERT) for Monitoring of CO2 Migration - from Tool Development to Reservoir Surveillance at the Ketzin Pilot Site, Energy Procedia, vol. 37, pp. 4268-4275, 2013.spa
dcterms.bibliographicCitationRUCKER, Dale F.; LEVITT, Marc T.; GREENWOOD, William J. Three-dimensional electrical resistivity model of a nuclear waste disposal site. Journal of Applied Geophysics, 2009, vol. 69, no 3, p. 150-164.spa
dcterms.bibliographicCitationWISÉN, Roger, et al. Experience from Two Resistivity Inversion Techniques Applied in Three Cases of Geotechnical Site Investigation. Journal of geotechnical and geoenvironmental engineering, 2008, vol. 134, no 12, p. 1730-1742.spa
dcterms.bibliographicCitationZHANG, Qisheng; DENG, Ming; LIU, Ning. A New Method for High-Precision Geoelectric Data Acquisition Based on CS5372. Information Engineering and Computer Science (ICIECS), 2010 2nd International Conference on. IEEE, 2010.spa
dcterms.bibliographicCitationZHEN, Huang, et al. A Novel Design of Master Control Syetem for Induced Polarization Logging Instrument. En Electrical and Control Engineering (ICECE), 2010 International Conference on. IEEE, 2010. p. 183-186.spa
dcterms.bibliographicCitationREN, Yong-sheng, et al. Design of transmitting circuit for Micro-Resistivity Imaging Logging tool. En Intelligent Signal Processing and Communication Systems (ISPACS), 2010 International Symposium on. IEEE, 2010. p. 1-4.spa
dcterms.bibliographicCitationSAMOUËLIAN, Anatja, et al. Electrical resistivity survey in soil science: a review. Soil and Tillage research, 2005, vol. 83, no 2, p. 173-193.spa
dcterms.bibliographicCitationROSEN, D. W.; PETERS, T. J. The role of topology in engineering design research. Research in Engineering Design, 1996, vol. 8, no 2, p. 81-98.spa
dcterms.bibliographicCitationSCHIRRMEISTER, F., Chapter 2 - Embedded Systems Hardware/Software Co-Development, Software Engineering for Embedded Systems, R. Oshana and M. Kraeling, Eds., ed Oxford: Newnes, 2013, pp. 33-57.spa
dcterms.bibliographicCitationSTUMMER, Peter, et al. Optimization of DC resistivity data acquisition: Real-time experimental design and a new multielectrode system. IEEE Transactions on Geoscience and Remote Sensing, 2002, vol. 40, no 12, p. 2727-2735.spa
dcterms.bibliographicCitationLUECK, E.; RUEHLMANN, J. Resistivity mapping with GEOPHILUS ELECTRICUS—Information about lateral and vertical soil heterogeneity. Geoderma, 2013, vol. 199, p. 2-11.spa
dcterms.bibliographicCitationISHAI, Paul Ben, et al. Electrode polarization in dielectric measurements: a review. Measurement Science and Technology, 2013, vol. 24, no 10, p. 102001.spa
dcterms.bibliographicCitationAUKEN, Esben, et al. A survey of current trends in near-surface electrical and electromagnetic methods. Geophysics, 2006, vol. 71, no 5, p. G249-G260.spa
dcterms.bibliographicCitationSTEFANO, Antonio Di y FIANDACA, Gianluca, Modular apparatus for the electronic prospection of a medium, WO 2011158103 A1, 2011.spa
dcterms.bibliographicCitationWERKEMA, Douglas D., et al. A generic automated/semiautomated digital multi-electrode instrument for field resistivity measurements. IEEE Transactions on Instrumentation and Measurement, 2000, vol. 49, no 6, p. 1249-1253.spa
dcterms.bibliographicCitationCOUSIN, Isabelle, et al. From spatial-continuous electrical resistivity measurements to the soil hydraulic functioning at the field scale. Comptes Rendus Geoscience, 2009, vol. 341, no 10, p. 859-867.spa
dcterms.bibliographicCitationSECHMAN, Henryk et al., Pollution of near-surface zone in the vicinity of gas wells, Geoderma, vol. 197–198, 2013.spa
dcterms.bibliographicCitationLAMBOT, Sébastien, et al. Measuring and processing protocols description. 2009.spa
dcterms.bibliographicCitationDABAS, Michel. Theory and practice of the new fast electrical imaging system ARP©. CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2009.spa
dcterms.bibliographicCitationRHOADES, J. D. Instrumental field methods of salinity appraisal. Advances in measurement of soil physical properties: Bringing theory into practice, 1992, no advancesinmeasu, p. 231-248.spa
dcterms.bibliographicCitationRHOADES, J. D. Electrical conductivity methods for measuring and mapping soil salinity. Advances in agronomy, 1993, vol. 49, p. 201-251.spa
dcterms.bibliographicCitationPAPADOPOULOS, Nikos G., et al. 3D inversion of Automated Resistivity Profiling (ARP) data. ArcheoSciences. Revue d'archéométrie, 2009, no 33 (suppl.), p. 329-332.spa
dcterms.bibliographicCitationLABRECQUE, Douglas; DAILY, William. Assessment of measurement errors for galvanic-resistivity electrodes of different composition. Geophysics, 2008, vol. 73, no 2, p. F55-F64.spa
dcterms.bibliographicCitationGEOSCAN RESEARCH, Mobile Sensor Platform MSP40, Instruction Manual, ed. 1.2, 2006.spa
dcterms.bibliographicCitationLÜCK, E., et al. Geophilus electricus-a new soil mapping system. En International Conference on Agricultural Engineering- AgEng 2010: towards environmental technologies, Clermont-Ferrand, France, 6-8 September 2010. Cemagref, 2010.spa
dcterms.bibliographicCitationPAN, Luan, et al. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach. Sensors, 2014, vol. 14, no 7, p. 13243-13255.spa
dcterms.bibliographicCitationRUEN, J., Sensored Soils Boost Agronomics, New Sensor Technology is the Next Management Frontier. Presicion AG, 2012.spa
dcterms.bibliographicCitationKURAS, Oliver, et al. Fundamentals of the capacitive resistivity technique. Geophysics, 2006, vol. 71, no 3, p. G135-G152.spa
dcterms.bibliographicCitationDANIELSEN, Berit E. et al., Geoelectrical and IP Imaging Used for Pre-investigation at a Tunnel Project, 14th Meeting Environmental and Engineering Geophysics, Krakow, Poland, 2008.spa
dcterms.bibliographicCitationTABBAGH, A., et al. First in Situ Test of a New Electrostatic Resistivity Meter. En Near Surface 2011-17th EAGE European Meeting of Environmental and Engineering Geophysics. 2011.spa
dcterms.bibliographicCitationTERZIC, Edin, et al. Capacitive Sensing Technology. En A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments. Springer London, 2012. p. 11-37.spa
dcterms.bibliographicCitationCHRISTENSEN, Niels B.; SØRENSEN, Kurt I. Surface and borehole electric and electromagnetic methods for hydrogeological investigations, European Journal of Environmental and Engineering Geophysics, 1998, vol. 3, p. 75-90.spa
dcterms.bibliographicCitationTERRAPLUS, CORIM Continuous Profiling Resistivity System, Available: http://terraplus.ca/products/resistivity/corim.aspx, 22/12/2015.spa
dcterms.bibliographicCitationIEEE Guide for Measurement of Impedance and Safety Characteristics of Large, Extended or Interconnected Grounding Systems. IEEE Std 81.2-1991: 1-112, 1992.spa
dcterms.bibliographicCitationMILSOM, John. Field geophysics. John Wiley and Sons, 2007spa
dcterms.bibliographicCitationKIRSCH, Reinhard, Groundwater Geophysics: A Tool for Hydrogeology: Springer Berlin Heidelberg, 2008spa
dcterms.bibliographicCitationOGILVY, R. D.; MELDRUM, P. I.; KURAS, O. y BEAMISH, D., Systems and methods for resistivity measurement, 2009spa
dcterms.bibliographicCitationKURAS, Oliver. The capacitive resistivity technique for electrical imaging of the shallow subsurface. 2002. Tesis Doctoral. University of Nottingham.spa
dcterms.bibliographicCitationOSELLA, A.; BONGIOVANNI, M. V.; DE LA VEGA, M. Development of a Geoelectric Device of Capacitive Contact for Studying Archaeological Targets in Very Resistive Zones. En Near Surface Geoscience 2012–18th European Meeting of Environmental and Engineering Geophysics. 2012.spa
dcterms.bibliographicCitationGRIFFITHS, D. H.; TURNBULL, J. A multi-electrode array for resistivity surveying. First break, 1985, vol. 3, no 7, p. 16-20.spa
dcterms.bibliographicCitationLATASTE, J.F. et al., Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering, NDT & E International, vol. 36, pp. 383-394, 2003.spa
dcterms.bibliographicCitationDAHLIN, Torleif; BERNSTONE, Christian. A roll-along technique for 3D resistivity data acquisition with multi-electrode arrays. En Symposium on the Application of Geophysics to Engineering and Environmental Problems 1997. Society of Exploration Geophysicists, 1997, p. 927-935.spa
dcterms.bibliographicCitationANING, Akwasi Acheampong; TUCHOLKA, Piotr; DANUOR, Sylvester K. 2D Electrical Resistivity Tomography (ERT) Survey using the Multi-Electrode Gradient Array at the Bosumtwi Impact Crater, Ghana. Journal of Environmental and Earth Science, 2013, vol. 3, no 5):, p. 12-27.spa
dcterms.bibliographicCitationLAGMANSON, Mats Sven Bertilsooh. Methods and apparatus for measuring electrical properties of a ground using an electrode configurable as a transmitter or receiver. U.S. Patent No 6,404,203, 11 Jun. 2002.spa
dcterms.bibliographicCitationCAI, Lukai; VERMA, Shireesh; GAJSKI, Daniel D. Comparison of Specfic and SystemC languages for system design. CECS, University of California, Irvine, CA, USA, Tech. Rep, 2003.spa
dcterms.bibliographicCitationABDELHADI, Abderrahim. Identically programmed intelligent electrodes for use in geoelectrical surveys. U.S. Patent No 7,158,048, 2 Ene. 2007.spa
dcterms.bibliographicCitationSCINTREX LTD, Saris Manual, Available: http://scintrexltd.com/downloads/ saris.manual.pdf, 2015, August 31.spa
dcterms.bibliographicCitationJIAO, Yang; WANG, Jun; HE, Gang. Design on Measuring System of New Type Electrical Resistivity Imaging Exploring Ground Instrument. En Key Engineering Materials. Trans Tech Publications, 2014. p. 369-374.spa
dcterms.bibliographicCitationZHONGWEN ZHANG, J. L.; LI, Anjing; LI, Yongjun; ZHANG, Wei, Two-way communication type electrode conversion device of high-density electric device, 2012spa
dcterms.bibliographicCitationGOLDIE, Mark. A comparison between conventional and distributed acquisition induced polarization surveys for gold exploration in Nevada. The Leading Edge, 2007, vol. 26, no 2, p. 180-183.spa
dcterms.bibliographicCitationATTWA, M.; GÜNTHER, T. Application of spectral induced polarization (SIP) imaging for characterizing the near-surface geology: an environmental case study at Schillerslage, Germany. Australian Journal of Applied Sciences, 2012, vol. 6, no 9, p. 693-701.spa
dcterms.bibliographicCitationBLOME, Mark. Efficient measurement and data inversion strategies for large scale geoelectric surveys. 2009. Tesis Doctoral. University of Göttingen.spa
dcterms.bibliographicCitationHALLAJI, Milad et al., Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials," Cement and Concrete Research, vol. 69, pp. 10-18, 2015.spa
dcterms.bibliographicCitationKINGMAN, J. E. E.; DONOHUE, J. G.; RITCHIE, T. J. Distributed acquisition in electrical geophysical systems. En Proceedings of Exploration. 2007. p. 425-432.spa
dcterms.bibliographicCitationKILLEN, P. G., Induced Polarization. Explorations Trends and Developments. 23-24.spa
dcterms.bibliographicCitationOPEN SYSTEMC INITIATIVE, et al. IEEE standard SystemC language reference manual. IEEE Computer Society, 2006, p. 1666-2005.spa
dcterms.bibliographicCitationNEYENS, D., Method and system for measuring the resistivity of subsoil, 2014spa
dcterms.bibliographicCitationPEZARD, P., System und Verfahren zur unterirdischen Widerstandsmessung, 2013spa
dcterms.bibliographicCitationZIEGLER, Silvio, et al. Current sensing techniques: A review. IEEE Sensors Journal, 2009, vol. 9, no 4, p. 354-376.spa
dcterms.bibliographicCitationRIPKA, Pavel. Electric current sensors: a review. Measurement Science and Technology, 2010, vol. 21, no 11, p. 112001.spa
dcterms.bibliographicCitationDAHLIN, Torleif; LEROUX, Virginie; NISSEN, Johan. Measuring techniques in induced polarisation imaging. Journal of Applied Geophysics, 2002, vol. 50, no 3, p. 279-298.spa
dcterms.bibliographicCitationLOKE, M. H.; CHAMBERS, J. E.; OGILVY, R. D. Inversion of 2D spectral induced polarization imaging data. Geophysical Prospecting, 2006, vol. 54, no 3, p. 287-301.spa
dcterms.bibliographicCitationKEMNA, Andreas, et al. An overview of the spectral induced polarization method for near-surface applications. Near Surface Geophysics, 2012, vol. 10, no 6, p. 453-468.spa
dcterms.bibliographicCitationLUO, Yanzhong; ZHANG, Guiqing. Theory and application of spectral induced polarization. Society of Exploration Geophysicists, 1998.spa
dcterms.bibliographicCitationBELLMUNT, F. et al., Time-lapse cross-hole electrical resistivity tomography monitoring effects of an urban tunnel, Journal of Applied Geophysics, vol. 87, pp. 60-70, 2012.spa
dcterms.bibliographicCitationHUI, Luan, et al. Transmitter Research of Great Deep Resistivity Imaging. Procedia Engineering, 2011, vol. 16, p. 376-382.spa
dcterms.bibliographicCitationEINWICH, Karsten. Introduction to the SystemC AMS extension standard. En Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2011 IEEE 14th International Symposium on. IEEE, 2011. p. 6-8.spa
dcterms.bibliographicCitationYAO, Sun; ZHENFENG, Li; SHUANG, Zhao. Research on key technology of well-ground ERT transmitter. Procedia Engineering, 2012, vol. 29, p. 1099-1106.spa
dcterms.bibliographicCitationONUORAH, L. O.; NWOZOR, K. K. Instrumentation Geophysics: Design and Construction of a DC Variable Power Supply. International Journal of Instrumentation Science, 2014, vol. 3, no 2, p. 13-16.spa
dcterms.bibliographicCitationWANG, Mi (ed.). Industrial tomography: systems and applications. Elsevier, 2015.spa
dcterms.bibliographicCitationGUO, Xiucai; ZHANG, Xiutong. Development of multi-functional grounding resistance meter based on DSP, Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011 2nd International Conference on. IEEE, 2011.spa
dcterms.bibliographicCitationWANG, Baoliang; HUANG, Zhiyao; LI, Haiqing. Design of high-speed ECT and ERT system. En Journal of Physics: Conference Series. IOP Publishing, 2009. p. 012035.spa
dcterms.bibliographicCitationAWOTOYE, K. S.; SELEMO, A. O. Design and construction of a resistivity meter for shallow investigation. Nigerian Journal of Physics, 2006, vol. 18, no 2, p. 261-270.spa
dcterms.bibliographicCitationSUMNER, John S. Principles of induced polarization for geophysical exploration. Elsevier, 2012.spa
dcterms.bibliographicCitationQIYUN, Jiang, et al. The hardware design of a mine resistivity tomography instrument. En Imaging Systems and Techniques, 2009. IST'09. IEEE International Workshop on. IEEE, 2009. p. 235-238.spa
dcterms.bibliographicCitationTILDEN, S., et al. Ieee standard for terminology and test methods for analog-to-digital converters. IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000), p. 1-139.spa
dcterms.bibliographicCitationREVIL, M. et al., Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology, Hydrogeology Journal, vol. 20, pp. 617-658, 2012.spa
dcterms.bibliographicCitationAKYILDIZ, Ian F., et al. Wireless sensor networks: a survey. Computer networks, 2002, vol. 38, no 4, p. 393-422.spa
dcterms.bibliographicCitationSHAO, Lei; LIN, Jun. Design and Application of Network Borehole-Ground Electrical Measurement System. En Advanced Materials Research. Trans Tech Publications, 2011. p. 1926-1929.spa
dcterms.bibliographicCitationRUJUN, Chen; WEIBING, Luo; JISHAN, He. High precision multi-frequency multi-function receiver for electrical exploration. En Electronic Measurement and Instruments, 2007. ICEMI'07. 8th International Conference on. IEEE, 2007. p. 1-599-1-601.spa
dcterms.bibliographicCitationFENG, D. O. N. G., et al. Design of parallel electrical resistance tomography system for measuring multiphase flow. Chinese Journal of Chemical Engineering, 2012, vol. 20, no 2, p. 368-379.spa
dcterms.bibliographicCitationBAGALONI, Vanesa N.; PERDOMO, Santiago; AINCHIL, Jerónimo. Geoelectric and magnetic surveys at La Libertad archaeological site (San Cayetano County, Buenos Aires Province, Argentina): A transdisciplinary approach. Quaternary International, 2011, vol. 245, no 1, p. 13-24.spa
dcterms.bibliographicCitationWEI, Yaoguang, et al. Design of Intelligent Conductivity Meter Based on MSP430F149. En International Conference on Computer and Computing Technologies in Agriculture. Springer Berlin Heidelberg, 2009. p. 240-247.spa
dcterms.bibliographicCitationSEVILLA, Raúl Melo; MONTES, Javier Rojas. Diseño y construcción de un prototipo para la medición de la resistividad del suelo usando dispositivos programables en un chip. Ingenium, 2014, vol. 8, no 20, p. 39-46.spa
dcterms.bibliographicCitationYAN, Fabao; LIU, Jianxin; CHUN, Shaoheng. Study of the way to firmware program upgrade in FPGA reconfiguration of distributed geophysical instruments. Sensors & Transducers, 2014, vol. 172, no 6, p. 130.spa
dcterms.bibliographicCitationNATIONAL INSTRUMENTS, Fundamentals of Building a Test System Switching and Multiplexing, 2016.spa
dcterms.bibliographicCitationAGILENT TECHNOLOGIES, Essential Components of Data Acquisition Systems - Application Note 1386. USA, 2002.spa
dcterms.bibliographicCitationFAN, Hongbing; WU, Yu-Liang. Crossbar based design schemes for switch boxes and programmable interconnection networks. En Proceedings of the 2005 Asia and South Pacific Design Automation Conference. ACM, 2005. p. 910-915.spa
dcterms.bibliographicCitationKHAN, Shafiullah; PATHAN, Al-Sakib Khan; ALRAJEH, Nabil Ali (ed.). Wireless Sensor Networks: Current Status and Future Trends. CRC Press, 2012.spa
dcterms.bibliographicCitationGANCE, J. et al, Electrical monitoring of the Super-Sauze landslide (French Alps), Extended Abstract EAGE, 2012.spa
dcterms.bibliographicCitationFENG, Tse-yun. A survey of interconnection networks. Computer, 1981, vol. 14, no 12, p. 12-27.spa
dcterms.bibliographicCitationÇAKIR, Abdülkadir; AKPANCAR, Seyit. Resistivity-induced Polarization Receiver/Transmitter Design and PC-assisted Data Analysis. Acta Polytechnica Hungarica, 2015, vol. 12, no 2.spa
dcterms.bibliographicCitationGRIFFITHS, Donald H.; TURNBULL, John. Electrical resistivity geological surveying apparatus and method utilizing plural cable sections with controlled distributed electrode/cable conductor switching. U.S. Patent No 4,752,881, 21 Jun. 1988. ALLEN, David A. A review of geophysical equipment applied to groundwater and soil investigation. Land and Water Australia, 2008.spa
dcterms.bibliographicCitationWILKINSON, P. B., et al. Array Optimisation for Multi-channel Electrical Resistivity Tomography Instruments. En Near Surface 2007-13th EAGE European Meeting of Environmental and Engineering Geophysics. 2007.spa
dcterms.bibliographicCitationPARRA, Jorge O.; OWEN, Thomas E.; DUFF, Bob M. Method and apparatus for detecting subsurface anomalies. U.S. Patent No 4,835,474, 30 Mayo 1989spa
dcterms.bibliographicCitationWANG, J. et al, Enhanced electrode conversion device of high-density electric instrument, Universidad de Jilin, 2012.spa
dcterms.bibliographicCitationEVERETT, Mark E. Near-surface applied geophysics. Cambridge University Press, 2013.spa
dcterms.bibliographicCitationWU, Ai Ping; PAN, He Ping. The Transmitter Controller Design of Induced Polarization Instrument. En Applied Mechanics and Materials. Trans Tech Publications, 2012. p. 221-224.spa
dcterms.bibliographicCitationFISHER, Roderick John. Pole-Pot ential Mapping and Synt hetic Arrays in Electrical Exploration. 2000. Tesis Doctoral. University of Toronto.spa
dcterms.bibliographicCitationTEXAS INSTRUMENTS INC., Comparing Bus Solutions, Application Report, SLLA067B–October 2009.spa
dcterms.bibliographicCitationBENEŠ, Václav E. (ed.). Mathematical theory of connecting networks and telephone traffic. Academic press, 1965.spa
dcterms.bibliographicCitationAFSHAR, Ahmad, et al. Geophysical investigation of underground water content zones using electrical resistivity tomography and ground penetrating radar: A case study in Hesarak-Karaj, Iran. Engineering Geology, vol. 196, p. 183-193, 2015.spa
dcterms.bibliographicCitationAHLER, Marco; PAULI, Simon; KOPP, Thomas. Sensor device and method for the geoelectrical prospecting of raw mineral deposits. U.S. Patent No 9,051,832, 9 Jun. 2015.spa
dcterms.bibliographicCitationMORAIS, Fernando de; BACELLAR, Luis de Almeida Prado; ARANHA, Paulo Roberto Antunes. Study of flow in vadose zone from electrical resistivity surveys. Revista Brasileira de Geofísica, 2008, vol. 26, no 2, p. 115-122.spa
dcterms.bibliographicCitationDAHLIN, Torleif; ZHOU, Bing. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical prospecting, 2004, vol. 52, no 5, p. 379-398.spa
dcterms.bibliographicCitationALLEGRO MICROSYSTEMS, LLC, ACS714 Hoja de Características, Rev 9., 2013.spa
dcterms.bibliographicCitationROYER, Elizabeth M.; TOH, Chai-Keong. A review of current routing protocols for ad hoc mobile wireless networks. IEEE personal communications, 1999, vol. 6, no 2, p. 46-55.spa
dcterms.bibliographicCitationWEHRLE, Klaus; GÖTZ, Stefan; RIECHE, Simon. 7. distributed hash tables. En Peer-to-Peer systems and applications. Springer Berlin Heidelberg, 2005. p. 79-93.spa
dcterms.bibliographicCitationCHAMBERS, J. E., et al. River terrace sand and gravel deposit reserve estimation using three-dimensional electrical resistivity tomography for bedrock surface detection. Journal of Applied Geophysics, 2013, vol. 93, p. 25-32.spa
dcterms.bibliographicCitationLONGO, Vittorio, et al. Prospecting for clay minerals within volcanic successions: application of electrical resistivity tomography to characterise bentonite deposits in northern Sardinia (Italy). Journal of Applied Geophysics, 2014, vol. 111.spa
dcterms.bibliographicCitationZARROCA, Mario, et al. Application of electrical resistivity imaging (ERI) to a tailings dam project for artisanal and smallscale gold mining in Zaruma-Portovelo, Ecuador. Journal of Applied Geophysics, 2015, vol. 113, p. 103-113.spa
dcterms.bibliographicCitationCORWIN, D. L.; LESCH, S. M. Apparent soil electrical conductivity measurements in agriculture. Computers and electronics in agriculture, 2005, vol. 46, no 1, p. 11-43.spa
dcterms.bibliographicCitationAMATO, Mariana, et al. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. Tree physiology, 2008, vol. 28, no 10, p. 1441-1448.spa
dcterms.bibliographicCitationPAGLIS, Carlos Mauricio. Application of electrical resistivity tomography for detecting root biomass in coffee trees. International Journal of Geophysics, 2013, vol. 2013.spa
dcterms.bibliographicCitationANDRENELLI, M. C., et al. The use of the ARP© system to reduce the costs of soil survey for precision viticulture. Journal of Applied Geophysics, 2013, vol. 99, p. 24-34.spa
dcterms.bibliographicCitationCHOUZENOUX, Christian; MANIN, Yves; POHL, Didier y SOUHAITE Philippe, Apparatus for monitoring underground formations, US 20040263175 A1, 2004.spa
dcterms.bibliographicCitationRISTOLAINEN, Antti; FARKAS, Csilla; TÓTH, Tibor. Prediction of Soil Properties with Field Geo‐electrical Probes. Communications in soil science and plant analysis, 2009, vol. 40, no 1-6, p. 555-565.spa
dcterms.bibliographicCitationLILIENTHAL, H., et al. Comparison of different geo-electric measurement techniques to detect in-field variability of soil parameters. LANDBAUFORSCHUNG VOLKENRODE, 2005, vol. 55, no 4, p. 237.spa
dcterms.bibliographicCitationVEEKEN, Paul C., et al. Benefits of the induced polarization geoelectric method to hydrocarbon exploration. Geophysics, 2009, vol. 74, no 2, p. B47-B59.spa
dcterms.bibliographicCitationLIZARAZO C., Tatiana, Preocupante déficit de ingenieros en Colombia, Periódico EL TIEMPO, edición del día 28 de octubre de 2015.spa
dcterms.bibliographicCitationVESGA, Rafael. Emprendimiento e innovación en Colombia:¿ qué nos está haciendo falta. Observatorio de Competitividad del Centro de Estrategia y Competitividad. Recuperado el, 2008, vol. 3.spa
dcterms.bibliographicCitationDE PASCALE, Gregory P.; POLLARD, Wayne H.; WILLIAMS, Kevin K. Geophysical mapping of ground ice using a combination of capacitive coupled resistivity and ground‐penetrating radar, Northwest Territories, Canada. Journal of Geophysical Research: Earth Surface, 2008, vol. 113, no F2.spa
dcterms.bibliographicCitationRICHARD, Page. Inexpensive geophysical instruments supporting groundwater exploration in developing nations. Journal of Water Resource and Protection, 2011, vol. 2011.spa
dcterms.bibliographicCitationSÁNCHEZ, Fabio Héctor Giraldo; LOSADA, Fernando Diego Sendoya. Diseño y Construcción de Equipo para Realizar Prospección Geofísica Aplicando el Método VDE Tomografía Eléctrica. Publicaciones e Investigación, 2015, vol. 7, p. 71-81.spa
dcterms.bibliographicCitationPASIGEOPHYSICS, Earth Resistivity Meter 16GL-N, Hoja de caracteristicas tecnicas, 2010.spa
dcterms.bibliographicCitationABEM INSTRUMENT AB, Terrameter SAS 4000/SAS 1000, Manual de usuario, ed. Sundbyberg, Sweden, 2000.spa
dcterms.bibliographicCitationSCHMITT, Benoit; CHOUZENOUX, Christian; BABOUR, Kamal y BEGUIN, Paul, Surface formation monitoring system and method, US 8056623 B2, 2011.spa
dcterms.bibliographicCitation_____________________, Terrameter LS, Manual de usuario, ed. Sundbyberg, Sweden, 1012.spa
dcterms.bibliographicCitationGEOMETRICS, OhmMapper – Resistivity Mapping, Manual de características, 2002.spa
dcterms.bibliographicCitationSHANGHAI AIDU ENERGY SCIENCE CO. LTD, A-DJF10-2 high power IP., Hoja de características técnicas, 2008.spa
dcterms.bibliographicCitationGRIFFITHS, D. H.; TURNBULL, J.; OLAYINKA, A. I. Two-dimensional resistivity mapping with a computer-controlled array. First break, 1990, vol. 8, no 4, p. 121-129.spa
dcterms.bibliographicCitationMEJU, Max A.; MONTAGUE, M. Basis for a flexible low-cost automated resistivity data acquisition and analysis system. Computers & Geosciences, 1995, vol. 21, no 8, p. 993-999.spa
dcterms.bibliographicCitationSCHNEIDER, George W.; RYCK, SM De; FERRE, P. A. The application of automated high resolution DC resistivity in monitoring hydrogeological field experiments. En Symposium on the Application of Geophysics to Engineering and Environmental Problems 1993. Society of Exploration Geophysicists, 1993. p. 145-162.spa
dcterms.bibliographicCitationLAINE, Daren L.; PARRA, J. O.; OWEN, T. E. Application of an automatic earth resistivity system for detecting ground water migration under a municipal landfill. Proceedings of NWWAConference on Surface and Borehole Geophysical Methods in Groundwater Investigations, 1982, p. 34-51.spa
dcterms.bibliographicCitationPROULX, Tom, Sensors, Instrumentation and Special Topics, Proceedings of the 29th IMAC, A Conference on Structural Dynamics, Volume 6 vol. 6, United Stated: Springer, 2011.spa
dcterms.bibliographicCitationDRATLER, Jay; MCJOHN, Stephen M. Intellectual Property Law: Commercial, Creative, and Industrial Property. Law Journal Press, 1991.spa
dcterms.bibliographicCitationPRESIDENCIA DE LA REPUBLICA DE COLOMBIA, Plan Nacional de Desarrollo 2010-2014. Bogotá DC, Colombia: Imprenta Nacional de Colombia, 2011.spa
dcterms.bibliographicCitationOWEN, Thomas E.; DARILEK, Glenn T.; PETERS, Wendell R. y BRYAN Edward L., Bryan, Electrical geophysical exploration system with addressable current probes, US 4467283 A, 1984.spa
dcterms.bibliographicCitationDAY, Robert W. Geotechnical earthquake engineering handbook. McGraw-Hill, 2002.spa
dcterms.bibliographicCitationGROAT, Charles G. Seismographs, sensors, and satellites: better technology for safer communities. Technology in Society, 2004, vol. 26, no 2, p. 169-179.spa
dcterms.bibliographicCitationTEUPSER, Christian; PLEŠINGER, Axel. Design of feedback-controlled wide-band seismographs with respect to undesired side-effects. Physics of the Earth and Planetary Interiors, 1979, vol. 18, no 2, p. 58-63.spa
dcterms.bibliographicCitationUSHER, M.J., et al., Physics of the Earth and Planetary Interiors, Volume 18, Issue 2, Pages 38-50, 1979.spa
dcterms.bibliographicCitationZHANG, Wentao, et al. Fiber laser sensors for micro seismic monitoring. Measurement, 2016, vol. 79, p. 203-210.spa
dcterms.bibliographicCitationHUTT, Charles R.; BOLTON, Harold F.; HOLCOMB, L. Gary. 20 US contribution to digital global seismograph networks. International Geophysics, 2002, vol. 81, p. 319-332.spa
dcterms.bibliographicCitationMADETI, Siva Ramakrishna; SINGH, S. N. Monitoring system for photovoltaic plants: A review. Renewable and Sustainable Energy Reviews, 2017, vol. 67, p. 1180-1207.spa
dcterms.bibliographicCitationASOCIACIÓN COLOMBIANA DE INGENIERÍA SÍSMICA, Normas Colombianas de Diseño y Construcción Sismo Resistente NSR-98, Ley 400 de 1997, 1998.spa
dcterms.bibliographicCitationASOCIACIÓN COLOMBIANA DE INGENIERÍA SÍSMICA, Normas Colombianas de Diseño y Construcción Sismo Resistente NSR-10, Actualización de la Ley 400 de 1997, 2010.spa
dcterms.bibliographicCitationDIARIO OFICIAL, Republica de Colombia, imprenta nacional de Colombia, No 47.663, ISSN-0122-2112, Bogotá, Colombia, viernes 26 de marzo de 2010.spa
dcterms.bibliographicCitationCHEN BAOHUA, N. Z.; XIAOJUAN, BAI; GUANGTAO, ZHANG. Novel electric prospecting device, 2013.spa
dcterms.bibliographicCitationALLEN, Rex V., Automatic earthquake recognition and timing from single traces, Bulletin of the Seismological Society of America, 1978.spa
dcterms.bibliographicCitationKÜPERKOCH, Ludger, MEIER,Thomas y otros, Automated determination of P-phase arrival times at regional and local distances using higher order statistics, Geophysical Journal International, 2010.spa
dcterms.bibliographicCitationKRADOLFER, U. y BAER, M., An automatic phase picker for local and teleseismic events, Bulletin of the Seismological Society of America, 1987.spa
dcterms.bibliographicCitationWITHERS, Mitchell, ASTER, Richard y otros, A Comparison of Select Trigger Algorithms for Automated Global Seismic Phase and Event Detection, Bulletin of the Seismological Society of America, 1998.spa
dcterms.bibliographicCitationKÜPERKOCH, Ludger, MEIER,Thomas y DIEHL, Tobias, Automated Event and Phase Identification, Tesis de doctorado, Universidad de Bochum, Alemania, 2011.spa
dcterms.bibliographicCitationCICHOWICZ, Artur, An automatic S-phase picker, Bulletin of the Seismological Society of America, 1993.spa
dcterms.bibliographicCitationMORITZ, Beyreuther, Speech Recognition based Automatic Earthquake Detection and Classification, Tesis de doctorado, Universidad Ludwig-Maximilians de Munich, 2011.spa
dcterms.bibliographicCitationROMEO, Giovanni, Seismic signals detection and classification using artificial neural networks, Annali di geofisica, 1994.spa
dcterms.bibliographicCitationSANTIAGO P., Julian B., Calibración de acelerómetros para la medida de micro aceleraciones en aplicaciones espaciales, tesis doctoral, Universidad Politécnica de Madrid, 2000spa
dcterms.bibliographicCitationSPARACINO, Adam R., et al. Survey of battery energy storage systems and modeling techniques. En Power and Energy Society General Meeting, 2012 IEEE. IEEE, 2012. p. 1-8.spa
dcterms.bibliographicCitationSUPPER, Robert, et al, The GEOMON 4D electrical monitoring system: current state and future developments, Ber. Geol. Bundesanstalt 93, 2012.spa
dcterms.bibliographicCitationRATES, Battery Discharge. Isco Nickel-Cadmium and Lead-Acid Battery Comparisons. 1994.spa
dcterms.bibliographicCitationANUPHAPPHARADORN, Suratsawadee, et al. Comparison the economic analysis of the battery between lithium-ion and lead-acid in PV stand-alone application. Energy Procedia, 2014, vol. 56, p. 352-358.spa
dcterms.bibliographicCitationACAR, Cenk; SHKEL, Andrei M. Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers. Journal of micromechanics and microengineering, 2003, vol. 13, no 5, p. 634.spa
dcterms.bibliographicCitationCOLLETTE, C., et al. Review of sensors for low frequency seismic vibration measurement. 2011.spa
dcterms.bibliographicCitationSTEINFELD, Edward F. FAT32 is made for data-intensive embedded applications. REAL TIME MAGAZINE, 1998, p.91-100.spa
dcterms.bibliographicCitationAVERY, H. R.; BERRILL, J. B.; DEWE, M. B. Design and development of a low-cost, high-performance, strong-motion accelerograph. En Proc. of the 2004 NZSEE Conference. 2004.spa
dcterms.bibliographicCitationEARLE, Paul S.; SHEARER, Peter M. Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America, 1994, vol. 84, no 2, p. 366-376.spa
dcterms.bibliographicCitationSABBIONE, Juan y otros, Análisis comparativo de diferentes métodos de picado automático de fases en terremotos registrados en la estación sismológica de la plata (LPA), Geoacta, Asociación Argentina de Geofísicos y Geodestas, 2011spa
dcterms.bibliographicCitationDARGIE, Waltenegus; POELLABAUER, Christian. Fundamentals of wireless sensor networks: theory and practice. John Wiley & Sons, 2010.spa
dcterms.bibliographicCitationBHATTACHARYA, P. K., Methods in Geochemistry and Geophysics - direct current geoelectric sounding, Elsevier publishing company, 1968.spa
dcterms.bibliographicCitationJINGUUJI, Motoharu. Development of multi-transmission high speed survey system and the application of geyser monitoring, Ber. Geol. Bundesanstalt 93, 2012.spa
dcterms.bibliographicCitationKAUFMAN, Alex A.; ANDERSON, B. Principles of electric methods in surface and borehole geophysics. Elsevier, 2010.spa
dcterms.bibliographicCitationSTUMMER, Peter. New developments in electrical resistivity imaging. 2003. Tesis Doctoral. University of Leoben, Austria.spa
dcterms.bibliographicCitationLOKE, M. H., et al. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 2013, vol. 95, p. 135-156.spa
dcterms.bibliographicCitationGISH, O. H.; ROONEY, W. J. Measurement of resistivity of large masses of undisturbed earth. Terrestrial Magnetism and Atmospheric Electricity, 1925, vol. 30, no 4, p. 161-188.spa
dcterms.bibliographicCitationNORZAGARAY-CAMPOS, Mariano; MUÑOZ-SEVILLA, Patricia; GARCÍA-GUTIÉRREZ, Cipriano. DISEÑO Y APLICACIÓN DE UN EQUIPO PARA EL MONITOREO DE LA SALINIDAD EN EL SUBSUELO. Ra Ximhai, 2012, vol. 8, no 3.spa
dcterms.bibliographicCitationMIKAILU, A., et al. Development of Digital Resistivity Meter. Development, 2015, vol. 42.spa
dcterms.bibliographicCitationWAGNER, Florian M., et al. Monitoring freshwater salinization in analog transport models by time-lapse electrical resistivity tomography. Journal of Applied Geophysics, 2013, vol. 89, p. 84-95.spa
dcterms.bibliographicCitationFLORES-MÁRQUEZ, E. Leticia, et al. Two algorithms to compute the electric resistivity response using Green's functions for 3D structures. Geofísica internacional, 2015, vol. 54, no 1, p. 7-20.spa
dcterms.bibliographicCitationTABBAGH, Jeanne, et al. Numerical modelling of direct current electrical resistivity for the characterisation of cracks in soils. Journal of Applied Geophysics, 2007, vol. 62, no 4, p. 313-323.spa
dcterms.bibliographicCitationBLOME, Mark; MAURER, H. R.; SCHMIDT, Kersten. Advances in three-dimensional geoelectric forward solver techniques. Geophysical Journal International, 2009, vol. 176, no 3, p. 740-752.spa
dcterms.bibliographicCitationMUKHEDKAR, D., et al. IEEE Guide for Measuring Earth Resistivity Ground Impedance and Earth Surface Potentials of a Ground System. IEEE Standards Board.spa
dcterms.bibliographicCitationSHAN, Wei, et al. A Model for the Electrical Resistivity of Frozen Soils and an Experimental Verification of the Model. Cold Regions Science and Technology, 2015, vol. 119, p. 75-83.spa
dc.description.notesBibliografía: páginas 155-161.spa
dc.description.notesTesis con acuerdo de confidencialidad y restricción de uso del documento.spa
dc.description.notesTipo de proyecto : Investigación y desarrollospa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembGeofísica - Aparatos e instrumentos-
dc.subject.lembProspección geofísica - Aparatos e instrumentos-
dc.subject.lembProspección eléctrica - Métodos geofísicos-
dc.subject.lembProspeccion geofísica - Tesis y disertaciones académicas-
dc.subject.lembGeología física-
dc.subject.lembGeología estructural-
dc.subject.lembInstrumentación-
dc.subject.lembSismología-
dc.subject.lembMaestría en Ingeniería Enfasis en Ingeniería electrónica - Tesis y disertaciones académicas-
dc.thesis.disciplineFacultad Seccional Sogamoso, Maestría en Ingeniería Enfasis en Ingeniería Electrónicaspa
dc.thesis.levelMaestríaspa
dc.thesis.nameMagister en Ingeniería Énfasis en Ingeniería Electrónicaspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.contributor.rolePérez Holguín, Wilson Javier (Director de tesis)spa
dc.rights.creativecommonsAtribución- No comercialspa
Appears in Collections:JNG. Trabajos de Grado y Tesis

Files in This Item:
File Description SizeFormat 
TGT-616.pdf
  Restricted Access
Archivo principal10.05 MBAdobe PDFView/Open Request a copy
Autor_JER.pdf
  Restricted Access
Autorización publicaciónj1.98 MBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons