ANÁLISIS MULTITEMPORAL MEDIANTE IMÁGENES DE SENORES REMOTOS DE LA EXPLOTACIÓN A CIELO ABIERTO EN LA MINA EL CERREJÓN MUNICIPIOS DE BARRANCAS Y ALBANIA DEPARTAMENTO DE LA GUAJIRA.

DIANA LAUDITH OROZCO OÑATE
ANDREA DEL PILAR VALBUENA CELY

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD SECCIONAL SOGAMOSO
ESCUELA DE INGENIERÍA GEOLÓGICA
2016
ANÁLISIS MULTITEMPORAL MEDIANTE IMÁGENES DE SENSORES REMOTOS DE LA EXPLOTACIÓN A CIELO ABIERTO EN LA MINA EL CERREJÓN MUNICIPIOS DE BARRANCAS Y ALBANIA DEPARTAMENTO DE LA GUAJIRA.

DIANA LAUDITH OROZCO OÑATE
ANDREA DEL PILAR VALBUENA CELY

MONOGRAFÍA:
DIRECTOR DEL PROYECTO
GERMAN HERRERA SALAMANCA
AGRÓLOGO, ESPECIALISTA EN SIG, MAGISTER EN GEOGRAFÍA

“proyecto de grado presentado como requisito para optar al título de ingeniero geólogo en la modalidad de monografía”

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD SECCIONAL SOGAMOSO
ESCUELA DE INGENIERÍA GEOLÓGICA
2016
<table>
<thead>
<tr>
<th>TABLA DE CONTENIDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAG.</td>
</tr>
<tr>
<td>INTRODUCCIÓN ... 7</td>
</tr>
<tr>
<td>OBJETIVOS .. 9</td>
</tr>
<tr>
<td>OBJETIVO GENERAL .. 9</td>
</tr>
<tr>
<td>OBJETIVOS ESPECÍFICOS .. 9</td>
</tr>
<tr>
<td>ALCANCES Y LIMITACIONES .. 10</td>
</tr>
<tr>
<td>ESTUDIOS ANTERIORES ... 10</td>
</tr>
<tr>
<td>ESTADO DEL ARTE .. 11</td>
</tr>
<tr>
<td>1. GENERALIDADES ... 17</td>
</tr>
<tr>
<td>1.1 LOCALIZACIÓN .. 18</td>
</tr>
<tr>
<td>1.2 MARCO LEGAL .. 18</td>
</tr>
<tr>
<td>1.2.1 CONTRATO DE ASOCIACIÓN No. 001- 1976- PROYECTO CERREJON ZONA NORTE ... 19</td>
</tr>
<tr>
<td>1.2.2 CONTRATO No. 089-2000 CARBONES DEL CERREJON ZONA NORTE S.A CZN S.A ... 19</td>
</tr>
<tr>
<td>1.2.3 CONTRATO No. 067-2001 PROYECTO PATILLA ... 19</td>
</tr>
<tr>
<td>1.2.3 CONTRATO No. 081-91 PROYECTO OREGANAL ... 19</td>
</tr>
<tr>
<td>1.2.4 RPP- 11- COMUNIDAD DE EL CERREJON .. 20</td>
</tr>
<tr>
<td>1.2.5 CONTRATO No. 146-97 PROYECTO CERREJON SUR .. 20</td>
</tr>
<tr>
<td>1.3 ASPECTOS FISIOGRÁFICOS ... 21</td>
</tr>
<tr>
<td>1.3.1 Clima .. 21</td>
</tr>
<tr>
<td>1.3.2 Hidrografía .. 22</td>
</tr>
<tr>
<td>1.3.3 Vegetación .. 22</td>
</tr>
<tr>
<td>2. GEOLOGÍA .. 23</td>
</tr>
<tr>
<td>2.1 GEOLOGÍA REGIONAL ... 23</td>
</tr>
<tr>
<td>2.1.1 ESTRATIGRAFÍA .. 23</td>
</tr>
<tr>
<td>Sedimentitas devónicas y carboníferas de la Cuchilla de Carbonal (DCc).......................... 23</td>
</tr>
<tr>
<td>Sedimentitas devónicas de la Cuchilla de Carbonal .. 23</td>
</tr>
<tr>
<td>Sedimentitas carboníferas de la Cuchilla de Carbonal .. 23</td>
</tr>
<tr>
<td>Formación La Quinta (Jq) ... 24</td>
</tr>
</tbody>
</table>
Calizas y Shales Cretácicas Indiferenciadas (Kcsi) ... 24
Formación Molino (Km) .. 25
Formación Hato Nuevo (KEhn) .. 25
Formación Cerrejón (Pgc) .. 25
Depósitos Aluviales Recientes (Qal) ... 26
Terrazas Aluviales (Qt) .. 26

2.2 GEOLOGÍA LOCAL .. 26
2.2.1 ESTRATIGRAFÍA ... 26
 Formación Tabaco (Tt) .. 26
 Formación Cerrejón (Pgc) ... 27

2.3 GEOLOGIA ESTRUCTURAL ... 27
 Sistema de Fallas del Cinturón de Oca. ... 27
 Sistema de fallas del Cerrejón. ... 28
 La Falla Río Seco ... 28
 Anticlinal de Majayura. .. 28
 Anticlinal de Cerrejón. ... 28
 Sinclinal de Majayura. .. 28

3. METODOLOGIA ... 30
3.1 FASE 1: PREPARACIÓN .. 30
3.2 FASE 2: PROCESAMIENTO DE DATOS .. 32
3.3 FASE 3: ANALISIS PLANIMETRICO .. 33
3.4 FASE 4: ANALISIS VOLUMETRICO ... 34
3.5 FASE 5: ANALISIS MULTITEMPORAL DE VEGETACION 36

4. RESULTADOS .. 41

5. ANALISIS DE RESULTADOS ... 62
5.1 EVOLUCION DE LOS FRENTES DE EXPLOTACION 62
 5.1.1 FREnte ZONA CENTRO ... 62
 5.1.2 FREnte ZONA SUR .. 63
 5.1.3 FREnte ZONA NORTE .. 64
5.2 CALCULO DE LOS VOLUMENES (EXCAVADO Y ACUMulado) 67
 5.2.1 CALCULO DE LOS VOLUMENES DEL FREnte ZONA CENTRO 67
 5.2.1.1 Calculo del Volumen Excavado ... 67
LISTA DE FIGURAS

Figura 1: Localización geográfica de la mina el Cerrejón .. 18
Figura 2: Mapa distribución de los contratos mineros en el área de estudio. 21
Figura 3: Mapa Geológico del área de estudio ... 29
Figura 4: Generación del Modelo Cartográfico de Elevación DEM. 32
Figura 5: Análisis de Clusters ... 33
Figura 6: Análisis Planimétrico ... 34
Figura 7: Análisis Volumétrico .. 36
Figura 8: Análisis Volumétrico FN ... 37
Figura 9: Análisis Volumétrico FN, FC Y FS ... 38
Figura 10: Análisis multitemporal de vegetación ... 39
Figura 11: Análisis multitemporal de verdor, marchitez, brillo y humedad 40
Figura 12: Mapa Topográfico ... 41
Figura 13: Imagen Sombreada del Terreno, Modelo de Elevación Cartográfico ... 42
Figura 14: Mapa Frentes de Explotación del año 1985 .. 43
Figura 15: Mapa Frentes de Explotación del año 1986 .. 44
Figura 16: Mapa Frentes de Explotación del año 1988 .. 45
Figura 17: Mapa Frentes de Explotación del año 1990 .. 46
Figura 18: Mapa Frentes de Explotación del año 1996 .. 47
Figura 19: Mapa Frentes de Explotación del año 1997 .. 48
Figura 20: Mapa Frentes de Explotación del año 1998 .. 49
Figura 21: Mapa Frentes de Explotación del año 1999 .. 50
Figura 22: Mapa Frentes de Explotación del año 2007 .. 51
Figura 23: Mapa frentes de Explotación del año 2007 Alospalsar 52
Figura 24: Mapa Frentes de Explotación del año 2010 ... 53
Figura 25: Mapa Frentes de Explotación del año 2010 Alospalsar 54
Figura 26: Mapa Frentes de Explotación del año 2014 ... 55
Figura 27: Mapa Frentes de Explotación del año 2015 ... 56
Figura 28: Mapa Frentes de Explotación del año 2015 Alospalsar 57
Figura 29: Mapa de cálculo de volumen extraído para el frente Centro 58
Figura 30: Mapa de cálculo de volumen para el frente Sur ... 58
Figura 31: Mapa de cálculo de volumen para el frente Norte ... 59
Figura 32: Mapa de índice de vegetación en el año 1985 ... 60
Figura 33: Mapa de índice de vegetación en el año 2015 ... 61
Figura 34: Grafico de evolución del frente Centro, El Cerrejón 63
Figura 35: Grafico de evolución del frente Sur, El Cerrejón ... 64
Figura 36: Grafico de evolución del frente Norte, El Cerrejón ... 65
Figura 37: Grafico de relación de la tendencia de cambio en los frentes de explotación, El Cerrejón ... 66
Figura 38: Grafico de INDV para los momentos del estudio (Perfil 1) 69
Figura 39: Grafico de INDV para los momentos del estudio (Perfil 2) 70
Figura 40: Perfil temporal de Verdor con el perfil 1 para cada momento 70
Figura 41: Perfil temporal de Verdor con el perfil 2 para cada momento 71
Figura 42: Perfil de Brillo con el perfil 1 para cada momento. .. 72
Figura 43: Perfil de Brillo con el perfil 2 para cada momento. .. 72
Figura 44: Perfil de Humedad con el perfil 1 para momentos TM. 73
Figura 45: Perfil de Humedad con el perfil 2 para momentos TM. 73
Figura 46: Perfil de Marchitez con el perfil 1 para momentos MSS. 74
Figura 47: Perfil de Marchitez con el perfil 2 para momentos MSS. 74

LISTA DE CUADROS

Cuadro 1: Landsat-3, 2 & 1 Escáner Multiespectral ... 14
Cuadro 2: Landsat-4 & 5 Mapeador Temático ... 14
Cuadro 3: Landsat-7 Mapeador Temático Mejorado plus ... 14
Cuadro 4: Landsat-8 Imageador Terrestre Operacional & Sensor Infrarrojo Térmico 15
Cuadro 5: Contratos mineros EL CERREJON activos y no activos. 20
Cuadro 6: Características de las imágenes de Landsat. .. 31
Cuadro 7: Inventario y características de las planchas topográficas 31
Cuadro 8: Inventario y características de las planchas geológicas 31
Cuadro 9: Áreas del frente Centro por cada año ... 62
Cuadro 10: Áreas del frente Sur por cada año ... 63
Cuadro 11: Áreas del frente Norte ... 65

LISTA DE ANEXOS

Anexo 1: Mapa del Cálculo de Volumen excavado del frente Centro 79
Anexo 2: Calculo del volumen extraído del frente Centro ... 79
Anexo 3: Mapa del Cálculo de Volumen Acumulado del frente Centro 82
Anexo 4: Calculo del volumen Acumulado del frente Centro 83
Anexo 5: Mapa del Cálculo de Volumen Extraído del frente Sur 87
Anexo 6: Calculo del volumen Extraído del frente Sur .. 87
Anexo 7: Mapa del Cálculo de Volumen Acumulado del frente Sur 91
Anexo 8: Calculo del volumen Acumulado del frente Sur .. 91
Anexo 9: Mapa del Cálculo de Volumen Extraído del frente Norte 97
Anexo 10: Calculo del volumen Extraído del frente Norte ... 97
Anexo 11: Mapa del Cálculo de Volumen Acumulado del frente Norte 100
Anexo 12: Calculo del volumen Acumulado del frente Norte 100
INTRODUCCIÓN

Han sido vertiginosos los avances científicos en tecnologías de teledetección y sensores remotos que se vienen registrando desde la década de los sesenta, cuando se hicieron los primeros lanzamientos de naves tripuladas a la órbita de la tierra y probado los primeros dispositivos de registro desde el espacio extraterrestre. El primer programa de teledetección sistemática de la tierra fue iniciado en la década de los setenta cuando se lanzó el primer satélite del programa de observación, el Landsat_1 al cual le han seguido los demás satélites hasta el más recientemente lanzado, el Landsat_8. Se completan así cuatro décadas continuas de monitoreo sistemático y consistente del planeta con imágenes multispectrales, posibilitando detallados análisis de las complejas dinámicas que toman cuerpo sobre la superficie y que nos permiten no solo visualizar los cambios más dramáticos, sino interpretarlos y cuantificarlos.

Para realizar el tratamiento de la gran cantidad de datos geoespaciales disponibles entre ellos los datos de teledetección y de altimetría se han desarrollado poderosas herramientas informáticas, los Sistemas de Información Geográfica, conocidos por su sigla SIG. Estas herramientas permiten la captura, ingreso, interrogación, análisis espacial y salida de grandes volúmenes de información georeferenciada y de atributos.

De las dinámicas en superficie objeto de análisis de cambio una de las que más impacto causa en el medio ambiente físico y social, es la minería extractiva, especialmente las explotaciones a cielo abierto. Su desarrollo implica una transformación total del terreno, con cambios absolutos en su morfología y por ende en sus atributos de pendiente, cobertura y uso, con derivaciones en las fuentes naturales de agua y la dinámica hídrica local.

En el extremo norte de Colombia se encuentra el Departamento de la Guajira (en Wayuunaiki: Wajiira) uno de los 32 departamentos que lo constituyen. Está situado la noroeste del país y pertenece al grupo de departamentos de la Región Caribe colombiana. Su territorio está constituido por la península de la Guajira, en su centro con una baja planicie y al sur con partes de la sierra Nevada, la serranía del Perijá y la planicie aluvial de los ríos Ranchería y Cesar. La Guajira es una región que a pesar de los grandes inconvenientes que presenta, tiene un alto potencial de crecimiento entre los departamentos costeros sobre el atlántico.

En los años 70 el gobierno nacional saco a licitación la explotación de carbón de la Guajira y en los 80 se consolidó dicha operación minera. Desde entonces Cerrejón ha venido produciendo y exportando carbón Colombiano a los principales mercados del mundo; su ubicación influencia directamente a los municipios de Albania, Barrancas y Hatonuevo.
Los primeros diez años operacionales convirtieron al Cerrejón, en la mina más importante de Colombia, su acumulado de carbón exportado superó los cien millones de toneladas y la operación incluyó la construcción de una línea férrea de 150 kilómetros, además de un puerto propio para la operación de carga de buques.
OBJETIVOS

OBJETIVO GENERAL

Realizar un análisis multitemporal mediante imágenes de sensores remotos, de la explotación a cielo abierto en la mina el CERREJON municipios de Barrancas y Albania departamento de la Guajira.

OBJETIVOS ESPECIFICOS

- Identificar y caracterizar la dinámica físico-espacial de las áreas de explotación, en diferentes momentos del tiempo que permita aportar conocimiento sobre la actividad minera más relevante del país.

- Realizar un análisis volumétrico del material excavado y acumulado en un momento de tiempo mediante procesamiento digital, análisis cuantitativo sobre Modelos Digitales del Elevación, DEM, e interpretación de imágenes del relieve.

- Determinar la evolución y estado de variables ambientales del área de influencia circundante a la explotación, mediante procesamiento digital e interpretación de imágenes de SR.
ALCANCES Y LIMITACIONES

Este estudio hará un análisis multitemporal de la explotación a cielo abierto EL CERREJON para 12 momentos en el tiempo a partir de imágenes de satélite del programa Landsat de la NASA, y Alos Palsar de la JAXA, revelando el estado de la explotación en cada uno de los tiempos analizados, con el mapa respectivo y el área explotada.

A partir de datos de altimetría se hará el análisis volumétrico del material extraído y del material acumulado como residuos estériles y se contrastara con los datos de producción publicados.

El análisis cualitativo y cuantitativo se hará también utilizando imágenes de radar.

Las limitaciones pueden darse con la presencia de nubes en las imágenes ópticas, para lo cual se contrastaran con imágenes de radar.

ESTUDIOS ANTERIORES

ESTADO DEL ARTE

El advenimiento y desarrollo de programas de teledetección espacial a partir de la década de 1970, cuando inicio el programa de observación de la tierra posteriormente denominado oficialmente como LANDSAT, ha contribuido en gran medida al conocimiento de nuestro planeta en muchas de sus cambiantes dimensiones.

Ejecutado por la Agencia Nacional Aeroespacial de los Estados Unidos, NASA pero con participación de otras instituciones como el Servicio Geológico de los Estados Unidos, USGS entre otros, el programa Landsat ha proveído imágenes multiespectrales de la superficie de la tierra desde 1972 hasta el presente de manera ininterrumpida.

Landsat-1

El satélite nunca fue llamado Landsat-1. Fue realmente llamado satélite de tecnología de recursos de la tierra (ERTS). Pero ahora lo llamamos Landsat-1. En 1972, Landsat-1 allanó el camino como el primer satélite de observación de la tierra del programa Landsat, que es el programa espacial en ejecución más largo en la observación de la tierra en el planeta.

Fecha de lanzamiento: 23 de julio de 1972.
Desactivado: 06 de enero de 1978.

Landsat-2

Landsat-2 fue la segunda misión del programa Landsat y fue lanzado el 22 de enero de 1975. Fue equipado de un Return Beam Vidicon (RBV) y un Scanner multiespectral (MSS). Los MSS recogieron los datos en verde, rojo y dos bandas de infrarrojo cercano. El ancho de la franja fue 185 km con cobertura de repetición de 18 días.

Fecha de lanzamiento: 22 de enero 1975.
Desactivado: 25 de febrero de 1982

Landsat-3

Landsat-3 fue el primer satélite del programa Landsat equipado con una banda térmica. Aunque este instrumento falló poco después del lanzamiento, Landsat-3 fue capaz de recoger datos multiespectrales en verde, rojo y dos bandas de infrarrojo cercano. En total, le tomó Landsat-3 cerca de 18 días para analizar toda la tierra.

Fecha de lanzamiento: 05 de marzo de 1978.
Desactivado: 31 de marzo de 1983.
Landsat-4

Landsat-4 es la cuarta misión del programa Landsat y fue el primer satélite del programa Landsat equipado con el sensor Thematic Mapper (TM). El sensor Landsat TM reúne siete bandas de datos. Esto es superior a las cuatro bandas de datos recogidos desde el escáner multiespectral Landsat-1, 2 y 3. Además de las tres bandas adicionales, también ha mejorado la resolución espacial. Bandas 1-5 y 7 tienen una resolución espacial de 30 metros. Banda 6 (termal infrarrojo venta) tiene una resolución espacial máxima de 120 metros. Landsat-4 Tomó aproximadamente 16 días con un barrido de 185 km para escanear toda la superficie de la tierra.

Fecha de lanzamiento: 16 de julio de 1982.

Landsat-5

Fue el más duradero, Landsat-5 se reconoce en los registros Guinness del mundo como el satélite de observación terrestre con la más larga operación en la historia de casi 30 años. Con un diseño de tres años de vida, nadie podría haber imaginado su longevidad un cuarto de siglo después. Landsat-5 recogió imágenes para grandes eventos como Chernobyl, el devastador tsunami en Asia del sur, devastadoras tormentas de nieve en Quebec, el Tornado de Birmingham en 1998 y la deforestación en regiones tropicales.

Fecha de lanzamiento Marzo 1, 1984
Desactivado: June 5, 2013.

Landsat-6

Desafortunadamente, Landsat-6 fue el único satélite en el programa de Landsat que no pudo alcanzar su órbita. Un comunicado de prensa de NOAA atribuye a un colector roto la razón principal de su fracaso. Esta ruptura impidió combustible para alcanzar los satélites de estabilización de los motores. Landsat-6 debía analizar la tierra con la versión mejorada de TM – Mapeador temático mejorado (ETM). Esto añadiría una banda pancromática de 15 metros. Las otras 7 bandas espectrales seguían con resolución de 30 metros.

Landsat-7

Landsat-7 es el 7º satélite del programa Landsat. EL Instrumento principal de Landsat-7 es el Enhanced Thematic Mapper (ETM +). ETM + agregó una banda pancromática con resolución de 15 m (banda 8). Landsat-7 continúa capturando en el visible (luz reflejada) bandas en el espectro azul, verde, rojo, infrarrojo cercano (NIR) y el infrarrojo medio (MIR) con resolución espacial de 30 m (bandas
1-5, 7). Landsat-7 tiene también un canal infrarrojo térmico con resolución espacial de 60m (banda 6). En mayo de 2003, hubo un fallo mecánico en el Corrector de exploración de línea (SLC) esto dio lugar a que en las Imágenes Landsat-7 parcialmente falten datos debido a la falla del SLC.

Fecha de lanzamiento: 15 de abril de 1999

Desactivado: se mantiene en órbita.

Landsat-8

Landsat 8 también ha sido llamado la misión de continuidad de datos Landsat porque la continuidad de las observaciones de la tierra desde el espacio es una parte crítica de la ciencia del uso de la tierra y el cambio climático y de la transformación de nuestro planeta. Landsat-8 fue lanzado el 11 de febrero de 2013 de la Base de fuerza aérea de Vandenberg en California. Los dos sensores Primarios de Landsat-8 son el Imageador operativo terrestre (OLI) y el Sensor infrarrojo termal (TIRS). Estos dos instrumentos se combinan para generar un total de 11 bandas espectrales. Siete de las once bandas espectrales provienen básicamente del Landsat-7 ETM+. Las Bandas Landsat-8 son costera, azul, verde, rojo, IRC, SWIR-1, SWIR-2 y cirrus. Estas 8 bandas tienen una resolución de 30 metros. La banda pancromática extiende una gama espectral más grande y tiene una resolución de 15 metros. Dos nuevas bandas (banda de 10 y 11) de TIRS son infrarrojos de onda larga. Estas bandas tienen una resolución de más de 100 metros. Fecha de lanzamiento: 11 de febrero de 2013 desactivado: mantiene en órbita.

http://gisgeography.com/landsat-program-satellite-imagery-bands/#prettyPhoto

http://landsat.usgs.gov//images/about_mission_history_1.jpg

Las longitudes de onda específica de cada uno de los sensores a bordo de los diferentes satélites del programa pueden verse en los siguientes cuadros.

http://gisgeography.com/landsat-program-satellite-imagery-bands/
Cuadro 1: Landsat-3, 2 & 1 Escáner Multiespectral

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Description</th>
<th>Wavelength</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 4</td>
<td>Visible green</td>
<td>0.5 to 0.6 µm</td>
<td>60 meter</td>
</tr>
<tr>
<td>Band 5</td>
<td>Visible red</td>
<td>0.6 to 0.7 µm</td>
<td>60 meter</td>
</tr>
<tr>
<td>Band 6</td>
<td>Near infrared</td>
<td>0.7 to 0.8 µm</td>
<td>60 meter</td>
</tr>
<tr>
<td>Band 7</td>
<td>Near infrared</td>
<td>0.8 to 1.1 µm</td>
<td>60 meter</td>
</tr>
</tbody>
</table>

Multispectral Scanner (MSS) datos recogidos en el verde, rojo y dos bandas del infrarrojo cercano con un tamaño de pixel de 60 metros. El ancho de la franja fue 185 km con cobertura repetición cada 18 días.

Cuadro 2: Landsat-4 & 5 Mapeador Temático

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Description</th>
<th>Wavelength</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
<td>Visible blue</td>
<td>0.45 to 0.52 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 2</td>
<td>Visible green</td>
<td>0.52 to 0.60 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 3</td>
<td>Visible red</td>
<td>0.63 to 0.69 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 4</td>
<td>Near-infrared</td>
<td>0.76 to 0.90 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 5</td>
<td>Short-wave infrared</td>
<td>1.55 to 1.75 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 6</td>
<td>Thermal</td>
<td>10.4 to 12.3 µm</td>
<td>120 meter</td>
</tr>
<tr>
<td>Band 7</td>
<td>Short-wave infrared</td>
<td>2.08 to 2.35 µm</td>
<td>30 meter</td>
</tr>
</tbody>
</table>

Thematic Mapper (TM) era un escáner de alta resolución en los satélites Landsat (Landsat 4 y 5). Recoge imágenes del visible, infrarrojo cercano, bandas de infrarrojo medio y térmico con una resolución espacial de 30 metros.

Cuadro 3: Landsat-7 Mapeador Temático Mejorado plus

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Description</th>
<th>Wavelength</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
<td>Visible blue</td>
<td>0.45 to 0.52 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 2</td>
<td>Visible green</td>
<td>0.52 to 0.60 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 3</td>
<td>Visible red</td>
<td>0.63 to 0.69 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 4</td>
<td>Near-infrared</td>
<td>0.76 to 0.90 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 5</td>
<td>Near-infrared</td>
<td>1.55 to 1.75 µm</td>
<td>30 meter</td>
</tr>
</tbody>
</table>
Enhanced Thematic Mapper Plus (ETM+) es el sensor con el que está equipado el Landsat-7. Genera 8 bandas espectrales en azul, verde, rojo, NIR e infrarrojo medio (MIR). Las Bandas 1-5 y 7 tienen 30 metros de resolución. La Pancromática (banda 8) tiene 15 m de resolución. La banda termal cuenta con resolución de 60 metros.

Cuadro 4: Landsat-8 Imageador Terrestre Operacional & Sensor Infrarrojo Térmico

<table>
<thead>
<tr>
<th>Band Number</th>
<th>Description</th>
<th>Wavelength</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
<td>Coastal / Aerosol</td>
<td>0.433 to 0.453 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 2</td>
<td>Visible blue</td>
<td>0.450 to 0.515 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 3</td>
<td>Visible green</td>
<td>0.525 to 0.600 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 4</td>
<td>Visible red</td>
<td>0.630 to 0.680 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 5</td>
<td>Near-infrared</td>
<td>0.845 to 0.885 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 6</td>
<td>Short wavelength infrared</td>
<td>1.56 to 1.66 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 7</td>
<td>Short wavelength infrared</td>
<td>2.10 to 2.30 µm</td>
<td>60 meter</td>
</tr>
<tr>
<td>Band 8</td>
<td>Panchromatic</td>
<td>0.50 to 0.68 µm</td>
<td>15 meter</td>
</tr>
<tr>
<td>Band 9</td>
<td>Cirrus</td>
<td>1.36 to 1.39 µm</td>
<td>30 meter</td>
</tr>
<tr>
<td>Band 10</td>
<td>Long wavelength infrared</td>
<td>10.3 to 11.3 µm</td>
<td>100 meter</td>
</tr>
<tr>
<td>Band 11</td>
<td>Long wavelength infrared</td>
<td>11.5 to 12.5 µm</td>
<td>100 meter</td>
</tr>
</tbody>
</table>

Operational Land Imager (OLI) genera 9 bandas espectrales (de 1 a 9) y se encuentra a bordo del Landsat-8. En las imágenes se puede discriminar tipos de vegetación, rasgos culturales, biomasa y vigor.

Thermal Infrared Sensor (TIRS) consta de 2 grupos térmicos con una resolución espacial de 100 metros. TIRS mide la energía térmica de la tierra útil para el seguimiento de cómo se utilizan la tierra y el agua.

Los SIG, Sistemas de Información Geográfica, son las herramientas más utilizadas para realizar los análisis multitemporales posibles gracias a las imágenes de satélite. Esta tecnología que se originó en la década del sesenta se viene utilizando en el país desde los ochentas y ha evolucionado favorablemente incluyendo numerosos algoritmos de procesamiento de datos geoespaciales como los de teledetección, altimetría, medioambientales y diversos datos geoespaciales.
derivados de distintas disciplinas científicas y de la tierra aportados no solo por programas de satélite sino de levantamiento directo en terreno.

Existen muchos enfoques para realizar los análisis de cambio a partir de series de tiempo de imágenes multiespectrales. Una primera aproximación se basa en el análisis mediante interpretación visual de imágenes, digitalización e incorporación al SIG. Otra aproximación se basa en el procesamiento digital mediante algoritmos que generan nueva y específica información a partir de las bandas originales.

De los variados algoritmos de cambio utilizados hay algunos disponibles en el software Idrisi Selva y se describen a continuación:

El módulo IMAGEDIFF es provisto por IDRISI para análisis de cambio a través de diferenciación de pares de imágenes. Dadas dos imágenes de entrada y opcionalmente sus máscaras booleanas, se pueden producir cuatro imágenes: una imagen de diferencia, una imagen de porcentaje de cambio, una imagen de anomalías estandarizadas (z-scores o resultados), y una imagen de anomalías estandarizadas (z-scores o resultados clasificados en seis clases).

El módulo IMAGERATIO es utilizado para el análisis de cambio a través de división de pares de imágenes. Dadas dos imágenes de entrada y, opcionalmente, sus máscaras Boleanas, dos imágenes se pueden producir: una imagen de razón y una imagen de logaritmo de razón.

El módulo CVA facilita el Análisis de Vector de Cambio para dos imágenes de fechas diferentes, por ejemplo las bandas roja e infrarroja.

CVA produce dos resultados. El primero es una imagen de magnitud de cambio, indicando la distancia euclidiana entre los valores para cada pixel (ND) en las dos fechas. El segundo resultado es una imagen, mostrando la dirección del cambio que ha ocurrido entre las dos fechas. Esto indica el carácter o tipo de cambio que ha ocurrido. Los valores son dados como azimuts.

ANÁLISIS DE VEGETACIÓN

El análisis de la vegetación es de rigor hoy día. La vegetación no solo evidencia el grado de intervención antrópica en un territorio sino variados procesos como la deforestación o aforestación, procesos de desertificación, erosión y degradación de suelos, como también las condiciones ambientales favorables o desfavorables a su desarrollo. En este caso se puede evaluar su vigor, a través de parámetros como el verdor o la marchitez y partir de estos evaluar a futuro el éxito de una cosecha y aproximar el cálculo de su valor económico. Existen variados métodos para el análisis de la vegetación los más conocidos son los denominados índices de vegetación. El más conocido de todos es el NDVI o Índice de Vegetación de Diferencia Normalizada. En general cuanto menor sea el valor NDVI, menos vegetación hay en la superficie. Los valores inferiores a 0,1 son indicativos de suelo desnudo o nieve, mientras que los valores más altos, de 0,6 a 0,8 y por

El módulo NDVI, es provisto por algunos programas de SIG como ArcGis o IDRISI y funciona analizando la presencia-ausencia y/o vigor de la vegetación de un área dada, a partir del comportamiento espectral característico de la vegetación en las bandas del rojo e infrarrojo cercano. La vegetación absorbe fuertemente la longitud de onda del rojo para realizar sus procesos de fotosíntesis, por lo que no la refleja de regreso al satélite y en la imagen de esta banda aparecerá en tonos grises oscuros, o valores bajos de pixel. En tanto que la misma vegetación refleja fuertemente en el IRC, infrarrojo cercano, pues no la usa para sus procesos fotosintéticos, por lo que la refleja hacia el satélite, y aparece en tonos grises claros o valores altos de pixel. (Manual de Idrisi)

La mayoría de los estudios multitemporales del país, se han centrado en el cambio y uso del suelo con el fin de detectar cambios entre diferentes fechas de referencia, deduciendo la evolución del medio natural o las repercusiones de la acción humana sobre ese medio. No se han encontrado estudios de este tipo para el caso en particular de las explotaciones a cielo abierto y/o canteras; generalmente los estudios multitemporales solo se basan en dos o tres imágenes en un plazo de tiempo, para este estudio se han analizado 12 imágenes de Landsat y 4 imágenes de radar banda L, con el fin de confrontar y tener mayor certeza de los cambios producidos a través del tiempo.

ANÁLISIS DE CAMBIO DEL RELIEVE

Los análisis de grandes movimientos de tierra en la planificación de actividades de ingeniería y construcción a gran escala, ha sido el enfoque tradicional en el análisis de la transformación del terreno relacionado con cambios sustanciales en su topografía. Desde esta perspectiva en ambiente de SIG se usan funciones para cuantificar el corte y relleno (Cut and Fill) de grandes volúmenes de material. Estas funcionalidades corren sobre Modelos Digitales de Elevación los cuales pueden ser llenados o vaciados de acuerdo con las necesidades de cálculo. El núcleo del procedimiento es una operación entre dos modelos de elevación uno reflejando el “antes” del terreno y el otro el “después” del movimiento de tierras.

El resultado es una imagen que muestra donde se da la ganancia de volumen, la perdida y lo que permanece igual. A partir de esta imagen el sistema calcula cada uno de estos volúmenes en unidades métricas. Estas cifras son la base para elaborar los itinerarios de trabajo las estimaciones económicas y el tiempo.

\(^1\) EASMAN J. RONALD.IDRISI SELVA GUIA PARA SIG Y PROCESAMIENTO DE IMAGEN; VERSION 17. 2012
1. GENERALIDADES

1.1 LOCALIZACIÓN

El complejo carbonífero del Cerrejón LLC, se localiza en el extremo nororiental de Colombia, al sur del departamento de la Guajira, en los municipios de Hato nuevo, Barrancas y Albania. Limita al norte con la falla de Oca, al sur con el municipio de Fonseca, al oriente con la serranía de Perijá y al occidente con las estribaciones de la Sierre Nevada de Santa Marta; ocupa una extensión de aproximadamente 35 mil hectáreas. (Ver figura1).

Figura 1: Localización geográfica de la mina el Cerrejón.

FUENTE: Estudio.

1.2 MARCO LEGAL

La parte minera se encuentra dentro del marco legal conocido en nuestro país como títulos mineros de interés nacional (PIN) y se halla legalizada bajo la denominación de contrato en área de aporte minero y suscrito bajo dos marcos normativos de la legislación minera colombiana Decreto 2655 de 1988 y Ley 685 de 2001.
Los títulos mineros que conforman la explotación minera EL CERREJÓN son los siguientes: Ver figura 2.

1.2.1 CONTRATO DE ASOCIACION No. 001- 1976- PROYECTO CERREJÓN ZONA NORTE

Contrato suscrito en el año 1976 entre CARBOCOL S.A e internacional Colombia Resources Corporation para la exploración y explotación de un proyecto Carbonífero en el área denominada Cerrejón, ubicada en jurisdicción de los municipios de Riohacha, Maicao, Barrancas y Hatonuevo, departamento de la Guajira, este contrato se encuentra en la etapa de explotación.

1.2.2 CONTRATO No. 089-2000 CARBONES DEL CERREJÓN ZONA NORTE S.A CZN S.A

El contrato de explotación minera y transferencia No. 089-2000, suscrito el 15 de noviembre del 2000 entre Carbones de Colombia S.A y Cerrejon Zona Norte S.A, mediante el cual Carbocol S.A cedió a CZN S.A los derechos y obligaciones que tenía como asociado en el contrato de asociación 001- 1976, otorgo a CZN S.A la titularidad proindiviso de todos los derechos, activos y pasivos de la cuenta conjunta constituida en el contrato de asociación y el acceso a la infraestructura férrea del área y el contrato para desarrollo, manejo y operación de la infraestructura portuaria del puerto carbonero de Puerto Bolívar.

1.2.3 CONTRATO No. 067-2001 PROYECTO PATILLA

Contrato suscrito en el año 2001 entre CARBOCOL S.A e internacional Colombia Resources Corporation LLC y Cerrejón Zona Norte S.A para la exploración y explotación de un proyecto carbonífero en el área denominada Patilla, ubicada en la jurisdicción de los municipios de Hato Nuevo y Barrancas, departamento de la Guajira, se encuentra en la etapa de explotación.

1.2.3 CONTRATO No. 081-91 PROYECTO OREGANAL

Contrato suscrito en el año 1991 entre CARBOCOL S.A y Carbones del Caribe S.A, cedió en el año 2002 a Carbones del Cerrejón LLC. El área del contrato, denominada Oreganal, se ubica en la jurisdicción del municipio de Barrancas, departamento de la Guajira, se encuentra en la etapa de explotación.
1.2.4 RPP- 11- COMUNIDAD DE EL CERREJÓN

Constituye la etapa de ejecución del reconocimiento de propiedad privada 001 es explotación.

1.2.5 CONTRATO No. 146-97 PROYECTO CERREJÓN SUR

La etapa de ejecución del contrato es explotación hasta factibilidad. De conformidad con los dispuesto en la cláusula 5.3 del contrato 146-97, mediante oficio DSM-315 de septiembre 23 de 2009, se otorgó la suspensión de términos y obligaciones contractuales a partir de septiembre 1 de 2009, hasta que la autoridad ambiental se manifieste sobre la viabilidad ambiental del proyecto minero.

Cada uno de los títulos anteriores debe cumplir con el establecido en las leyes y decretos anteriormente mencionados.

Cuadro 5: Contratos mineros EL CERREJON activos y no activos.

<table>
<thead>
<tr>
<th>TITULO MINERO</th>
<th>NUMERO DE TITULOS</th>
<th>TITULAR</th>
<th>PROYECTO</th>
<th>ACTIVIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-1976</td>
<td>2</td>
<td>CERREJON CZN S.A</td>
<td>CERREJON ZONA NORTE</td>
<td>ACTIVO</td>
</tr>
<tr>
<td>067-2001</td>
<td>1</td>
<td>CONSORCIO CERREJON</td>
<td>PATILLA</td>
<td>ACTIVO</td>
</tr>
<tr>
<td>081-91</td>
<td>1</td>
<td>CERREJON</td>
<td>OREGANAL</td>
<td>ACTIVO</td>
</tr>
<tr>
<td>RPP- 11</td>
<td>1</td>
<td>COMUNIDAD DEL CERREJON</td>
<td>CERREJON ZONA NORTE</td>
<td>NO ACTIVO</td>
</tr>
<tr>
<td>146-97</td>
<td>1</td>
<td>CERREJON</td>
<td>CERREJON SUR</td>
<td>NO ACTIVO</td>
</tr>
</tbody>
</table>

FUENTE: Registro Minero Nacional.

En el cuadro se muestran los títulos mineros correspondientes a la empresa El Cerrejón y se hace una relación de cuales están activos y cuáles no.
Figura 2: Mapa distribución de los contratos mineros en el área de estudio.

Este mapa muestra la distribución de los títulos mineros de la empresa, donde se evidencia los que se encuentran en actividad dentro de los proyectos ya conocidos: zona centro, zona sur y zona norte. De igual forma que se encuentran en fase de exploración y otros que está siendo explotados pero no de interés para el estudio ya que el material extraído corresponde a calizas y no a mineral de carbón, además estos títulos no son propiedad exclusiva del Cerrejón sino que son compartidos con otras empresas o personas naturales.

1.3 ASPECTOS FISIOGRÁFICOS.
1.3.1 Clima.
La Guajira presenta una variedad de climas de acuerdo con su orografía, el 94% del territorio es cálido, seco y semidesértico al nivel del mar, con temperaturas anuales que varían entre 30° C y 35° C durante el día y puede descender a los 20° C o aún menos en época de verano; el 3% es de clima medio y sub húmedo; el 2% es de clima frío y húmedo; y el 1% con temperaturas bajo cero en el área nivel de la Sierra Nevada de Santa Marta.

El patrón de lluvias es bimodal, la alta Guajira es la zona más seca del país. Registra en el año un promedio de 424 milímetros de lluvia, que es la precipitación de dos días en el departamento del Chocó. Un milímetro de agua equivale a un litro de agua por metro cuadrado de superficie. En la media Guajira, donde está
ubicada el área minera del Cerrejón, el promedio anual es de 960 milímetros, siendo el promedio anual de Colombia de 1.379 milímetros. Los periodos lluviosos corresponden a Abril-Junio y Septiembre-Noviembre, por causa del clima semidesértico la vegetación es de tipo cardonal y matorrales donde los árboles son escasos. Predominan los arbustos y en su mayoría son espinosos como el Trupillo, Aromo, Espino, y algunos árboles como el Carreto, Guayacán y la Ceiba.

1.3.2 Hidrografía.
El Departamento de La Guajira donde se ubica el área de estudio, se encuentra surcado por una red hidrográfica intermitente que fluye principalmente hacia el Mar Caribe. El curso de agua más importante es el Río Ranchería, que nace en la Sierra Nevada de Santa Marta y desemboca en el mar Caribe; recoge el agua de la parte norte de la Sierra Nevada de Santa Marta y parte de los cursos del sector noroccidental de la Serranía del Perijá. Otras corrientes de importancia nacen en esta serranía y corresponden principalmente a los ríos Majayura, Arroyo Montebello, y Carraipía.

En la zona plana, muchas de las corrientes son insuficientes y de curso temporal, las cuales corren en las temporadas de lluvias.

1.3.3 Vegetación
La vegetación predominante en estas zonas está constituida por árboles pequeños, arbusto achaparrados de hojas permanentes o persistentes, rígidas y espinosas; y plantas crasas o suculentas (es decir, presentan tejidos que actúan como reserva hídrica, como los cardones o cactus columnares). También se presentan gramíneas que se secan en verano. Entre los árboles resinosos representativos están el almácigo, la biga y la caraña de la familia Burserácea.

2. GEOLOGÍA

2.1 GEOLOGÍA REGIONAL

En la zona de interés aflora rocas del Mesozoico, Cenozoico y Paleozoico. Además de intrusiones ígneas y de Depósitos Cuaternarios de tipo aluvial.

2.1.1 ESTRATIGRAFÍA

Sedimentitas devónicas y carboníferas de la Cuchilla de Carbonal (DCc). La unidad informal “Sedimentitas devónicas y carboníferas de la Cuchilla de Carbonal”³ agrupa las secuencias sedimentarias que afloran entre la Cuchilla de Carbonal y el Río Seco al oeste del caserío del mismo nombre (Departamento del Cesar), estas dos secuencias difieren tanto en litología como en génesis, además se encuentran separadas por una discordancia representada por un delgado conglomerado basal.

Sedimentitas devónicas de la Cuchilla de Carbonal. Gansser (1955) denominó como Grupo Chundua una sucesión de rocas del Paleozoico Superior que encontró en el cerro del mismo nombre; posteriormente Tschanz et al. (1969) emplearon el término “Rocas Sedimentarias del Carbonífero y el Devónico” (CD) para denominar toda la secuencia sedimentaria del Paleozoico superior encontrada en el sector del Río Seco y la correlacionaron con la secuencia descrita por Gansser; finalmente INGEOMINAS (2002) establece la unidad informal “Secuencia de la Cuchilla Carbonal (Dc)” para denominar a estas mismas rocas.

Una sucesión de secuencias levemente granodecrecientes, conformada por capas gruesas, subtabulares, con contactos irregulares y macizas, de cuarzoarenitas con textura sacaroidea, de grano medio a fino, subredondeado, cementadas, muestran baja porosidad, composición 98:0:2, con fracturas oxidadas, hacia la base hay interposiciones de cuerpos volcánicos de color verdoso y composición andesítica (Fotografía 109); esta sucesión está cortada por dikes volcánicos

Sedimentitas carboníferas de la Cuchilla de Carbonal. Las Sedimentitas carboníferas de la Cuchilla de Carbonal se encuentran en el sector del Río Seco y la Cuchilla de Carbonal, entre 8 y 10 Km al oeste del caserío Río Seco, es decir

³ INGEOMINAS. 2002

⁴ IBIT 3.
que sus afloramientos se encuentran en las mismas localidades que las “Sedimentitas devónicas de la Cuchilla de Carbonal”. 5

Las mejores exposiciones de esta unidad se observaron en el Río Seco, en donde ocurre una sucesión de rocas calcáreas fosilíferas, en capas gruesas hacia la base, pero generalmente son delgadas y medianas, subtabulares y lentiformes conectadas, con contactos netos ondulados y macizas la roca consiste en calizas (mudstones y wackestones) grises claras y oscuras con abundantes restos de crinoideos, corales y braquiópodos (según Tschanz et al., 1969), contiene cantidades subordinadas de pirita diseminada; las capas de caliza se encuentran separadas por delgados niveles de lodolitas calcáreas negras, esta sucesión se encuentra cortada por diques afaníticos de color gris oscuro a verde oscuro (basálticos) y por venillas milimétricas de calcita.

Formación La Quinta (Jq). La Formación La Quinta (Jq) incluye una serie de depósitos vulcano sedimentarios y sedimentarios de color rojo y morado, que se encuentran distribuidos en Colombia en los alrededores del Municipio de Manaure y a lo largo del costado occidental de la Serranía de Perijá. Kündig (1938) introdujo el término “La Quinta”, para las rocas sedimentarias rojas que yacen estratigráficamente entre el Paleozoico (Formación Palmarito o Formación Mucuchachí) y el Cretácico en los Andes de Mérida. Otros autores habían investigado estos sedimentos rojos y les dieron denominaciones diferentes, pero Kündig, fue el primero que separó estos estratos del Paleozoico y del Cretácico. Forero (1970). “Luego esta formación se extendió hacia el norte de Colombia, donde el término fue usado inapropiadamente para incluir las capas rocas y las ignimbritas ríolíticas que son conocidas en un rango de edad desde Triásico a Cretácico Temprano” Tschanz et al. (1969).

Calizas y Shales Cretácicas Indiferenciadas (Kcsi). Según Tschanz et. al (1969 en INGEOMINAS – ECOPETROL – ICP – INVEMAR, 2007), esta unidad consiste en una caliza con un nivel de shale intermedio, que consiste de rocas equivalentes a la parte superior del Grupo Cogollo y a la Formación La Luna, la cual incluye todas las rocas del Aptiano al Coniaciano medio. En el área de los Valles de Cesar y Ranchería, dividieron la considerada por ellos secuencia cretácica miogeosinclinal en dos unidades cartografiables, basados en un cambio abrupto topográfico natural en el tope de las rocas equivalentes a la Formación La Luna. A la unidad inferior la llamaron “Calizas y shales cretácicas indiferenciadas” -K1-, y a la unidad superior -K2- Shale (Formación) Molino (Colón) (Umir). Para la unidad inferior (Kcsi) los autores dan un espesor de 1800 a 2150 pies (550 a 655 m) en el Valle del Ranchería a cerca de 2300 pies (700 m) en el Valle del Cesar.
Formación Molino (Km). La Formación Molino consiste principalmente de shale de color gris a gris oscuro, delgadamente laminado, bien ha pobremente estratificado, generalmente carbonosos, con capas delgadas de caliza y arcillolitas de color verde oscuro que contienen concreciones ferruginosas y ocasionalmente lentes de arenita de grano fino (Cáceres et al., 1980)8.

La Formación Molino se distribuye sobre uno y otro lado del Valle de Ranchería. Al E del valle, esta unidad se extienden hacia el sur desde la Falla de Oca, sobre la parte NW de los Montes de Oca, en la Serranía de Perijá. Al W del valle, la Formación Molino aflora sobre las estribaciones nororientales de la SNSM, desde Cuestecitas hasta unos 10 Km al NE de San Juan del Cesar.

Formación Hato Nuevo (KEhn). Unidad informal utilizada por Tschanz et al. (1969), en la SNSM para designar un conjunto litológico constituido por shales arenosos glauconíticos, que gradan hacia arriba a limolitas micáceas de color gris claro; calizas fosilíferas de color blanco a gris, con interestratificaciones delgadas de shales calcáreos oscuros.

La Formación Hato Nuevo se distribuye sobre el costado W del Valle de Ranchería, desde Cuestecitas hasta unos 11 Km al NE de San Juan del Cesar, y desde unos 6 hasta unos 13 Km al E de Cuestecitas, al este del río Ranchería.

Formación Cerrejón (Pgc). La Formación Cerrejón hace parte de la mina Cerrejón, la cual se encuentra localizada en cercanías al Municipio de Albania y Barrancas.

Esta unidad hace parte de lo que Tschanz denomina como “Rocas Sedimentarias del Paleoceno”, las cuales afloran al sur de la Falla de Oca. El nombre de Formación Cerrejón fue introducido inicialmente por Oppenheim (1941 en Rodríguez y Londoño, 2002), aunque Van der Hammen (1958 en Rodríguez y Londoño, 2002) cree que el autor del nombre puede ser Notestein, de acuerdo con un informe inédito que data de 19299.

La Formación Cerrejón consiste de areniscas de grano fino y shales, shales limolíticos, shales arenosos, mantos de carbón y delgadas capas de calizas en la parte media de la unidad. Los primeros 640 m de la secuencia están constituidos por areniscas micáceas de color amarillo, gris y blanco, con abundantes partes carbonosas y micáceas de colores grises oscuros y shales carbonáceos, shales limosos, shales arenosos y mantos de carbón. Sulfuros son localmente abundantes en la parte inferior y media de la formación, e incluye calcopírita, pirita y marcasita. La parte superior de la Formación Cerrejón presenta un color rojizo, excepto cerca de las capas de carbón, la arenisca típica es de grano muy fino, bien estratificada y laminada y presenta intercalaciones de shales arcillosos y limosos de tonos amarillentos, rojizos, grises y verdosos. La parte más superior

8 INGEOMINAS. ECOPETROL. 2007
9 INGEOMINAS. ECOPETROL. 2007
tiene 110 m, compuesta principalmente por shales arcillosos de color rojo oscuro con algunas capas de colores grises y verdes. Los siguientes 350 m consisten de intercalaciones de areniscas de grano fino y shales de colores rojos y amarillos.

Depósitos Aluviales Recientes (Qal). Estos depósitos son generados por la actividad reciente de los arroyos primarios y secundarios de la zona, ya sean con actividad permanente o activos sólo en épocas de lluvia, este tipo de depósitos presentan una mayor extensión al norte de la Falla de Oca ya que hacía el sur las rocas del basamento se encuentran muy cerca a la Falla, lo cual no permite su desarrollo (INGEOMINAS, 2009)\(^\text{10}\).

Terrazas Aluviales (Qt). Los depósitos de Terrazas aluviales se asocian principalmente al piedemonte del sector nororiental de la Sierra Nevada de Santa Marta y al parecer se encuentran relacionados con los trazos de falla en dirección Este – Oeste como la Falla de Oca y fallas satélites como la Falla Maroma, Las Vueltas, Totumo, Río Nuevo, entre otras. Los mejores afloramientos se observan en el Río Carraipía y en el Río Cotoprix, además dentro del trabajo desarrollado por INGEOMINAS – ECOPETROL – ICP – INVEMAR (2007), estos depósitos se ubican principalmente en la esquina noreste de la SNSM, en el sector de los ríos Carrizal, Camarones y Tapias y en una franja paralela al flanco oriental de la SNSM, que conforma el amplio valle del Río Cesar y sus tributarios.

2.2 GEOLOGÍA LOCAL

A continuación se describen en detalle las formaciones de ocurrencia en el área de estudio y de importancia en la actividad extractiva.

2.2.1 ESTRATIGRAFÍA

Formación Tabaco (Tt). Esta unidad litológica aflora como una franja de dirección N-S, sobre la vertiente media de la ladera occidental de la Cuchilla Majagüita y se caracteriza por presentarse como colinas medias a altas con laderas empinadas. Hacia el tope de esta formación se identifica un cabalgamiento regional con buzamiento inferior a los 9\(^\circ\) con rocas fuertemente deformadas en sus inmediaciones y que las separa de una pequeña escama de la Formación Cerrejón\(^\text{11}\). La Formación Tabaco, como ya se mencionó, corresponde a rocas clásticas gruesas, en cuyas secciones basales y media predominan conglomerados conformados por gravas redondeadas de chert negro y cuarzo lechoso en una matriz arenosa, arcósica y a veces carbonácea, con estratificación cruzada. Hacia la sección superior predominan las areniscas gruesas, subarcósicas, blancas y grises, las cuales se vuelven finogranulares y más

\(^{10}\)INEGEOMINAS. 2009

\(^{11}\)PLAN DE ORDENAMIENTO DE LA CUENCA DEL RIO RANCHERIA. 2008
maduras. Afloramientos de esta unidad litológica se observan en la carretera a Las Casitas, Campoalegre y al este de Barrancón (área del Cerrejón Sur).

Formación Cerrejón (Pgc). La Formación Cerrejón hace parte de la mina Cerrejón, la cual se encuentra localizada en cercanías al Municipio de Albania y Barrancas. Esta unidad hace parte de lo que Tschanz denomina como “Rocas Sedimentarias del Paleoceno”, las cuales afloran al sur de la Falla de Oca. La Formación Cerrejón consiste de areniscas de grano fino y shales, shaleslimolíticos, shales arenosos, mantos de carbón y delgadas capas de calizas en la parte media de la unidad\(^*\). Los primeros 640 m de la secuencia están constituidos por areniscas micáceas de color amarillo, gris y blanco, con abundantes partes carbonosas y micáceas de colores grises oscuros y shalescarbonáceos, shales limosos, shales arenosos y mantos de carbón. Sulfuros son localmente abundantes en la parte inferior y media de la formación, e incluye calcopirita, pirita y marcasita. La parte superior de la Formación Cerrejón presenta un color rojizo, excepto cerca de las capas de carbón, la arenisca típica es de grano muy fino, bien estratificada y laminada y presenta intercalaciones de shales arcillosos y limosos de tonos amarillentos, rojizos, grises y verdes. La parte más superior tiene 110 m, compuesta principalmente por shales arcillosos de color rojo oscuro con algunas capas de colores grises y verdes. Los siguientes 350 m consisten de intercalaciones de areniscas de grano fino y shales de colores rojos y amarillos.

2.3 GEOLOGÍA ESTRUCTURAL

En la Provincia de la Baja Guajira se encuentran una serie de sistemas de fallas, compuestos por el Sistema de Fallas del Cinturón de Oca, la cual se encuentra a su vez formada por la Falla de Oca, seguida por el Sistema de Fallas del Cerrejón, conformada por la Falla del Piedemonte de la Sierra de Carraipía.

Sistema de Fallas del Cinturón de Oca. Las estructuras asociadas al Sistema de Fallas del Cinturón de Oca presentan una dirección E-W y una componente vertical esencialmente inversa, generando pliegues oblicuos en el Sistema de Fallas de Oca. Debido a las características descritas anteriormente y a que este sistema presenta alto ángulo convergencias opuestas generan la formación de una estructura en flor positiva ALMA MATER – INGEOMINAS (2009)\(^{13}\).

El principal rasgo estructural perteneciente al Sistema de Fallas de Oca, corresponde a la Falla de Oca, la cual se considera como uno de los rasgos geológicos más importantes del norte de Suramérica y además forma el límite

\(^{12}\)PLAN DE OERDENAMIENTO DE LA CUENCA DEL RIORANCHERIA. 2008

\(^{13}\)ALMA MATER- INGEOMINAS 2009
tectónico de las provincias de la Sierra Nevada de Santa Marta, La Serranía de Perijá y las cuencas de La Baja Guajira y Ranchería.

Sistema de fallas del Cerrejón. A este sistema de fallas pertenecen aquellas estructuras con orientación típica del dominio andino NNE-SSW, este sistema limita al este una provincia dominada por rocas de edad Mesozoica en el núcleo de la Serranía de Oca de una provincia occidental con rocas de edad Paleógeno que forman el piedemonte occidental de la Serranía de Oca. Este sistema de falla se caracteriza por describir fallas de cabalgamiento regional con vergencia hacia el W, donde se generan saltos estratigráficos superiores a 600m ALMA MATER – INGEOMINAS (2009)\(^{14}\).

En la región de los Montes de Oca, este sistema genera fallas de ángulos altos con trayectorias ligeramente lístricas y despegues profundos en el basamento Pre-Cretácico.

La Falla Río Seco. Se extiende por 70 Km con dirección EW a N70E, en el área siguiendo en parte los cursos de los Río Seco, Los Mangos y San Sebastián. Es una estructura dextral con desplazamientos hasta de 2 Km. Su tramo más oriental queda sepultado bajo depósitos cuaternarios que se extienden hacia el río Cesar.

Anticlinal de Majayura. Corresponde a un pliegue asimétrico, limitado en ambos flancos por fallas inversas de componente oblicua, esencialmente lateral derecha, clasificado como una estructura de arrastre El flanco norte de esta estructura es más vertical que la sur, indicando la vergencia norte del sistema de plegamiento El plano axial muestra una dirección esencialmente E-W, oblicua a subparalela con respecto al Sistema de Fallas de Oca De manera general este pliegue exhibe una geoforma “pop up” o estructura en flor positiva asociada al ajuste compresivo de sistemas transcurrentes esencialmente dextrales de dirección E-W\(^{15}\).

Anticlinal de Cerrejón. Pliegue de carácter local Corresponde a un pliegue asimétrico, apretado, donde el flanco W está más inclinado que el flanco E, indicando una vergencia hacia el oeste El plano axial del anticlinal de Cerrejón exhibe una dirección NNE – SSW El plano axial se encuentra cortado al sur por la Falla del Cerrejón y al norte se encuentra limitado por el Sistema de Fallas de Oca\(^{16}\).

Sinclinal de Majayura. Corresponde a una estructura abierta Este sinclinal se asocia a un bloque deprimido limitado por bloques levantados al norte y sur a través de fallas inversas con componente transpresional. El sinclinal de Majayura se extiende en dirección NESW El cierre norte del sinclinal se da contra el Sistema de Fallas de Oca.

\(^{14}\)ALMA MATER- INGEOMINAS. 2009
\(^{15}\)IBIT 14.
\(^{16}\)IBIT 14.
El mapa geológico muestra las formaciones que afloran en el área de estudio estas formaciones pertenecen a rocas del cenozoico, mesozoico y paleozoico, siendo las formaciones Cerrejón y la formación Tabaco pertenecientes al grupo de rocas sedimentarias del paleoceno las de importancia para la actividad extractiva del mineral de carbón.
3. METODOLOGÍA

La metodología utilizada para el estudio multitemporal inicia con una fase de adquisición y preparación de la información secundaria para su procesamiento que es la segunda fase, los resultados de la segunda fase permiten hacer un análisis Planimétrico de la explotación y un análisis volumétrico. Estos se complementan con procesamientos de las imágenes multiespectrales para evaluar el comportamiento del suelo y la vegetación en el área de influencia de la mina. (Ver figuras 4, 5, 6, 7, 8, 9 y 10).

3.1 FASE 1: PREPARACIÓN

Cuadro 6: Características de las imágenes de Landsat.

<table>
<thead>
<tr>
<th>IDENTIFICADOR USGS</th>
<th>SATÉLITE</th>
<th>SENSOR</th>
<th>NUMERO DE BANDAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM50080521985081AAA03</td>
<td>Landsat 5</td>
<td>MSS</td>
<td>4</td>
</tr>
<tr>
<td>LM50080521986212AAA03</td>
<td>Landsat 5</td>
<td>MSS</td>
<td>4</td>
</tr>
<tr>
<td>LM40080521988050AAA03</td>
<td>Landsat 4</td>
<td>MSS</td>
<td>4</td>
</tr>
<tr>
<td>LT40080521990327XXX03</td>
<td>Landsat 4</td>
<td>TM</td>
<td>7</td>
</tr>
<tr>
<td>LT50080521996240XXX01</td>
<td>Landsat 5</td>
<td>TM</td>
<td>7</td>
</tr>
<tr>
<td>LT50080521997354CPE00</td>
<td>Landsat 5</td>
<td>TM</td>
<td>7</td>
</tr>
<tr>
<td>LT50080521998181XXX02</td>
<td>Landsat 5</td>
<td>TM</td>
<td>7</td>
</tr>
<tr>
<td>LT50080521999040CPE00</td>
<td>Landsat 5</td>
<td>TM</td>
<td>7</td>
</tr>
<tr>
<td>LT50080522007254CHM00</td>
<td>Landsat 5</td>
<td>TM</td>
<td>7</td>
</tr>
<tr>
<td>LT50080522010022CHM00</td>
<td>Landsat 5</td>
<td>TM</td>
<td>7</td>
</tr>
<tr>
<td>LC80080522014065LGN00</td>
<td>Landsat 8</td>
<td>OLI</td>
<td>12</td>
</tr>
<tr>
<td>LC80080522015084LGN00</td>
<td>Landsat 8</td>
<td>OLI</td>
<td>12</td>
</tr>
</tbody>
</table>

Fuente: USGS.

El cuadro describe las características generales o metadata de las imágenes descargadas para el estudio.

Cuadro 7: Inventario y características de las planchas topográficas.

<table>
<thead>
<tr>
<th>PLANCHE</th>
<th>AÑO</th>
<th>ESCALA</th>
<th>FOTO AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>21IB</td>
<td>1994</td>
<td>1:25.000</td>
<td>1989</td>
</tr>
<tr>
<td>21ID</td>
<td>1994</td>
<td>1:25.000</td>
<td>1985</td>
</tr>
<tr>
<td>21IIC</td>
<td>1994</td>
<td>1:25.000</td>
<td>1985</td>
</tr>
<tr>
<td>21IIA</td>
<td>1994</td>
<td>1:25.000</td>
<td>1984</td>
</tr>
<tr>
<td>22IB</td>
<td>1994</td>
<td>1:25.000</td>
<td>1984</td>
</tr>
<tr>
<td>14IVC</td>
<td>1994</td>
<td>1:25.000</td>
<td>1984</td>
</tr>
<tr>
<td>15IIID</td>
<td>1961</td>
<td>1:25.000</td>
<td>1984</td>
</tr>
</tbody>
</table>

Fuente: IGAC.

El cuadro muestra el inventario de las planchas del IGAC con sus respectivas características.

Cuadro 8: Inventario y características de las planchas geológicas.

<table>
<thead>
<tr>
<th>PLANCHE</th>
<th>ESCALA</th>
<th>AÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1:100.000</td>
<td>2007</td>
</tr>
<tr>
<td>Albania</td>
<td>1:100.000</td>
<td>2007</td>
</tr>
<tr>
<td>Fonseca</td>
<td>1:100.000</td>
<td>2007</td>
</tr>
</tbody>
</table>

Fuente: SGC.

El cuadro muestra el inventario de las planchas del servicio geológico colombiano con sus respectivas características.
3.2 FASE 2: PROCESAMIENTO DE DATOS

Un primer procesamiento de los datos en SIG, se hizo a partir de las planchas topográficas a escala 1:25000, adquiridas en el IGAC, las cuales se georreferencian y se usaron como base, para capturar mediante digitalización las curvas de nivel. A estas curvas se les asignó un valor de cota y se interpolaron para generar un primer DEM que refleja el estado inicial del terreno, antes del inicio de la actividad extractiva y que corresponde a la realidad del terreno en los años 1984 y 1985 fecha en la cual fueron capturadas las fotografías aéreas por parte del IGAC y las cuales fueron la base de la extracción de la información topográfica contenida en estas planchas (cuadro 3).

Para la generación del modelo de elevación DEM, se utilizó el software ArcGis, extensión 3D Analysis, en la opción Create TIN from features, el cual a continuación se convierte en un DEM tipo raster (Figura 4). Este DEM constituye la línea base del análisis multitemporal, pues mediante la interpretación de la imagen sombreada del relieve generado a partir de este DEM cartográfico, donde se puede observar que a la fecha no se observan registros de las excavaciones. Confrontando con observación la imagen Landsat de 1985, donde solo se visualizan construcciones e infraestructura, como parte inicial de las labores.

Figura 4: Generación del Modelo Cartográfico de Elevación DEM.

Fuente: Estudio.
3.3 FASE 3: ANALISIS PLANIMÉTRICO.

Una primera aproximación al análisis multitemporal de la explotación se hizo mediante interpretación visual de las imágenes Landsat para cada uno de los diferentes momentos de análisis en una composición color que usa las mismas bandas espectrales comunes a los tres sensores usados para su captura. En la composición color se usa la banda del infrarrojo cercano, NIR en el canal del verde, la banda del verde en el canal azul y la banda del rojo en el canal rojo. Como apoyo a la interpretación visual y como ayuda para definir los frentes de explotación se usó procesamiento digital de imágenes, aplicando la función Cluster que es una clasificación automática de imagen con base en un algoritmo de base estadística que agrupa los pixeles por su afinidad u homogeneidad, validando medidas de centralidad y dispersión. (Figura 5)

Figura 5: Análisis de Clusters.

A partir de este producto, cluster en formato vector y mediante interpretación de las imágenes se materializaron los frentes de explotación para cada uno de los momentos de análisis seleccionados. El resultado es un conjunto de vectores tipo polígono a los cuales se les determino el Área y perímetro planimétricos, que ofrecen una primera cuantificación de las áreas explotadas y permite un análisis
estadístico más profundo con miras a determinar la evolución de la explotación por cada uno de los frentes y la tendencia en general. Estos datos han permitido además, identificar en cuales de los títulos se han desarrollado en mayor proporción, los frentes de explotación (Ver figura 5).

En este primer acercamiento a la dinámica de cambio en el área de explotación se digitalizaron además, las vías que fueron apareciendo en el transcurso de las labores de explotación.

Figura 6: Análisis Planimétrico.

3.4 FASE 4: ANÁLISIS VOLUMÉTRICO.

El análisis volumétrico pretende cuantificar el volumen de material removido en el proceso de explotación minera que inicia con un descapote inicial seguido de la excavación en terraceo sucesivo, beneficio del mineral y disposición de los estériles residuales. Para realizar este análisis se ha seleccionado el modelo digital de elevación del terreno liberado recientemente por la Jaxa y descargado del sitio web.

La Agencia de exploración aeroespacial de Japón (JAXA) libera de forma gratuita el conjunto de datos global el modelo digital de superficie (DSM) con una
resolución horizontal de 30 metros el pixel (1 segundos de arco). El conjunto de datos ha sido compilado con imágenes obtenidas por el satélite de observación avanzada de la tierra "DAICHI" (ALOS). Está basado en el conjunto de datos DSM (versión de malla de 5 metros) del "World 3D Topographic Data", siendo en este momento los datos más precisos de elevación de escala mundial, y su exactitud de elevación también es a nivel mundial como versión de 30 metros, si se compara con la propia del SRTM de la NASA. Se espera que este conjunto de datos sea útil para la investigación científica, educación, así como el sector de servicio privado que utiliza la información geoespacial. http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm

El Dem de la Jaxa tiene las siguientes especificaciones:

Resolución: 1 arcsec (approx. 30m pixel) contenido una baldosa de 1 grado. Lat/long.

Precisión en Z: 5 metros de desviación estándar (1 sigma)

Composición: DSM (altura sobre el nivel del mar, codificado 16 bits GeoTIFF) el valor de elevación calculado por promedio (AVE) y media (MED) de remuestreo de la versión de grilla de 5 metros. El vecino más cercano (NN) es considerado en la próxima versión

Archivo de información de la Máscara: (8bit GeoTIFF, DN=0: Valido; 1: Nubes, nube y hielo (invalido); 2: Cuerpos de agua y baja correlación (valido); y 3: Mar)

Numero de archivo de apilado (8bit GeoTIFF, DN=número de estacado)

Información de valoración de Calidad (ASCII texto, adiciona información al producto de 1 arcsec a información original 5-m malla DSM)

Archivo de cabecera (ASCII text)

El DEM descargado de la web de la Jaxa que mediante análisis por contrastación con los mosaicos Alos Palsar se deduce que corresponde al año 2008, fue procesado digitalmente en ambiente SIG, en el software ArcGis. Se generó una imagen sombreada del relieve (Hillshade), sobre la cual y mediante interpretación visual, se determinó la localización y geometría de las áreas excavadas y donde es depositado el material estéril, producto de la explotación.

Utilizando funcionalidades del módulo 3D Analyst de ArcGis, se modela el AW30M DSM con el fin de cuantificar los volúmenes desplazados en el proceso de explotación correspondiente al momento de análisis año 2008 (Figura 6).
Para focalizar los cálculos se subdividió el área de explotación en tres frentes a los que se denominó como Frente Norte, Frente Centro y Frente Sur. Cada uno de los DEM correspondientes a los frentes fue modelado separadamente para obtener las cifras de material removido.

Figura 7: Análisis Volumétrico.

Para el cálculo de volúmenes de material excavado, el AW30M DSM de cada uno de los frentes se llena (Fill), éste modelo lleno, se opera con el modelo original sin llenar y el resultado, es el área excavada con los valores de Área y Volumen.

Para el cálculo de volumen de estériles acumulado en el proceso de beneficio del mineral en el frente norte, se delimita por interpretación de imagen el área de acumulación con un polígono con el cual se recorta el DEM para aislar el área de
acumulación, luego se usa la misma función pero antes de aplicarla se invierte el relieve es decir la colina de acumulación se convierte en una depresión, análoga a una excavación, se llena y se opera para derivar el área y el volumen esta vez correspondiente a los estériles acumulados. (Figura 8).

Figura 8: Análisis Volumétrico FN.

Para los frentes centro y sur se utilizó otro procedimiento teniendo en cuenta que a diferencia del frente norte, donde los estériles se han depositado sobre una zona plana; en éstos, los desechos se han acumulado en zonas de pendiente.

Para estos casos se procedió a recortar del DEM las zonas de acumulación, los DEM parciales se llevaron a nivel cero restando al DEM la menor altura y a continuación se multiplicó el área de cada pixel por su altura, hallando los volúmenes totales de estériles acumulados. (Figura 9).
Figura 9: Análisis Volumétrico FN, FC Y FS.

Fuente: Estudio.

3.5 FASE 5: ANÁLISIS MULTITEMPORAL DE VEGETACIÓN.

INDICES DE VEGETACIÓN

Con las imágenes Landsat en el programa Idrisi Selva, se realizó una transformación NDVI o índices de vegetación; que no son más que combinaciones de las bandas espectrales de dichas imágenes, cuya función es realizar la cubierta vegetal en función de su respuesta espectral y atenuar otros elementos del suelo. El resultado de esta operación, es una nueva imagen donde se destacan los píxeles relacionados con los parámetros de vegetación, lo cual nos ayuda a estimar la cantidad y desarrollo de la vegetación para cada momento del estudio, esta operación se realiza para las imágenes correspondientes a los sensores MSS y TM, debido a que el software no tiene el algoritmo para los
sensores recientes como el OLI de Landsat-8. A continuación se agruparon las imágenes NDVI por momentos y con ellos se realizaron perfiles de tiempo, a partir los cuales se efectuó la respectiva interpretación para el estudio (Ver figura 10).

Figura 10: Análisis multitemporal de vegetación.

TRANSFORMACIÓN TASSCAP

TASSCAP ejecuta una transformación 4 dimensional “Kauth y Thomas” sobre datos de 4 bandas del MSS o 6 bandas del TM / ETM + (excepto la banda térmica) utilizando el proceso de ortogonalización de Gram-Schmidt para extraer tres o cuatro nuevas bandas índice. Si se utilizan imágenes TM / ETM +, las bandas producidas son brillo, verdor y humedad. Si se utilizan imágenes de MSS, las bandas producidas son verdor, marchitez o amarillamiento, brillo y Nada que ver. La imagen del brillo de TM / ETM + se refiere al brillo del suelo, mientras que MSS se refiere al brillo del suelo y humedad. La banda de verdor, a veces se denomina índice de vegetación verde o GVI, destaca la cubierta de vegetación o de la biomasa por encima del suelo. La marchitez o amarillamiento, o índice de vegetación amarillo (YVI) de MSS contiene información sobre la vegetación que
decae o tiende a secarse. La imagen nada que ver está asociada con el ruido atmosférico. (Manual de Idrisi)

A las imágenes Landsat TM se les hace la transformación Tasseled Cap, de la cual se obtienen nuevas imágenes con un nuevo conjunto de ejes ortogonales. Como se mencionó, las nuevas imágenes corresponden al brillo, verdor, humedad, y para las imágenes Landsat MSS el tercer componente corresponde a la marchitez; Con el fin de determinar el comportamiento o dinámica espaciotemporal en el área de influencia de la explotación, las bandas se agruparon o estacaron por tema (brillo, marchitez, amarillamiento, humedad) y a cada uno de los agrupamientos se les realizaron dos perfiles en el tiempo que además de la interpretación visual permiten determinar su comportamiento o tendencia estadística para en los momentos de análisis. (Figura 11).

Figura 11: Análisis multitemporal de verdor, marchitez, brillo y humedad.

ANÁLISIS MULTITEMPORAL DE VERDOR, MARCHITEZ Y HUMEDAD

Fuente: Estudio.
4. RESULTADOS

A continuación se muestran los resultados producidos durante el desarrollo del estudio. Un primer mapa generado es el topográfico y el DEM cartográfico producido a partir de las curvas de nivel el cual refleja el estado original del terreno antes de iniciarse la explotación y que constituye la línea base de análisis. (Figura 12).

Figura 12: Mapa Topográfico.

En el mapa se observan las curvas de nivel del área de estudio. Estas fueron digitalizadas a partir de las planchas topográficas del IGAC. El mapa tiene como fondo la imagen sombreada del relieve, generada de este DEM cartográfico que ilustra la complejidad del relieve en la zona de estudio.
La imagen muestra que la zona de estudio corresponde a una planicie que configura parte del valle o cuenca del Rio Ranchería. También hay pequeñas elevaciones que no sobrepasan los 1.200 metros como el cerro Cerrejón, ubicado en la parte NE del área de estudio.

A continuación se muestran los mapas de los frentes de explotación para los diferentes momentos del análisis.

Esta imagen pertenece al satélite Landsat 5 sensor MSS del 22 de Marzo de 1985, la imagen está en composición color RGB231; en esta composición se observa la vegetación más densa en tonos de verde brillante, los frentes de explotación en color magenta intenso, los suelos con algún tipo de vegetación superficial en color magenta claro y por último los suelos descapotados o arados en tonos claros.

En la imagen, se visualiza el planteamiento inicial de la zona Centro el cual fue el primer el frente en donde inicio la actividad de extracción. Hay alguna evidencia de excavación que corresponde a los manchones magenta oscuro en medio del área más brillante, por lo cual se puede decir que se encuentra en etapa incipiente de explotación y de preparación del terreno para continuar la excavación e implementación de la infraestructura en el área de concesión.

Para este año, se tiene un área de trabajo que corresponde a 1163.89776 Hectáreas.

Fuente: Estudio.

Fuente: Estudio.

Imagen de Landsat_5 MSS de 31 de Julio de 1986, en composición RBG231, en esta composición color se observa que hay algunos cambios con respecto al año anterior (1985) en cuanto a las actividades de excavación, si se analiza que los manchones magenta oscuro al interior de la zona descubierta más brillante se han hecho más grandes, se deduce que el desarrollo y preparación del terreno continúa. En la zona sur también se observa un incremento en el área trabajada si se observa el magenta oscuro de los frentes al suroeste de la zona descapotada más clara.

Para este año, se ha calculado un área de trabajo que corresponde a 1370,0475 hectáreas para la zona centro y 232,01167 hectáreas para la zona sur.

Imagen de Landsat_4 MSS del 19 de febrero del año 1988, en composición color RGB 231, en esta composición color, se aprecia que en relación con la anterior dos años atrás, se han incrementado las labores de explotación en el frente Centro como se manifiesta en el incremento del color magenta oscuro que es la firma espectral característica de los suelos excavados y se verifica en el aumento de área, mientras en el frente Sur no se nota un incremento significativo comparado con su estado en el anterior momento de análisis, en cierta forma este frente se ha estancado si comparamos las áreas de trabajo. Probablemente porque algunas áreas se han recubierto de nueva vegetación.

Para este año, se ha calculado un área de trabajo que corresponde a 1885,201146 hectáreas para el frente de la zona centro y 182,14875 hectáreas para la zona sur.

Fuente: Estudio.
Figura 17: Mapa Frentes de Explotación del año 1990.

Fuente: Estudio.

Imagen de Landsat 4 TM tomada el 23 de noviembre de 1990, en esta composición RGB342 se observa que el tono magenta oscuro se ha intensificado y homogeneizado al noreste y suroeste del frente, en tanto una zona se colorea de verde, manifestando que en esta zona se ha suspendido el arranque y excavación y se empieza a revegetalizar. Para la totalidad de la escena, se aprecia un tono verde más uniforme y que cubre el área, lo que se puede explicar, por el mayor aporte de agua y humedad en el terreno asociado a las condiciones locales de precipitación, aunque hay presencia de nubes estas no inciden sobre las áreas de explotación.

Se ve notoriamente el incremento en el área del frente Centro y se observa que en el frente Sur se ha incrementado la etapa de arranque por el aumento del tono magenta oscuro típico del suelo excavado, corroborado por el área calculada que se duplica con respecto al año 1988.

Para este año se tiene un área de trabajo que corresponde a 2496,008541 hectáreas y para el frente Centro y para el frente Sur 361,7107513 hectáreas.
Figura 18: Mapa Frentes de Explotación del año 1996.

Imagen de Landsat_5 TM del 27 de Agosto de 1996, con composición RGB342, en esta composición se ven los suelos de la explotación en tono magenta brillante lo que significa que se incrementa la actividad extractiva, la vegetación espesa en tonos verde brillantes en las partes noreste y noroeste superior de la imagen, los suelos sin o con muy poca vegetación; se observan en color magenta y estos cubren casi toda la parte central de imagen lo que corresponde al valle de rio ranchería, esto puede ser debido a que para esta época del año es seca o sin mucha lluvia a nivel local y los suelos con vegetación superficial en tono verde claro. El frente Centro la extracción del mineral incrementa la producción, en el Frente Sur el área de explotación y extracción se acrecienta y se visualiza como se empieza a extender a otras áreas de trabajo en el mismo frente.

Para este año se tiene un área de trabajo que corresponde a 2312,403162 hectáreas y para el frente Centro y para el frente Sur 717,8482182 hectáreas.

Imagen de Landsat _5 TM del 20 de Diciembre de 1997, en composición RGB342, se ven los suelos de explotación en tono magenta brillante, la vegetación en tonos verdes, los suelos arados en magenta y los suelos con vegetación superficial en tono verde claro, en cuanto a las tonalidades no hay un cambio significativo con respecto al año anterior de análisis. Se observa que en el frente centro el área de extracción ha disminuido con respecto al año anterior, se puede deducir que han abandonado algunas áreas de este frente para revegetalización o recuperación, además el área donde se acumula el material estéril también incrementa con respecto al año anterior de análisis, en el Frente Sur el área de explotación y extracción se acrecienta y se visualizan las huellas producto de la actividad.

Para este año se tiene un área de trabajo que corresponde a 1555,175314 hectáreas para el frente Centro y para el frente Sur 1092,909501 hectáreas.

Imagen de Landsat_5 TM del 30 de junio de 1998, en composición RGB342, se ven los suelos de la explotación en color magenta oscuro, la vegetación en tonos verdes, los suelos con vegetación superficial en tono verde menos claro. En casi toda la escena, se aprecia un tono verde más uniforme y que cubre el área lo que puede explicarse por el mayor aporte de agua y humedad en el terreno asociado a las condiciones locales de precipitación. Se aprecia que para esta época del año, había una vegetación incrementada en el área de estudio, y aunque hay presencia de nubes, éstas no inciden sobre las áreas de explotación.

Se observa el crecimiento de área de los frentes centro y sur, las labores de desarrollo aumentan a medida que los frentes avanzan, se aprecian algunos terraceos en el frente sur.

Para este año se tiene un área de trabajo que corresponde a 1657, 242254 hectáreas en el frente Centro y para el frente Sur 1204,751514 hectáreas.

Fuente: Estudio.

Imagen de Landsat_5 TM del 9 de febrero de 1999, en composición RGB342, se ven los suelos de la explotación de color magenta muy oscuro casi cambiando su tonalidad a verde oscuro, la vegetación en tonos verdes, y los suelos con vegetación superficial en tono verde claro. Al igual que para el año anterior de análisis, el área de estudio se ve en la mayor parte en tonalidades de verdes y es evidente el aumento en la vegetación; esto se debe a las condiciones de precipitación de la zona para este mes del año. Se observa el crecimiento en los frentes de explotación, es decir; que la producción sigue en aumento y en el Frente Sur están activos dos botaderos, donde se acumula todo el material estéril removido en las labores de explotación. Se han construidos nuevas vías que comunican los frentes dentro de la mina.

Para este año se tiene un área de trabajo que corresponde a 1750,34707 hectáreas para el frente Centro y para el frente Sur 1968,885929 hectáreas.

Fuente: Estudio.

Fuente: Estudio.

Imagen de Landsat _5_ TM del 11 de septiembre de 2007, en composición RGB352, se ven los suelos de la explotación en color magenta brillante, la vegetación en tonos verdes y los suelos con vegetación superficial en tono verde claro. El frente centro disminuye su área indicando que bajó la producción en este año, además algunas de sus áreas se han sido retrollenadas para ser reforestadas por ello el área del botadero para este frente también disminuye, debido a que este material es utilizado para realizar la actividad de retrollenado de las áreas explotadas que se van abandonando; lo contrario ocurre con el frente sur, el cual, sigue incrementando su área y por lo tanto la producción en este frente. Para este año se observa el frente norte completamente desarrollado y con área de explotación amplia, lo cual quiere decir que este frente junto con el frente Sur son los que para este año del análisis están produciendo la mayor parte del mineral de carbón extraído, no se conoce la evolución del frente Norte debido a la ausencia de imágenes de periodos anteriores al año 2007 y posteriores a 1999.

Para este año se tiene un área de trabajo que corresponde a 1407,01304 hectáreas para el frente Centro, en el frente Sur 1602,894607 hectáreas y para frente norte 2663,086695 hectáreas.

Fuente: Estudio.

Imagen de RADAR del programa japonés Alopsalar del año 2007, en multipolarización hh y hv, es decir polarización hh significa que la microonda se emite en polarización horizontal y se recibe en la antena en polarización vertical. En la polarización hv se emiten horizontales y se reciben las que vienen polarizadas verticalmente descartando las horizontales. En este caso la composición color usa las dos polarizaciones en composición RGB122 usando la imagen polarizada hh en el canal Rojo y la polarización hv en el canal del verde y en el canal del azul. Se ven los suelos de la explotación de color rojizo, la vegetación y suelos se ven en tonos cian, los núcleos urbanos en magenta claro brillante. Estas imágenes de Radar banda L Alopsalar son complementarias de las imágenes ópticas de Landsat pues con ellas se pudieron verificar las áreas de explotación que se delimitaron en la imagen Landsat y de otra parte se pudieron delimitar las áreas de explotación que no se podían observar en Landsat debido a la presencia de nubes.
Imagen de Landsat 5 TM del 22 de junio de 2010, en composición RGB352, en esta composición color se ven los suelos de explotación en magenta oscuro intenso, la vegetación y suelos con poca vegetación se ven en tonos verde claro también los suelos arados en tono magenta más claro. Se ve el crecimiento de la explotación en las áreas de los frentes norte y sur; mientras que el frente centro está disminuyendo su área de explotación. Se asume que esto ocurre, por los contenidos en el Planeamiento minero y la Antigüedad del frente, además; puede ser que el mineral se encuentra a mayor profundidad y esto no es rentable para la empresa.

Algunas de las vías que comunican los frentes, no se pueden observar debido a que le área se encuentra parcialmente cubierta por nubes, al igual que el frente norte, para el cual se hizo su identificación a partir de la imagen Alopsarsal de ese mismo año.

Para este año, se tiene un área de trabajo que corresponde a 1300,644368 hectáreas para el frente Centro, el frente Sur 2403,620665 hectáreas y para frente norte 3089,201299 hectáreas.

Imagen de Alospalsar del programa japonés del año 2010, en composición RGB122 se ven los suelos de la explotación de color rojizo, se observa que la tonalidad de las terrazas tanto de la explotación como del material acumulado se ven en tonos más fuerte, debido a que las microondas del radar se reflejan más fuertemente desde estas haciéndolas ver más brillantes, la vegetación y suelos se ven en tonos cian, esta imagen Alospalsar; contribuye a verificar las áreas de explotación que se ven en la imagen Landsat y en la digitalización y cálculo de área para el frente Norte, que no se puede ver en la imagen Landsat debido a la presencia de nubosidad. En esta el frente centro cambia su aspecto y área con respecto a la imagen de Landsat, esto se debe a que corresponde al mismo año, pero fueron tomadas en diferentes meses del año.

Fuente: Estudio.
Figura 26: Mapa Frentes de Explotación del año 2014.

Imagen de Landsat_5 TM del 6 de Marzo de 2014, en composición RGB352 se ven los suelos de explotación en color magenta brillante, la vegetación espesa en tonos verdes brillantes y los suelos con vegetación superficial en tono verde más oscuro, los suelos arados en tono magenta claro. El frente sur se ha extendido en área de explotación al igual que área de acumulación de material estéril (botadero), lo mismo ocurre con el frente Norte que sigue incrementando el área de explotación. Para este año, hay un aumento en el área del frente centro incrementando en un pequeño porcentaje su producción ya que su crecimiento no es tan significativo, en las vías entre frentes no hay mayor cambio debido a que no se observa mayor cambio comparado con anteriores momentos de análisis; dentro de cada frente se alcanza a observar algunas vías están pueden ser las que recorren los camiones para mover el material dentro de cada frente.

Para este año se tiene un área de trabajo que corresponde a 1785,183557 hectáreas para el frente Centro, el frente Sur 3059,769744 hectáreas y para el frente Norte un área de 3828,42028 hectáreas.

Imagen de Landsat 5 TM del 25 de marzo de 2015, en composición RGB352, para este año del análisis se observa que la vegetación ha disminuido con respecto a los años anteriores se ve la escena en mayor proporción en tonos magenta que de verde. A pesar que la escena está parcialmente cubierta por nubes, éstas no interfieren para el análisis de los frentes de explotación; El frente Centro, vuelve a aumentar su área en comparación con el año anterior y por tanto la producción en éste, al igual que para los frentes Norte y Sur que continúan en constante crecimiento a través de todos lo tiempo del análisis. Además se ve como las áreas abandonadas del frente Centro se encuentran recuperadas, ya que en ellas, se observa vegetación incipiente.

Para este año se tiene un área de trabajo que corresponde a 2028,1727 hectáreas para el frente Centro, el frente Sur 3307,697507 hectáreas y para el frente Norte un área de 4118,971229 hectáreas.

Fuente: Estudio.
Figura 28: Mapa Frentes de Explotación del año 2015 Alospalsar.

Imagen de Alospalsar del programa japonés del año 2015, en composición RGB122, se ven los suelos de la explotación de color rojizo, se observa que la tonalidad de las terrazas tanto de la explotación como del material acumulado se ve en tonos más fuerte, debido a la mayor retrodispersion del radar en estas, la vegetación y suelos se ven en tonos cian, esta imagen Alospalsar ayuda a verificar las áreas de explotación que se ven en la imagen Landsat, además en esta imagen también se observa cómo se han retrollenado y revegetalizado las áreas de la explotación abandonas para el frente Centro.
Análisis Volumétrico

A continuación se muestran los mapas para el cálculo de los volúmenes extraídos mediante modelación 3D en SIG, para cada frente de explotación utilizando el modelo de elevación ALOSWORD-30M del año 2008. El volumen calculado corresponde al material extraído desde el inicio de la explotación hasta el año del modelo utilizado.

Figura 29: Mapa de cálculo de volumen extraído para el frente Centro.

Figura 30: Mapa de cálculo de volumen para el frente Sur.

Fuente: Estudio.
Figura 31: Mapa de cálculo de volumen para el frente Norte.

Fuente: Estudio.

Estos mapas ilustran el área ocupada por los frentes Centro, Sur y Norte. Se observa en tono azul el área que corresponde a la pérdida o hueco dejado por la explotación y extracción del mineral de carbón junto con el material estéril. Mediante la operación mencionada en las figuras 7, 8 y 8a el software nos arroja el dato del volumen y área para cada frente.

Análisis de Vegetación en el Área de Influencia de la Explotación.

A continuación se muestran dos de los mapas producidos mediante transformación de bandas espectrales de Landsat, para el índice de la vegetación NDVI del área de estudio en dos diferentes momentos del análisis, uno corresponde al estado inicial del análisis en el año 1985 y otro, al momento final de éste, en el año 2015.
Figura 32: Mapa de índice de vegetación en el año 1985.

Este mapa, muestra el comportamiento de la vegetación en el momento inicial del análisis para el año 1985, las áreas que corresponde a la explotación se observan en naranja rojizo brillante y se ve que estas, no ocupan un área tan grande en la escena. Por otra parte, las áreas que están cubierta por vegetación espesa se ven en tono verde brillante, Los valores de la leyenda corresponden a los índices en donde en general los valores inferiores a 0,1 son indicativos de suelo desnudo, valores superiores a 0,1 hasta 0,6 corresponden a vegetación escasa, rala o superficial, mientras que los valores más altos, de 0,6 a 0,8 y por encima, indican los bosques. Las líneas que se observan corresponden a dos perfiles A- A’ (perfil 1) y B- B’ (perfil 2) que se trazaron para ser utilizados en la realización de los “perfiles en el tiempo” de índices de vegetación para las imágenes con sensores TM y MSS en cada momento del estudio.
Figura 33: Mapa de índice de vegetación en el año 2015.

Este mapa, muestra el comportamiento de la vegetación en el momento final del análisis para el año 2015, las áreas que corresponde a la explotación se observan en naranja brillante y se ve que estas se encuentran totalmente desarrolladas y ocupan un área importante en la escena, también en un tono de naranja más intenso se observan los cuerpos de agua dentro de la explotación. Por otra parte, las áreas que están cubiertas por vegetación espesa se ven en tono verde brillante; aunque se encuentra en menor proporción, en comparación con el año inicial del análisis (1985), la escena se observa más en tonos naranjas amarillentos que en tonalidades de verdes. Se observa que los valores para el NDVI de este año son menores que en 1985 significando de una parte menor cantidad y vigor de la vegetación y su disminución.

Fuente: Estudio.
5. ANALISIS DE RESULTADOS

En este capítulo se analizan e interpretan los resultados obtenidos en el estudio después del procesamiento visual y digital de las imágenes de Landsat y Alospalsar, cálculo de volúmenes del modelo ALOSWORD-30M de la agencia japonesa Jaxa y los índices de vegetación para cada momento del análisis. Para llevar a cabo un análisis más preciso se crearon archivos en Excel (ver anexos 2, 4, 6, 8, 10 y 12), en donde se realizó un vaciado de todos los datos obtenidos, para luego ser analizados mediante tablas y gráficos.

5.1 EVOLUCION DE LOS FRENTES DE EXPLOTACION
A continuación se muestra, la evolución por cada frente de explotación teniendo en cuenta, las áreas planimétricas calculadas para cada año del análisis.

5.1.1 FREnte ZONA CENTRO
Este frente es el primero que analizamos debido a que fue el primero en empezar la actividad extractiva.

Cuadro 9: Áreas del frente Centro por cada año.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>ÁREA (M²)</th>
<th>PERÍMETRO (M)</th>
<th>ÁREA EN HECTÁREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>11638977,6</td>
<td>34955,19535</td>
<td>11638,9776</td>
</tr>
<tr>
<td>1986</td>
<td>13700475</td>
<td>34860</td>
<td>13700,475</td>
</tr>
<tr>
<td>1988</td>
<td>18852011,46</td>
<td>44356,72245</td>
<td>18852,01146</td>
</tr>
<tr>
<td>1990</td>
<td>24960085,41</td>
<td>42623,44183</td>
<td>24960,08541</td>
</tr>
<tr>
<td>1996</td>
<td>23124031,62</td>
<td>54346,50388</td>
<td>23124,03162</td>
</tr>
<tr>
<td>1997</td>
<td>15551753,14</td>
<td>41088,8437</td>
<td>15551,75314</td>
</tr>
<tr>
<td>1998</td>
<td>16572422,54</td>
<td>42102,72522</td>
<td>16572,42254</td>
</tr>
<tr>
<td>1999</td>
<td>17503470,7</td>
<td>41807,90238</td>
<td>17503,4707</td>
</tr>
<tr>
<td>2007</td>
<td>14070113,04</td>
<td>37779,47296</td>
<td>14070,11304</td>
</tr>
<tr>
<td>2010</td>
<td>13006443,68</td>
<td>29450,86087</td>
<td>13006,44368</td>
</tr>
<tr>
<td>2014</td>
<td>17851835,57</td>
<td>39684,84704</td>
<td>17851,83557</td>
</tr>
<tr>
<td>2015</td>
<td>17669468,9051</td>
<td>49015,3273</td>
<td>17669,46891</td>
</tr>
</tbody>
</table>

Fuente: Estudio.

El cuadro muestra las áreas calculadas para el frente Centro en cada año de las imágenes Landsat seleccionadas para el estudio, el área se muestra en metros cuadrados y hectáreas, siendo estas últimas las utilizadas, para realizar el análisis de la evolución del frente.
El gráfico estadístico muestra claramente el aumento creciente de las áreas planimétricas, muestra un comportamiento de campana de Gauss a través de los años de análisis, los picos se muestran en los años 1990 y 1996. Luego se observa que para los años siguientes, esta disminuye hasta el 2010, luego se vuelve a dar un incremento en los años 2014 y 2015.

5.1.2 FRENTE ZONA SUR
Este frente, es el segundo en el cual se realiza la actividad extractiva, y tiene una vida útil a través de todos los momentos analizados.

Cuadro 10: Áreas del frente Sur por cada año.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>ÁREA (M²)</th>
<th>PERÍMETRO (M)</th>
<th>ÁREA EN HECTÁREAS (HA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>1846393,51</td>
<td>13488,4057</td>
<td>184,6393511</td>
</tr>
<tr>
<td>1986</td>
<td>2320116,7</td>
<td>20266,6013</td>
<td>232,01167</td>
</tr>
<tr>
<td>1988</td>
<td>1821487,5</td>
<td>18485,0263</td>
<td>182,14875</td>
</tr>
<tr>
<td>1990</td>
<td>3617107,51</td>
<td>19243,4047</td>
<td>361,7107513</td>
</tr>
<tr>
<td>1996</td>
<td>7178482,18</td>
<td>53202,9046</td>
<td>717,8482182</td>
</tr>
<tr>
<td>1997</td>
<td>10929095</td>
<td>55098,9394</td>
<td>1092,909501</td>
</tr>
<tr>
<td>1998</td>
<td>12047515,1</td>
<td>65149,0608</td>
<td>1204,751514</td>
</tr>
<tr>
<td>1999</td>
<td>19688859,3</td>
<td>95552,7684</td>
<td>1968,885929</td>
</tr>
</tbody>
</table>
El cuadro muestra las áreas calculadas para el frente Sur en cada año a partir de las imágenes Landsat seleccionadas para el estudio, el área se muestra hectáreas con la cual se realiza el análisis evolutivo del frente.

Figura 35: Gráfico de evolución del frente Sur, El Cerrejón.

El gráfico muestra el aumento creciente de las áreas planimétricas de manera exponencial, a través de los años para cada momento del estudio. Se puede decir de esta que para el año 2007, se presenta un decremento relativo del área; que pudo ser debido, a que durante este año, disminuyó la producción en este frente.

5.1.3 FREnte Zona NorTE

Este frente es el tercero y último en iniciar la actividad extractiva, para este frente solo se tienen datos de los últimos años según el inventario de imágenes usadas aparece hasta el año 2007, y se encuentra totalmente desarrollado. Como se no se tienen imágenes en el intervalo de años de 2000 a 2006, no se puede precisar en qué año comenzaron las labores de desarrollo y preparación ni se puede evidenciar su evolución en ese lapso de tiempo.
Cuadro 11: Áreas del frente Norte.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>ÁREA (M²)</th>
<th>PERÍMETRO (M)</th>
<th>ÁREA EN HECTÁREAS (HA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>26630866,95</td>
<td>50663,2522</td>
<td>2663,086695</td>
</tr>
<tr>
<td>2010</td>
<td>30892012,99</td>
<td>64830,9071</td>
<td>3089,201299</td>
</tr>
<tr>
<td>2014</td>
<td>38284202,8</td>
<td>77133,894</td>
<td>3828,42028</td>
</tr>
<tr>
<td>2015</td>
<td>41189712,29</td>
<td>81565,3873</td>
<td>4118,971229</td>
</tr>
</tbody>
</table>

Fuente: Estudio.

El cuadro muestra las áreas calculadas para el frente Norte a partir de la imagen Landsat del año 2007.

Figura 36: Gráfico de evolución del frente Norte, El Cerrejón.

El gráfico muestra el aumento de tipo exponencial de las áreas planimétricas a partir del año 2007 hasta el año 2015. Esto evidencia en continuo crecimiento, del frente en los años seleccionados, confirmando que este es un frente activo y con una producción en aumento por cada año en el que aparece.
Figura 37: Gráfico de relación de la tendencia de cambio en los frentes de explotación, El Cerrejón.

Fuente: Estudio.

El gráfico muestra la comparación del crecimiento de las áreas a través de los años del análisis de los frentes de explotación Centro, Sur y Norte. Se observa que la prioridad en la extracción la tienen el frente Centro sin dejar el avance de las labores en el frente Sur; a partir del año 1988 el frente Centro dejó de crecer, pero no se detuvo la actividad sino que se iban retrollenando y revegetalizando las áreas que han sido abandonadas, en el año 1998 las áreas del Frente Centro y Sur fueron las mismas y de allí en adelante el frente Sur continuó con su crecimiento, como para el Frente Norte no se tienen datos sino hasta el 2007 se observa que este aparece con áreas mucho mayores a los otros frentes a pesar de ser más antiguos y este también muestra su continuo crecimiento hasta el momento final del análisis.
5.2 CÁLCULO DE LOS VOLUMENES (EXCAVADO Y ACUMULADO)

En este apartado, se muestran los cálculos de los volúmenes del material excavado y los volúmenes de material estéril acumulado en los botaderos de cada frente de explotación; como se mencionó anteriormente, estos volúmenes corresponde al año 2008 ya que éste, el año al que corresponde el modelo ALOSWORD-30M producido por la Jaxa utilizado para realizar este cálculo.

5.2.1 CÁLCULO DE LOS VOLUMENES DEL FRENTE ZONA CENTRO.

5.2.1.1 Cálculo del Volumen Excavado.

El cálculo de áreas y perimetros, se adelantó por dos métodos con el fin de corroborar las cifras. El primer método ilustrado en la figura 7, se realizó mediante modelamiento en 3D. En la figura 28, se observa el recorte del modelo de elevación ALOSWORD-30M para el área del frente de la zona centro, este nos arroja un volumen extraído de 868624289.451184 metros cúbicos (m³) y una área de 12187370.2476955 metros cuadrados (m²).

El segundo método, multiplica ilustrado en la figura el área de cada pixel al interior de las áreas de explotación (en azul) por su altura para generar el volumen que al final se suma. Para realizar este ejercicio sistemáticamente, se creó una tabla en Excel. El anexo 2, muestra los volúmenes resultantes de 87111511,9 en metros cúbicos (m³), dato que coincidente con el valor arrojado por el primer método Cut and Fill.

5.2.1.2 Cálculo del Volumen Acumulado.

En el anexo 3, se observa el recorte del modelo ALOSWORD-30M de elevación para el área del frente de la zona centro de acuerdo al modelamiento ilustrado en la figura 8a. Al igual que para el cálculo de las áreas para estimar el volumen también se creó una tabla en Excel, para realizar el cálculo del volumen acumulado de estéril del frente Centro.

El anexo 4, muestra los volúmenes del material estéril acumulado por cada pixel, que cubre el área de la explotación del frente Centro y con estos volúmenes, y el número de píxeles correspondientte a cada valor; se obtuvo el valor total del volumen acumulado en el frente. Se tiene un valor de 2296506232 en metros cúbicos (m³).
5.2.2 CÁLCULO DE LOS VOLUMENES DEL FRENTE ZONA SUR.

5.2.2.1 Cálculo del Volumen Excavado.
En la figura 29, se observa el recorte del modelo de elevación ALOSWORD-30M para el área del frente de la zona Sur, que de acuerdo con el primer método arroja un volumen extraído de 739328695.3 metros cúbicos (m³).

El anexo 6 muestra los valores obtenidos por el método en Excel, el resultado da un valor de 741533082.7 en metros cúbicos (m³) valor que coincide con el valor dado por el primer método.

5.2.2.2 Cálculo del Volumen Acumulado.
En el anexo 7, se observa el recorte del modelo de elevación ALOSWORD-30M para el área del frente de la zona Sur. Al igual que para el cálculo de las áreas para calcular el volumen (figura 8a) también se creó una tabla en Excel para realizar el cálculo del volumen acumulado de estéril del frente Sur.

En el anexo 7, se observa las áreas del material acumulado producto de la voladura y la remoción del material de la explotación.

El anexo 8, muestra los volúmenes acumulados del material estéril por cada pixel que cubre el área de la explotación del frente Sur y con estos volúmenes, y el número de pixeles correspondiente a cada valor; se obtuvo el valor total del volumen acumulado en el frente. Se tiene un valor de 2143336924 en metros cúbicos (m³).

5.2.3 CÁLCULO DE LOS VOLUMENES DEL FRENTE ZONA NORTE.

5.2.3.1 Cálculo del Volumen Excavado.
En la figura 30, se observa el recorte del modelo de elevación ALOSWORD-30M para el área del frente de la zona Norte, este nos arroja un volumen extraído de 799534260.868561 metros cúbicos (m³) y una área de 14771627.8690176 metros cuadrados (m²). Al igual que para el cálculo de las áreas para calcular el volumen; también se creó una tabla en Excel para corroborar el dato arrojado por el software.

El anexo 10, muestra los volúmenes por cada pixel, que cubre el área de la explotación del frente Norte y con estos volúmenes y el número de pixeles correspondiente a cada valor, se obtuvo el valor total del volumen extraído en el frente. Se tiene un valor de 799534248, 7 en metros cúbicos (m³), valor que es aproximado con el valor dado por el software que es de 799534260.8685561 metros cúbicos (m³).
5.2.3.2 Cálculo del Volumen Acumulado.
En el anexo 11, se observa el recorte del modelo de elevación ALOSWORD-30M para el área del frente de la zona centro. De acuerdo con el método usado e ilustrado en la figura 8, el volumen correspondiente al material de estériles acumulado es de 1440498396 en metros cúbicos (m³). Por el segundo método en excel, ilustrado en la figura 8ª, los resultados pueden verse en el anexo 12 y se obtuvo el valor total del volumen acumulado en el frente de 1455500435 en metros cúbicos (m³).

5.3 PERFIL TEMPORALES DE INDICES DE VEGETACION (NDVI).

Estos perfiles temporales se crearon a partir de dos vectores lineales que se trazaron en el área de interés. Uno atravesando el valle (perfil 2) y otro transversal a éste (perfil 1). A continuación se muestran los perfiles temporales del índice de vegetación (NDVI), producidos para los clústeres de imágenes (MSS y TM).

Figura 38: Grafico de INDV para los momentos del estudio (Perfil 1).

El gráfico muestra cómo se comporta la vegetación a través de los momentos del análisis para el Perfil 1, se observa el cambio de la vegetación en los diferentes años, se tienen años con valores muy bajos, en los que la vegetación era escasa, en general se puede decir que el NDVI ha disminuido con el paso de los años.

Fuente: Estudio.
El gráfico muestra, cómo se comporta la vegetación a través de los momentos del análisis para el Perfil 2, se observa el cambio de la vegetación en los diferentes años se tienen años con valores muy bajos en el que la vegetación se encontraba muy poca y otros con valores altos en donde la vegetación se encontraba en mayor proporción; a partir del año 2010 se observa un declive en la vegetación esto se debe a que el NDVI ha disminuido.

5.3.1 PERFILES DE VERDOR
Estos perfiles de verdor muestran la evolución del verdor de la vegetación a través de los momentos seleccionados para el estudio.

Fuente: Estudio.
La figura muestra la evolución de la vegetación verde a través del Perfil 1 en los años seleccionados para el estudio, esta gráfica muestra una línea de tendencia polinomial. Se observa como el verdor, disminuye hasta llegar a un punto crítico en el año 1998 y luego, después de este año, se incrementa hasta el año 2007; sufriendo un decrecimiento en el año 2010.

Figura 41: Perfil temporal de Verdor con el perfil 2 para cada momento.

La figura muestra la evolución de la vegetación a través del Perfil 2 en los años seleccionados para el estudio, representando una línea de tendencia media aritmética. Al igual que la gráfica anterior se observa como el verdor disminuye hasta llegar a un punto crítico en el año 1998 y luego después de este año incrementa hasta el año 2007; experimentando un decrecimiento en el año 2010.

5.3.2 PERFILES DE BRILLO
Estos perfiles de brillo, muestran la evolución del brillo del suelo a través de los momentos seleccionados para el estudio. Estos perfiles se realizaron con un rango máximo, es decir tomando los datos como independientes el uno del otro.
Figura 42: Perfil de Brillo con el perfil 1 para cada momento.

Fuente: Estudio.

La figura muestra el brillo del suelo a través del Perfil 1, en los años seleccionados para el estudio, representando una línea de tendencia media aritmética. Se observa, que el brillo es muy cambiante a través de los años, en donde hay unos picos muy altos y otros muy bajos; siendo los más críticos en donde el brillo es menor los años 1997 y 1999 y el pico más alto, en 1998.

Figura 43: Perfil de Brillo con el perfil 2 para cada momento.

Fuente: Estudio.
La figura muestra el brillo del suelo a través del Perfil 2 en los años seleccionados para el estudio, representando una línea de tendencia polinomial. Se observa que el brillo es muy cambiante a través de los años aunque se puede decir que se comporta de manera casi estable ya que solo se observa un cambio brusco en el año 1988 donde alcanza una valor mínimo.

5.3.3 PERFILES DE HUMEDAD
Estos perfiles, muestran la humedad retenida por el suelo a través de los momentos, y corresponden con las imágenes de Landsat con sensor TM. Estos perfiles se realizaron con un rango máximo, es decir tomando los datos como independientes el uno del otro.

Figura 44: Perfil de Humedad con el perfil 1 para momentos TM.

La figura muestra la humedad del suelo a través del Perfil 1, en los años con sensor TM para el estudio, representando una línea de tendencia polinomial. Se observa que la humedad en el año 1990 alcanza un valor muy alto y luego disminuye considerablemente hasta el año 1996, a partir de éste, vuelve a incrementar hasta el 2007 y se mantiene hasta el 2010.

Figura 45: Perfil de Humedad con el perfil 2 para momentos TM.
La figura muestra la humedad del suelo a través del Perfil 2, en los años con sensor TM para el estudio, representando una línea de tendencia polinomial. En este perfil, la humedad en el año 1990 comienza muy alta y luego disminuye considerablemente hasta el año 1996, a partir de éste vuelve a incrementarse hasta el 2007 y se mantiene hasta el 2010.

5.3.4 PERFILES DE MARCHITÉZ
Estos perfiles muestran el estado de la vegetación amarilla o en marchitez, a través de los momentos que corresponden a las imágenes de Landsat con sensor MSS. Estos perfiles se realizaron con un rango máximo, es decir, tomando los datos como independientes el uno del otro.

Figura 46: Perfil de Marchitez con el perfil 1 para momentos MSS.

Las figuras muestran la marchitez de la vegetación a través del Perfil 1 y perfil 2 en los años con sensor MSS para el estudio, representando una línea de tendencia lineal para el perfil 1 que se comporta de manera lineal creciente. En el perfil 2, se observa que para el año 1985 se encuentra en un punto crítico bajo al igual que en el año 1988 mientras que para el año 1986, es el punto más alto de marchitez.

Figura 47: Perfil de Marchitez con el perfil 2 para momentos MSS.
CONCLUSIONES

La implementación de técnicas de procesamiento digital de imágenes, constituyen una importante herramienta en el desarrollo de estudios multitemporales que impliquen el uso de imágenes satelitales como insumo principal, permitiendo derivar información útil en la determinación de magnitudes y tendencias de cambio en la superficie terrestre, como es el caso de las explotaciones a cielo abierto.

El análisis de los resultados obtenidos mediante el procesamiento digital de imágenes de satélite ha permitido reconocer las dinámicas de cambio en los frentes de explotación de la explotación minera a cielo abierto El Cerrejón.

La estimación de la tendencia de crecimiento de la actividad minera en los frentes Sur y Norte es exponencial, de acuerdo con las áreas registradas para cada momento del análisis, puesto que ha habido una constante explotación del mineral de carbón, que continua con mayor intensidad en la actualidad. Para el frente Centro por el contrario las áreas son cambiantes y el gráfico de evolución se comporta como una campana de Gauss, se asume que esto ocurre porque a través del tiempo hay momentos del análisis en los que la producción es alta y otros en el que la producción disminuye.

Las imágenes de radar Alospalsar, generan mayor certeza de las áreas de explotación y las áreas que ocupan vegetación; siendo éstas, de gran ayuda para delimitar los frentes del área de estudio.

La red vial ha cambiado a través de los años, a medida que las labores de preparación y desarrollo en cada frente han avanzado.

Los volúmenes excavados y calculados en éste estudio para el frente centro es de 868624289,451189 m³, para el frente sur de 739328695,3 m³ y para el frente norte de 799534260,86 m³. Datos que coinciden con la producción estimada en el planeamiento minero de la empresa.

En cuanto a los índices de vegetación (NDVI), de los momentos del análisis, estos muestran que a medida que avanzan los años; la vegetación cambia. En los años iniciales se evidencia que lo valores de la vegetación son mayores y estos van disminuyendo hasta el año final del análisis; con excepción de algunos momentos, donde la vegetación aumenta considerablemente (1988, 1997 y 1999), esto se debe al mayor aporte de agua y humedad en el terreno, asociado a las condiciones locales de precipitación.
RECOMENDACIONES

Recopilar imágenes para los intervalos de años faltantes en el estudio (2000 al 2006), que permitirían afinar las dinámicas de explotación identificadas.

Para un estudio posterior más detallado, se debería pensar en utilizar fotografías aéreas ortorectificadas, ya que estas ofrecen una resolución espacial más alta y a la vez, una aproximación en el análisis más preciso del que se deriva de las imágenes de satélite.

Un análisis más detallado, permitiría visualizar e identificar las labores de preparación al interior de cada frente como descapote, arranque y recuperación así como como vías y bermas entre otras.
BIBLIOGRAFÍA

EASMAN J. RONALD. IDRISI SELVA GUIA PARA SIG Y PROCESAMIENTO DE IMAGEN; EDITORIAL CLARK LABS, VERSION 17. 2012

Y, J. A. Sobrino, L. Morales, (2007). ANÁLISIS MULTITEMPORAL DE IMÁGENES PAL PARA EL ESTUDIO DE LA VEGETACIÓN EN SURAMÉRICA,

http://www2.jpl.nasa.gov/srtm/mission.htm
http://earthexplorer.usgs.gov
www.igac.gov.co
http://www.cmc.gov.co:8080/CmcFrontEnd/consulta/index.cmc
http://www.anm.gov.co/?q=agencia-vicepresidencias-contratacion-titulacion-catastro-registro-minero
http://www.cerrejon.com/site/
http://geoportal.sgc.gov.co/geoportalsgc/catalog/main/home.page
http://www.ingeominas.gov.co/
ANEXOS
Anexo 1: Mapa del Cálculo de Volumen excavado del frente Centro.

Fuente: Estudio.

Anexo 2: Calculo del volumen extraído del frente Centro.

<table>
<thead>
<tr>
<th>VOLUMEN POR PIXEL</th>
<th>NUMERO DE PIXELES</th>
<th>VOLUMEN TOTAL POR PIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>942,1281738</td>
<td>257</td>
<td>242126,9407</td>
</tr>
<tr>
<td>1.884,26</td>
<td>261</td>
<td>491790,9068</td>
</tr>
<tr>
<td>2.826,38</td>
<td>292</td>
<td>825304,2801</td>
</tr>
<tr>
<td>3.768,51</td>
<td>245</td>
<td>923285,6103</td>
</tr>
<tr>
<td>4.710,64</td>
<td>156</td>
<td>734860,0136</td>
</tr>
<tr>
<td>5.652,77</td>
<td>114</td>
<td>644415,6709</td>
</tr>
<tr>
<td>6.594,90</td>
<td>116</td>
<td>765008,1055</td>
</tr>
<tr>
<td>7.537,03</td>
<td>62</td>
<td>467295,5742</td>
</tr>
<tr>
<td>8.479,15</td>
<td>65</td>
<td>551144,9658</td>
</tr>
<tr>
<td>9.421,28</td>
<td>62</td>
<td>584119,4981</td>
</tr>
<tr>
<td>10.363,41</td>
<td>52</td>
<td>538897,3283</td>
</tr>
<tr>
<td>11.305,54</td>
<td>61</td>
<td>689637,8235</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>12.247,67</td>
<td>57</td>
<td>698116,9631</td>
</tr>
<tr>
<td>13.189,79</td>
<td>50</td>
<td>659489,746</td>
</tr>
<tr>
<td>14.131,92</td>
<td>59</td>
<td>833783,4482</td>
</tr>
<tr>
<td>15.074,05</td>
<td>51</td>
<td>768776,5898</td>
</tr>
<tr>
<td>16.016,18</td>
<td>53</td>
<td>848857,5236</td>
</tr>
<tr>
<td>16.958,31</td>
<td>46</td>
<td>780082,1054</td>
</tr>
<tr>
<td>17.900,44</td>
<td>64</td>
<td>1145627,875</td>
</tr>
<tr>
<td>18.842,56</td>
<td>96</td>
<td>1808886,187</td>
</tr>
<tr>
<td>19.784,69</td>
<td>82</td>
<td>1622344,696</td>
</tr>
<tr>
<td>20.726,82</td>
<td>67</td>
<td>1388696,961</td>
</tr>
<tr>
<td>21.668,95</td>
<td>68</td>
<td>1473488,547</td>
</tr>
<tr>
<td>22.611,08</td>
<td>74</td>
<td>1673219,637</td>
</tr>
<tr>
<td>23.553,21</td>
<td>83</td>
<td>1954916,022</td>
</tr>
<tr>
<td>24.495,33</td>
<td>75</td>
<td>1837149,902</td>
</tr>
<tr>
<td>25.437,46</td>
<td>63</td>
<td>1602560,039</td>
</tr>
<tr>
<td>26.379,59</td>
<td>73</td>
<td>1925710,058</td>
</tr>
<tr>
<td>27.321,72</td>
<td>70</td>
<td>1912520,176</td>
</tr>
<tr>
<td>28.263,85</td>
<td>62</td>
<td>1752358,433</td>
</tr>
<tr>
<td>29.205,97</td>
<td>76</td>
<td>2219654,07</td>
</tr>
<tr>
<td>30.148,10</td>
<td>79</td>
<td>2381700,023</td>
</tr>
<tr>
<td>31.090,23</td>
<td>91</td>
<td>2829210,973</td>
</tr>
<tr>
<td>32.032,36</td>
<td>90</td>
<td>2882912,344</td>
</tr>
<tr>
<td>32.974,49</td>
<td>86</td>
<td>2835805,992</td>
</tr>
<tr>
<td>33.916,61</td>
<td>80</td>
<td>2713329,062</td>
</tr>
<tr>
<td>34.858,74</td>
<td>86</td>
<td>2997851,828</td>
</tr>
<tr>
<td>35.800,87</td>
<td>69</td>
<td>2470260,105</td>
</tr>
<tr>
<td>36.743</td>
<td>74</td>
<td>2718982</td>
</tr>
<tr>
<td>37.685,13</td>
<td>41</td>
<td>1545090,285</td>
</tr>
<tr>
<td>38.627,25</td>
<td>66</td>
<td>2549398,758</td>
</tr>
<tr>
<td>39.569,38</td>
<td>66</td>
<td>2611579,265</td>
</tr>
<tr>
<td>40.511,51</td>
<td>65</td>
<td>2633248,262</td>
</tr>
<tr>
<td>41.453,64</td>
<td>61</td>
<td>2528672,078</td>
</tr>
<tr>
<td>42.395,77</td>
<td>74</td>
<td>3137286,945</td>
</tr>
<tr>
<td>43.337,90</td>
<td>76</td>
<td>3293680,281</td>
</tr>
<tr>
<td>44.280,02</td>
<td>70</td>
<td>3099601,641</td>
</tr>
<tr>
<td>45.222,15</td>
<td>66</td>
<td>2984662,054</td>
</tr>
<tr>
<td>46.164,28</td>
<td>72</td>
<td>3323828,25</td>
</tr>
<tr>
<td>47.106,41</td>
<td>52</td>
<td>2449533,328</td>
</tr>
<tr>
<td>48.048,54</td>
<td>66</td>
<td>3171203,578</td>
</tr>
<tr>
<td>48.990,66</td>
<td>64</td>
<td>3135402,5</td>
</tr>
<tr>
<td>49.932,79</td>
<td>75</td>
<td>3744959,473</td>
</tr>
<tr>
<td>50.874,92</td>
<td>52</td>
<td>2645495,938</td>
</tr>
<tr>
<td>51.817,05</td>
<td>64</td>
<td>3316291,25</td>
</tr>
<tr>
<td>52.759,18</td>
<td>53</td>
<td>2796236,524</td>
</tr>
<tr>
<td>53.701,31</td>
<td>65</td>
<td>3490585,058</td>
</tr>
<tr>
<td>54.643,43</td>
<td>57</td>
<td>3114675,175</td>
</tr>
<tr>
<td>55.585,56</td>
<td>58</td>
<td>3223962,625</td>
</tr>
<tr>
<td>56.527,69</td>
<td>42</td>
<td>2374163,039</td>
</tr>
<tr>
<td>57.469,82</td>
<td>51</td>
<td>2930960,836</td>
</tr>
<tr>
<td>58.411,95</td>
<td>39</td>
<td>2278066,02</td>
</tr>
<tr>
<td>59.354,07</td>
<td>52</td>
<td>3086411,859</td>
</tr>
<tr>
<td>60.296,20</td>
<td>65</td>
<td>3919253,203</td>
</tr>
<tr>
<td>61.238,33</td>
<td>58</td>
<td>3551823,58</td>
</tr>
<tr>
<td>62.180,46</td>
<td>46</td>
<td>2860301,203</td>
</tr>
<tr>
<td>63.122,59</td>
<td>57</td>
<td>3597987,621</td>
</tr>
<tr>
<td>64.064,72</td>
<td>53</td>
<td>3395430,094</td>
</tr>
<tr>
<td>65.006,84</td>
<td>64</td>
<td>4160438</td>
</tr>
<tr>
<td>65.948,98</td>
<td>72</td>
<td>4748326,312</td>
</tr>
<tr>
<td>66.891,10</td>
<td>65</td>
<td>4347921,601</td>
</tr>
<tr>
<td>67.833,23</td>
<td>61</td>
<td>4137826,82</td>
</tr>
<tr>
<td>68.775,36</td>
<td>54</td>
<td>3713869,407</td>
</tr>
<tr>
<td>69.717,48</td>
<td>56</td>
<td>3904179,125</td>
</tr>
<tr>
<td>70.659,62</td>
<td>58</td>
<td>4098257,797</td>
</tr>
<tr>
<td>71.601,74</td>
<td>76</td>
<td>5441732,406</td>
</tr>
<tr>
<td>72.543,87</td>
<td>87</td>
<td>6311316,446</td>
</tr>
<tr>
<td>73.486</td>
<td>80</td>
<td>5878880</td>
</tr>
<tr>
<td>74.428,13</td>
<td>82</td>
<td>6103106,25</td>
</tr>
<tr>
<td>75.370,26</td>
<td>85</td>
<td>6406471,914</td>
</tr>
<tr>
<td>76.312,38</td>
<td>83</td>
<td>6333927,773</td>
</tr>
<tr>
<td>77.254,51</td>
<td>75</td>
<td>5794088,086</td>
</tr>
<tr>
<td>78.196,64</td>
<td>84</td>
<td>6568517,813</td>
</tr>
<tr>
<td>79.138,77</td>
<td>69</td>
<td>5460574,828</td>
</tr>
<tr>
<td>80.080,90</td>
<td>74</td>
<td>5925986,485</td>
</tr>
<tr>
<td>81.023,02</td>
<td>73</td>
<td>5914680,711</td>
</tr>
<tr>
<td>81.965,16</td>
<td>86</td>
<td>7049003,438</td>
</tr>
<tr>
<td>82.907,28</td>
<td>92</td>
<td>7627469,875</td>
</tr>
<tr>
<td>83.849,41</td>
<td>55</td>
<td>4611717,344</td>
</tr>
<tr>
<td>84.791,54</td>
<td>55</td>
<td>4663534,648</td>
</tr>
<tr>
<td>85.733,66</td>
<td>47</td>
<td>4029482,211</td>
</tr>
<tr>
<td>86.675,80</td>
<td>61</td>
<td>5287223,61</td>
</tr>
<tr>
<td>87.617,92</td>
<td>72</td>
<td>6308490,375</td>
</tr>
<tr>
<td>88.560,05</td>
<td>57</td>
<td>5047922,672</td>
</tr>
<tr>
<td>VOLUMEN TOTAL POR FRENTE</td>
<td>87111511,9</td>
<td></td>
</tr>
</tbody>
</table>

Anexo 3: Mapa del Cálculo de Volumen Acumulado del frente Centro.
Anexo 4: Calculo del volumen Acumulado del frente Centro.

<table>
<thead>
<tr>
<th>VOLUMEN POR PIXEL</th>
<th>NUMERON DE PIXEL</th>
<th>VOLUMEN TOTAL POR PIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.826,38</td>
<td>1</td>
<td>2826,384521</td>
</tr>
<tr>
<td>5.652,77</td>
<td>2</td>
<td>11305,53809</td>
</tr>
<tr>
<td>6.594,90</td>
<td>2</td>
<td>13189,79492</td>
</tr>
<tr>
<td>7.537,03</td>
<td>2</td>
<td>15074,05078</td>
</tr>
<tr>
<td>8.479,15</td>
<td>1</td>
<td>8479,15332</td>
</tr>
<tr>
<td>9.421,28</td>
<td>2</td>
<td>18842,56445</td>
</tr>
<tr>
<td>10.363,41</td>
<td>2</td>
<td>20726,82032</td>
</tr>
<tr>
<td>11.305,54</td>
<td>2</td>
<td>22611,07618</td>
</tr>
<tr>
<td>12.247,67</td>
<td>3</td>
<td>36742,99806</td>
</tr>
<tr>
<td>13.189,79</td>
<td>3</td>
<td>39569,38476</td>
</tr>
<tr>
<td>14.131,92</td>
<td>3</td>
<td>42395,76855</td>
</tr>
<tr>
<td>15.074,05</td>
<td>3</td>
<td>45222,15234</td>
</tr>
<tr>
<td>16.016,18</td>
<td>3</td>
<td>48048,53907</td>
</tr>
<tr>
<td>16.958,31</td>
<td>1</td>
<td>16958,30664</td>
</tr>
<tr>
<td>17.900,44</td>
<td>3</td>
<td>53701,30665</td>
</tr>
<tr>
<td>18.842,56</td>
<td>3</td>
<td>56527,69335</td>
</tr>
<tr>
<td>19.784,69</td>
<td>5</td>
<td>98923,45705</td>
</tr>
<tr>
<td>20.726,82</td>
<td>10</td>
<td>207268,2031</td>
</tr>
<tr>
<td>21.668,95</td>
<td>4</td>
<td>86675,79688</td>
</tr>
<tr>
<td>22.611,08</td>
<td>6</td>
<td>135666,457</td>
</tr>
<tr>
<td>23.553,21</td>
<td>5</td>
<td>117766,0254</td>
</tr>
<tr>
<td>24.495,33</td>
<td>8</td>
<td>195962,6562</td>
</tr>
<tr>
<td>25.437,46</td>
<td>8</td>
<td>203499,6875</td>
</tr>
<tr>
<td>26.379,59</td>
<td>10</td>
<td>263795,8984</td>
</tr>
<tr>
<td>27.321,72</td>
<td>9</td>
<td>245895,4512</td>
</tr>
<tr>
<td>28.263,85</td>
<td>5</td>
<td>141319,2285</td>
</tr>
<tr>
<td>29.205,97</td>
<td>14</td>
<td>408883,6445</td>
</tr>
<tr>
<td>30.148,10</td>
<td>8</td>
<td>241184,8125</td>
</tr>
<tr>
<td>31.090,23</td>
<td>12</td>
<td>373082,7656</td>
</tr>
<tr>
<td>32.032,36</td>
<td>12</td>
<td>384388,3126</td>
</tr>
<tr>
<td>32.974,49</td>
<td>25</td>
<td>824362,207</td>
</tr>
<tr>
<td>33.916,61</td>
<td>14</td>
<td>474832,5859</td>
</tr>
<tr>
<td>34.858,74</td>
<td>29</td>
<td>1010903,524</td>
</tr>
<tr>
<td>35.800,87</td>
<td>15</td>
<td>537013,0664</td>
</tr>
<tr>
<td>36.743</td>
<td>22</td>
<td>808346</td>
</tr>
<tr>
<td>37.685,13</td>
<td>37</td>
<td>1394349,77</td>
</tr>
<tr>
<td>38.627,25</td>
<td>40</td>
<td>1545090,156</td>
</tr>
<tr>
<td>39.569,38</td>
<td>44</td>
<td>1741052,844</td>
</tr>
<tr>
<td>40.511,51</td>
<td>55</td>
<td>2228133,145</td>
</tr>
<tr>
<td>41.453,64</td>
<td>55</td>
<td>2279950,235</td>
</tr>
<tr>
<td>42.395,77</td>
<td>23</td>
<td>975102,6992</td>
</tr>
<tr>
<td>43.337,90</td>
<td>56</td>
<td>2426922,313</td>
</tr>
<tr>
<td>44.280,02</td>
<td>64</td>
<td>2833921,5</td>
</tr>
<tr>
<td>45.222,15</td>
<td>73</td>
<td>3301217,121</td>
</tr>
<tr>
<td>46.164,28</td>
<td>85</td>
<td>3923963,906</td>
</tr>
<tr>
<td>47.106,41</td>
<td>101</td>
<td>4757747,426</td>
</tr>
<tr>
<td>48.048,54</td>
<td>60</td>
<td>2882912,344</td>
</tr>
<tr>
<td>48.990,66</td>
<td>79</td>
<td>3870262,461</td>
</tr>
<tr>
<td>49.932,79</td>
<td>76</td>
<td>3794892,266</td>
</tr>
<tr>
<td>50.874,92</td>
<td>124</td>
<td>6308490,313</td>
</tr>
<tr>
<td>51.817,05</td>
<td>110</td>
<td>5699875,586</td>
</tr>
<tr>
<td>52.759,18</td>
<td>124</td>
<td>6542138,282</td>
</tr>
<tr>
<td>53.701,31</td>
<td>88</td>
<td>4725715,156</td>
</tr>
<tr>
<td>54.643,43</td>
<td>93</td>
<td>5081839,324</td>
</tr>
<tr>
<td>55.585,56</td>
<td>112</td>
<td>6225583</td>
</tr>
<tr>
<td>56.527,69</td>
<td>142</td>
<td>8026932,18</td>
</tr>
<tr>
<td>57.469,82</td>
<td>132</td>
<td>7586016,281</td>
</tr>
<tr>
<td>58.411,95</td>
<td>130</td>
<td>7593553,399</td>
</tr>
<tr>
<td>59.354,07</td>
<td>152</td>
<td>9021819,281</td>
</tr>
<tr>
<td>60.296,20</td>
<td>71</td>
<td>4281030,422</td>
</tr>
<tr>
<td>61.238,33</td>
<td>145</td>
<td>8879558,144</td>
</tr>
<tr>
<td>62.180,46</td>
<td>154</td>
<td>9575790,985</td>
</tr>
<tr>
<td>63.122,59</td>
<td>160</td>
<td>10099614,37</td>
</tr>
<tr>
<td>64.064,72</td>
<td>148</td>
<td>9481578,375</td>
</tr>
<tr>
<td>65.006,84</td>
<td>187</td>
<td>12156279,78</td>
</tr>
<tr>
<td>65.948,98</td>
<td>169</td>
<td>11145377,04</td>
</tr>
<tr>
<td>66.891,10</td>
<td>69</td>
<td>4615486,008</td>
</tr>
<tr>
<td>67.833,23</td>
<td>121</td>
<td>8207820,414</td>
</tr>
<tr>
<td>68.775,36</td>
<td>164</td>
<td>11279158,94</td>
</tr>
<tr>
<td>69.717,48</td>
<td>177</td>
<td>12339994,74</td>
</tr>
<tr>
<td>70.659,62</td>
<td>154</td>
<td>10881581,05</td>
</tr>
<tr>
<td>71.601,74</td>
<td>141</td>
<td>10095845,65</td>
</tr>
<tr>
<td>72.543,87</td>
<td>146</td>
<td>10591404,61</td>
</tr>
<tr>
<td>73.486</td>
<td>95</td>
<td>6981170</td>
</tr>
<tr>
<td>74.428,13</td>
<td>139</td>
<td>10345509,38</td>
</tr>
<tr>
<td>75.370,26</td>
<td>172</td>
<td>12963684,34</td>
</tr>
<tr>
<td>76.312,38</td>
<td>134</td>
<td>10225859,3</td>
</tr>
<tr>
<td>Value</td>
<td>Row</td>
<td>Column</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>77.254,51</td>
<td>167</td>
<td>12901502,8</td>
</tr>
<tr>
<td>78.196,64</td>
<td>165</td>
<td>12902445,7</td>
</tr>
<tr>
<td>79.138,77</td>
<td>172</td>
<td>13611867,69</td>
</tr>
<tr>
<td>80.080,90</td>
<td>187</td>
<td>14975128,01</td>
</tr>
<tr>
<td>81.023,02</td>
<td>148</td>
<td>11991407,47</td>
</tr>
<tr>
<td>81.965,16</td>
<td>115</td>
<td>9425992,969</td>
</tr>
<tr>
<td>82.907,28</td>
<td>181</td>
<td>15006217,91</td>
</tr>
<tr>
<td>83.849,41</td>
<td>175</td>
<td>14673646,09</td>
</tr>
<tr>
<td>84.791,54</td>
<td>204</td>
<td>17297473,97</td>
</tr>
<tr>
<td>85.733,66</td>
<td>215</td>
<td>18375268,94</td>
</tr>
<tr>
<td>86.675,80</td>
<td>212</td>
<td>17874056,06</td>
</tr>
<tr>
<td>87.617,92</td>
<td>204</td>
<td>23025612,19</td>
</tr>
<tr>
<td>88.560,05</td>
<td>260</td>
<td>26224138,65</td>
</tr>
<tr>
<td>90.444,30</td>
<td>374</td>
<td>33826169,95</td>
</tr>
<tr>
<td>91.386,44</td>
<td>454</td>
<td>41489442,63</td>
</tr>
<tr>
<td>92.328,56</td>
<td>200</td>
<td>18465712,5</td>
</tr>
<tr>
<td>93.270,69</td>
<td>548</td>
<td>51112336,75</td>
</tr>
<tr>
<td>94.212,82</td>
<td>782</td>
<td>73674425,48</td>
</tr>
<tr>
<td>95.154,95</td>
<td>1113</td>
<td>105907454,1</td>
</tr>
<tr>
<td>96.097,08</td>
<td>1404</td>
<td>134920297,7</td>
</tr>
<tr>
<td>97.039,20</td>
<td>1698</td>
<td>164772566,9</td>
</tr>
<tr>
<td>97.981,33</td>
<td>1863</td>
<td>182539214,3</td>
</tr>
<tr>
<td>98.923,46</td>
<td>1731</td>
<td>171236510,9</td>
</tr>
<tr>
<td>99.865,59</td>
<td>1536</td>
<td>153393540</td>
</tr>
<tr>
<td>100.807,72</td>
<td>1104</td>
<td>111291721,6</td>
</tr>
<tr>
<td>101.749,84</td>
<td>809</td>
<td>82315623,63</td>
</tr>
<tr>
<td>102.691,97</td>
<td>537</td>
<td>55145587,25</td>
</tr>
<tr>
<td>103.634,10</td>
<td>335</td>
<td>34717424,04</td>
</tr>
<tr>
<td>104.576,23</td>
<td>214</td>
<td>22379312,49</td>
</tr>
<tr>
<td>105.518,36</td>
<td>221</td>
<td>23319557,43</td>
</tr>
<tr>
<td>106.460,48</td>
<td>149</td>
<td>15862612,18</td>
</tr>
<tr>
<td>107.402,62</td>
<td>140</td>
<td>15036366,41</td>
</tr>
<tr>
<td>108.344,74</td>
<td>134</td>
<td>14518195,45</td>
</tr>
<tr>
<td>109.286,87</td>
<td>99</td>
<td>10819399,85</td>
</tr>
<tr>
<td>110.229</td>
<td>93</td>
<td>10251297</td>
</tr>
<tr>
<td>111.171,13</td>
<td>79</td>
<td>8782518,875</td>
</tr>
<tr>
<td>112.113,26</td>
<td>87</td>
<td>9753853,429</td>
</tr>
<tr>
<td>113.055,38</td>
<td>86</td>
<td>9722762,921</td>
</tr>
<tr>
<td>113.997,51</td>
<td>87</td>
<td>9917783,179</td>
</tr>
<tr>
<td>114.939,64</td>
<td>58</td>
<td>6666499,155</td>
</tr>
<tr>
<td>VOLUMEN TOTAL</td>
<td>Fuente: Estudio.</td>
<td>2296506232</td>
</tr>
</tbody>
</table>
Anexo 5: Mapa del Cálculo de Volumen Extraído del frente Sur.

Anexo 6: Calculo del volumen Extraído del frente Sur.

<table>
<thead>
<tr>
<th>VOLUMEN POR PIXEL</th>
<th>NUMERO PIXELES</th>
<th>VOLUMEN TOTAL POR PIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>134.724,33</td>
<td>78</td>
<td>10508497,59</td>
</tr>
<tr>
<td>133.782,20</td>
<td>146</td>
<td>19532201,65</td>
</tr>
<tr>
<td>132.840,08</td>
<td>118</td>
<td>15675129,22</td>
</tr>
<tr>
<td>131.897,95</td>
<td>125</td>
<td>16487244,14</td>
</tr>
<tr>
<td>130.955,82</td>
<td>200</td>
<td>26191164,06</td>
</tr>
<tr>
<td>130.013,69</td>
<td>191</td>
<td>24832614,31</td>
</tr>
<tr>
<td>129.071,56</td>
<td>144</td>
<td>18586305</td>
</tr>
<tr>
<td>128.129,44</td>
<td>111</td>
<td>14222367,56</td>
</tr>
<tr>
<td>127.187,30</td>
<td>79</td>
<td>10047797,07</td>
</tr>
<tr>
<td>126.245,18</td>
<td>86</td>
<td>10857085,45</td>
</tr>
<tr>
<td>125.303,05</td>
<td>76</td>
<td>9523031,564</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>124.360,92</td>
<td>105</td>
<td>13057896,8</td>
</tr>
<tr>
<td>123.418,79</td>
<td>97</td>
<td>11971622,54</td>
</tr>
<tr>
<td>122.476,66</td>
<td>82</td>
<td>10043086,46</td>
</tr>
<tr>
<td>121.534,54</td>
<td>80</td>
<td>9722763,128</td>
</tr>
<tr>
<td>120.592,41</td>
<td>50</td>
<td>6029620,315</td>
</tr>
<tr>
<td>119.650,28</td>
<td>63</td>
<td>7537967,722</td>
</tr>
<tr>
<td>118.708,15</td>
<td>73</td>
<td>8665694,833</td>
</tr>
<tr>
<td>117.766,02</td>
<td>68</td>
<td>8008089,591</td>
</tr>
<tr>
<td>116.823,90</td>
<td>64</td>
<td>7476729,498</td>
</tr>
<tr>
<td>115.881,77</td>
<td>82</td>
<td>9502304,779</td>
</tr>
<tr>
<td>114.939,64</td>
<td>51</td>
<td>5861921,671</td>
</tr>
<tr>
<td>113.997,51</td>
<td>67</td>
<td>7637833,023</td>
</tr>
<tr>
<td>113.055,38</td>
<td>83</td>
<td>9383596,772</td>
</tr>
<tr>
<td>112.113,26</td>
<td>52</td>
<td>5829889,406</td>
</tr>
<tr>
<td>111.171,13</td>
<td>76</td>
<td>8449005,5</td>
</tr>
<tr>
<td>110.229</td>
<td>75</td>
<td>8267175</td>
</tr>
<tr>
<td>109.286,87</td>
<td>67</td>
<td>7322220,102</td>
</tr>
<tr>
<td>108.344,74</td>
<td>63</td>
<td>6825718,759</td>
</tr>
<tr>
<td>107.402,62</td>
<td>71</td>
<td>7625585,821</td>
</tr>
<tr>
<td>106.460,48</td>
<td>72</td>
<td>7665154,877</td>
</tr>
<tr>
<td>105.518,36</td>
<td>75</td>
<td>7913876,955</td>
</tr>
<tr>
<td>104.576,23</td>
<td>70</td>
<td>7320335,862</td>
</tr>
<tr>
<td>103.634,10</td>
<td>62</td>
<td>6425314,299</td>
</tr>
<tr>
<td>102.691,97</td>
<td>67</td>
<td>6880361,9</td>
</tr>
<tr>
<td>101.749,84</td>
<td>73</td>
<td>7427738,597</td>
</tr>
<tr>
<td>100.807,72</td>
<td>72</td>
<td>7258155,754</td>
</tr>
<tr>
<td>99.865,59</td>
<td>68</td>
<td>6790859,844</td>
</tr>
<tr>
<td>98.923,46</td>
<td>76</td>
<td>7518183,031</td>
</tr>
<tr>
<td>97.981,33</td>
<td>57</td>
<td>5584935,703</td>
</tr>
<tr>
<td>97.039,20</td>
<td>92</td>
<td>8927606,688</td>
</tr>
<tr>
<td>96.097,08</td>
<td>72</td>
<td>6918989,625</td>
</tr>
<tr>
<td>95.154,95</td>
<td>91</td>
<td>8659100,023</td>
</tr>
<tr>
<td>94.212,82</td>
<td>75</td>
<td>7065961,523</td>
</tr>
<tr>
<td>93.270,69</td>
<td>86</td>
<td>8021279,125</td>
</tr>
<tr>
<td>92.328,56</td>
<td>78</td>
<td>7201627,875</td>
</tr>
<tr>
<td>91.386,44</td>
<td>88</td>
<td>8042006,5</td>
</tr>
<tr>
<td>90.444,30</td>
<td>89</td>
<td>8049543,117</td>
</tr>
<tr>
<td>89.502,18</td>
<td>83</td>
<td>7428680,914</td>
</tr>
<tr>
<td>88.560,05</td>
<td>92</td>
<td>8147524,313</td>
</tr>
<tr>
<td>87.617,92</td>
<td>211</td>
<td>18487381,52</td>
</tr>
<tr>
<td>86.675,80</td>
<td>136</td>
<td>11787908,38</td>
</tr>
<tr>
<td>Value</td>
<td>Count</td>
<td>Result</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>85.733,66</td>
<td>99</td>
<td>8487632,742</td>
</tr>
<tr>
<td>84.791,54</td>
<td>97</td>
<td>8224779,289</td>
</tr>
<tr>
<td>83.849,41</td>
<td>95</td>
<td>7965693,594</td>
</tr>
<tr>
<td>82.907,28</td>
<td>84</td>
<td>6964211,625</td>
</tr>
<tr>
<td>81.965,16</td>
<td>78</td>
<td>6393282,188</td>
</tr>
<tr>
<td>81.023,02</td>
<td>81</td>
<td>6562864,899</td>
</tr>
<tr>
<td>80.080,90</td>
<td>70</td>
<td>5605662,891</td>
</tr>
<tr>
<td>79.138,77</td>
<td>73</td>
<td>5777129,891</td>
</tr>
<tr>
<td>78.196,64</td>
<td>75</td>
<td>5864748,047</td>
</tr>
<tr>
<td>77.254,51</td>
<td>85</td>
<td>6566633,164</td>
</tr>
<tr>
<td>76.312,38</td>
<td>72</td>
<td>5494491,562</td>
</tr>
<tr>
<td>75.370,26</td>
<td>59</td>
<td>4446845,211</td>
</tr>
<tr>
<td>74.428,13</td>
<td>45</td>
<td>3349265,625</td>
</tr>
<tr>
<td>73.486</td>
<td>58</td>
<td>4262188</td>
</tr>
<tr>
<td>72.543,87</td>
<td>45</td>
<td>3264474,024</td>
</tr>
<tr>
<td>71.601,74</td>
<td>53</td>
<td>3794892,336</td>
</tr>
<tr>
<td>70.659,62</td>
<td>41</td>
<td>2897044,305</td>
</tr>
<tr>
<td>69.717,48</td>
<td>43</td>
<td>2997851,828</td>
</tr>
<tr>
<td>68.775,36</td>
<td>51</td>
<td>3507543,328</td>
</tr>
<tr>
<td>67.833,23</td>
<td>38</td>
<td>2577662,609</td>
</tr>
<tr>
<td>66.891,10</td>
<td>40</td>
<td>2675644,062</td>
</tr>
<tr>
<td>65.948,98</td>
<td>45</td>
<td>2967703,945</td>
</tr>
<tr>
<td>65.006,84</td>
<td>56</td>
<td>3640383,25</td>
</tr>
<tr>
<td>64.064,72</td>
<td>40</td>
<td>2562588,75</td>
</tr>
<tr>
<td>63.122,59</td>
<td>50</td>
<td>3156129,492</td>
</tr>
<tr>
<td>62.180,46</td>
<td>56</td>
<td>3482105,813</td>
</tr>
<tr>
<td>61.238,33</td>
<td>43</td>
<td>2633248,277</td>
</tr>
<tr>
<td>60.296,20</td>
<td>50</td>
<td>3014810,157</td>
</tr>
<tr>
<td>59.354,07</td>
<td>55</td>
<td>3264474,082</td>
</tr>
<tr>
<td>58.411,95</td>
<td>49</td>
<td>2862185,512</td>
</tr>
<tr>
<td>57.469,82</td>
<td>50</td>
<td>2873491,016</td>
</tr>
<tr>
<td>56.527,69</td>
<td>43</td>
<td>2430690,731</td>
</tr>
<tr>
<td>55.585,56</td>
<td>48</td>
<td>2668107</td>
</tr>
<tr>
<td>54.643,43</td>
<td>46</td>
<td>2513597,945</td>
</tr>
<tr>
<td>53.701,31</td>
<td>46</td>
<td>2470260,195</td>
</tr>
<tr>
<td>52.759,18</td>
<td>55</td>
<td>2901754,883</td>
</tr>
<tr>
<td>51.817,05</td>
<td>81</td>
<td>4197181,113</td>
</tr>
<tr>
<td>50.874,92</td>
<td>67</td>
<td>3408619,766</td>
</tr>
<tr>
<td>49.932,79</td>
<td>56</td>
<td>2796236,406</td>
</tr>
<tr>
<td>48.990,66</td>
<td>68</td>
<td>3331365,156</td>
</tr>
<tr>
<td>48.048,54</td>
<td>61</td>
<td>2930960,883</td>
</tr>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>47.106,41</td>
<td>64</td>
<td>3014810,25</td>
</tr>
<tr>
<td>46.164,28</td>
<td>60</td>
<td>2769856,875</td>
</tr>
<tr>
<td>45.222,15</td>
<td>55</td>
<td>2487218,379</td>
</tr>
<tr>
<td>44.280,02</td>
<td>46</td>
<td>2036881,078</td>
</tr>
<tr>
<td>43.337,90</td>
<td>47</td>
<td>2036881,227</td>
</tr>
<tr>
<td>42.395,77</td>
<td>57</td>
<td>2416558,863</td>
</tr>
<tr>
<td>41.453,64</td>
<td>57</td>
<td>2362857,516</td>
</tr>
<tr>
<td>40.511,51</td>
<td>82</td>
<td>3321943,961</td>
</tr>
<tr>
<td>39.569,38</td>
<td>98</td>
<td>3877799,515</td>
</tr>
<tr>
<td>38.627,25</td>
<td>62</td>
<td>2394889,742</td>
</tr>
<tr>
<td>37.685,13</td>
<td>62</td>
<td>2336477,992</td>
</tr>
<tr>
<td>36.743</td>
<td>55</td>
<td>2020865</td>
</tr>
<tr>
<td>35.800,87</td>
<td>51</td>
<td>1825844,426</td>
</tr>
<tr>
<td>34.858,74</td>
<td>57</td>
<td>1986948,305</td>
</tr>
<tr>
<td>33.916,61</td>
<td>60</td>
<td>2034996,797</td>
</tr>
<tr>
<td>32.974,49</td>
<td>44</td>
<td>1450877,484</td>
</tr>
<tr>
<td>32.032,36</td>
<td>42</td>
<td>134539,094</td>
</tr>
<tr>
<td>31.090,23</td>
<td>45</td>
<td>1399060,371</td>
</tr>
<tr>
<td>30.148,10</td>
<td>63</td>
<td>1899330,398</td>
</tr>
<tr>
<td>29.205,97</td>
<td>61</td>
<td>1781564,451</td>
</tr>
<tr>
<td>28.263,85</td>
<td>53</td>
<td>1497983,822</td>
</tr>
<tr>
<td>27.321,72</td>
<td>54</td>
<td>1475372,707</td>
</tr>
<tr>
<td>26.379,59</td>
<td>47</td>
<td>1239840,722</td>
</tr>
<tr>
<td>25.437,46</td>
<td>42</td>
<td>1068373,359</td>
</tr>
<tr>
<td>24.495,33</td>
<td>37</td>
<td>906327,2851</td>
</tr>
<tr>
<td>23.553,21</td>
<td>27</td>
<td>635936,5372</td>
</tr>
<tr>
<td>22.611,08</td>
<td>27</td>
<td>610499,0566</td>
</tr>
<tr>
<td>21.668,95</td>
<td>24</td>
<td>520054,7813</td>
</tr>
<tr>
<td>20.726,82</td>
<td>32</td>
<td>663258,2499</td>
</tr>
<tr>
<td>19.784,69</td>
<td>37</td>
<td>732033,5822</td>
</tr>
<tr>
<td>18.842,56</td>
<td>39</td>
<td>734860,0136</td>
</tr>
<tr>
<td>17.900,44</td>
<td>52</td>
<td>930822,6486</td>
</tr>
<tr>
<td>16.958,31</td>
<td>41</td>
<td>695290,5722</td>
</tr>
<tr>
<td>16.016,18</td>
<td>39</td>
<td>624631,0079</td>
</tr>
<tr>
<td>15.074,05</td>
<td>37</td>
<td>557739,8789</td>
</tr>
<tr>
<td>14.131,92</td>
<td>17</td>
<td>240242,6885</td>
</tr>
<tr>
<td>13.189,79</td>
<td>16</td>
<td>211036,7187</td>
</tr>
<tr>
<td>12.247,67</td>
<td>14</td>
<td>171467,3243</td>
</tr>
<tr>
<td>11.305,54</td>
<td>9</td>
<td>101749,8428</td>
</tr>
<tr>
<td>10.363,41</td>
<td>6</td>
<td>62180,46096</td>
</tr>
<tr>
<td>9.421,28</td>
<td>1</td>
<td>9421,282227</td>
</tr>
<tr>
<td>VOLUMEN POR PIXEL</td>
<td>NUMERO PIXEL</td>
<td>VOLUMEN TOTAL POR PIXEL</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>7.537,03</td>
<td>2</td>
<td>15074,05078</td>
</tr>
<tr>
<td>6.594,90</td>
<td>3</td>
<td>19784,69238</td>
</tr>
<tr>
<td>3.768,51</td>
<td>1</td>
<td>3768,512695</td>
</tr>
<tr>
<td>2.826,38</td>
<td>3</td>
<td>8479,153563</td>
</tr>
<tr>
<td>1.884,26</td>
<td>1</td>
<td>1884,256348</td>
</tr>
<tr>
<td>942,1281738</td>
<td>3</td>
<td>2826,384521</td>
</tr>
<tr>
<td>VOLUMEN TOTAL</td>
<td>74153082,7</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Estudio.

Anexo 7: Mapa del Cálculo de Volumen Acumulado del frente Sur.

Fuente: Estudio.

Anexo 8: Cálculo del volumen Acumulado del frente Sur.

<table>
<thead>
<tr>
<th>VOLUMEN POR PIXEL</th>
<th>NUMERO PIXEL</th>
<th>VOLUMEN TOTAL POR PIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.673,30</td>
<td>1</td>
<td>200673,2969</td>
</tr>
<tr>
<td>199.731,17</td>
<td>1</td>
<td>199731,1719</td>
</tr>
<tr>
<td>197.846,92</td>
<td>2</td>
<td>395693,8438</td>
</tr>
<tr>
<td>196.904,80</td>
<td>1</td>
<td>196904,7969</td>
</tr>
<tr>
<td>Value</td>
<td>Count</td>
<td>Result</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>195.962,66</td>
<td>1</td>
<td>195962,6563</td>
</tr>
<tr>
<td>195.020,53</td>
<td>1</td>
<td>195020,5313</td>
</tr>
<tr>
<td>194.078,41</td>
<td>2</td>
<td>388156,8126</td>
</tr>
<tr>
<td>193.136,28</td>
<td>6</td>
<td>1158817,688</td>
</tr>
<tr>
<td>192.194,16</td>
<td>7</td>
<td>1345359,094</td>
</tr>
<tr>
<td>191.252,02</td>
<td>9</td>
<td>1721268,14</td>
</tr>
<tr>
<td>190.309,89</td>
<td>18</td>
<td>3425578,031</td>
</tr>
<tr>
<td>189.367,77</td>
<td>18</td>
<td>3408619,781</td>
</tr>
<tr>
<td>188.425,64</td>
<td>21</td>
<td>3956938,453</td>
</tr>
<tr>
<td>187.483,52</td>
<td>16</td>
<td>2999736,25</td>
</tr>
<tr>
<td>186.541,38</td>
<td>30</td>
<td>5596241,25</td>
</tr>
<tr>
<td>185.599,25</td>
<td>29</td>
<td>5382378,25</td>
</tr>
<tr>
<td>184.657,13</td>
<td>39</td>
<td>7201627,875</td>
</tr>
<tr>
<td>183.715,00</td>
<td>38</td>
<td>6981170</td>
</tr>
<tr>
<td>182.773</td>
<td>42</td>
<td>7676460,75</td>
</tr>
<tr>
<td>181.830,73</td>
<td>53</td>
<td>9637028,923</td>
</tr>
<tr>
<td>180.888,61</td>
<td>50</td>
<td>9044430,47</td>
</tr>
<tr>
<td>179.946,48</td>
<td>73,00</td>
<td>13136093,36</td>
</tr>
<tr>
<td>179.004,36</td>
<td>67,00</td>
<td>11993292,08</td>
</tr>
<tr>
<td>178.062,23</td>
<td>78</td>
<td>13888854,28</td>
</tr>
<tr>
<td>177.120,09</td>
<td>87</td>
<td>15409448,16</td>
</tr>
<tr>
<td>176.177,97</td>
<td>85</td>
<td>14975127,35</td>
</tr>
<tr>
<td>175.235,84</td>
<td>99</td>
<td>17348348,54</td>
</tr>
<tr>
<td>174.293,72</td>
<td>103</td>
<td>17952253,04</td>
</tr>
<tr>
<td>173.351,59</td>
<td>109</td>
<td>18895323,72</td>
</tr>
<tr>
<td>172.409,45</td>
<td>120</td>
<td>20689134,37</td>
</tr>
<tr>
<td>171.467,33</td>
<td>123</td>
<td>21090481,36</td>
</tr>
<tr>
<td>170.525,20</td>
<td>138</td>
<td>23532478,03</td>
</tr>
<tr>
<td>169.583,08</td>
<td>163</td>
<td>27642041,73</td>
</tr>
<tr>
<td>168.640,95</td>
<td>135</td>
<td>22766528,67</td>
</tr>
<tr>
<td>167.698,81</td>
<td>164</td>
<td>27502605,25</td>
</tr>
<tr>
<td>166.756,69</td>
<td>159</td>
<td>26514313,31</td>
</tr>
<tr>
<td>165.814,56</td>
<td>178</td>
<td>29514992,13</td>
</tr>
<tr>
<td>164.872,44</td>
<td>188</td>
<td>30996018,25</td>
</tr>
<tr>
<td>163.930,31</td>
<td>188</td>
<td>30818889,75</td>
</tr>
<tr>
<td>162.988,17</td>
<td>181</td>
<td>29500859,11</td>
</tr>
<tr>
<td>162.046,05</td>
<td>177</td>
<td>28682150,3</td>
</tr>
<tr>
<td>161.103,92</td>
<td>159</td>
<td>25615523,58</td>
</tr>
<tr>
<td>160.161,80</td>
<td>201</td>
<td>32192521,18</td>
</tr>
<tr>
<td>159.219,66</td>
<td>168</td>
<td>26748902,26</td>
</tr>
<tr>
<td>158.277,53</td>
<td>182</td>
<td>28806510,7</td>
</tr>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>157.335,41</td>
<td>188</td>
<td>29579056,38</td>
</tr>
<tr>
<td>156.393,28</td>
<td>187</td>
<td>29245543,6</td>
</tr>
<tr>
<td>155.451,16</td>
<td>226</td>
<td>35131961,32</td>
</tr>
<tr>
<td>154.509,02</td>
<td>188</td>
<td>29047694,93</td>
</tr>
<tr>
<td>153.566,89</td>
<td>157</td>
<td>24110001,82</td>
</tr>
<tr>
<td>152.624,77</td>
<td>168</td>
<td>25640960,62</td>
</tr>
<tr>
<td>151.682,64</td>
<td>156</td>
<td>23662491,93</td>
</tr>
<tr>
<td>150.740,52</td>
<td>151</td>
<td>22761817,86</td>
</tr>
<tr>
<td>149.798,38</td>
<td>173</td>
<td>25915118,88</td>
</tr>
<tr>
<td>148.856,25</td>
<td>197</td>
<td>29324681,25</td>
</tr>
<tr>
<td>147.914,13</td>
<td>182</td>
<td>26920370,75</td>
</tr>
<tr>
<td>146.972,00</td>
<td>154</td>
<td>22633688</td>
</tr>
<tr>
<td>146.030</td>
<td>148</td>
<td>21612421,5</td>
</tr>
<tr>
<td>145.087,73</td>
<td>167</td>
<td>24229651,64</td>
</tr>
<tr>
<td>144.145,61</td>
<td>198</td>
<td>28540830,66</td>
</tr>
<tr>
<td>143.203,48</td>
<td>166</td>
<td>23771778,41</td>
</tr>
<tr>
<td>142.261,36</td>
<td>172</td>
<td>24468953,82</td>
</tr>
<tr>
<td>141.319,23</td>
<td>182</td>
<td>25720100,66</td>
</tr>
<tr>
<td>140.377,09</td>
<td>186</td>
<td>26110139,45</td>
</tr>
<tr>
<td>139.434,97</td>
<td>192</td>
<td>26771514,01</td>
</tr>
<tr>
<td>138.492,84</td>
<td>223</td>
<td>30883904,17</td>
</tr>
<tr>
<td>137.550,72</td>
<td>254</td>
<td>34937882,58</td>
</tr>
<tr>
<td>136.608,59</td>
<td>309</td>
<td>42212055,48</td>
</tr>
<tr>
<td>135.666,45</td>
<td>432</td>
<td>58607907,74</td>
</tr>
<tr>
<td>134.724,33</td>
<td>576</td>
<td>77601212,99</td>
</tr>
<tr>
<td>133.782,20</td>
<td>674</td>
<td>90169204,89</td>
</tr>
<tr>
<td>132.840,08</td>
<td>872</td>
<td>115836548,1</td>
</tr>
<tr>
<td>131.897,95</td>
<td>527</td>
<td>69510221,28</td>
</tr>
<tr>
<td>130.955,82</td>
<td>378,00</td>
<td>49501300,07</td>
</tr>
<tr>
<td>130.013,69</td>
<td>294</td>
<td>38224024,13</td>
</tr>
<tr>
<td>129.071,56</td>
<td>199</td>
<td>25685240,94</td>
</tr>
<tr>
<td>128.129,44</td>
<td>156</td>
<td>19988192,25</td>
</tr>
<tr>
<td>127.187,30</td>
<td>93</td>
<td>11828419,34</td>
</tr>
<tr>
<td>126.245,18</td>
<td>122</td>
<td>15401911,92</td>
</tr>
<tr>
<td>125.303,05</td>
<td>96</td>
<td>12029092,5</td>
</tr>
<tr>
<td>124.360,92</td>
<td>102</td>
<td>12684814,03</td>
</tr>
<tr>
<td>123.418,79</td>
<td>83</td>
<td>10243759,5</td>
</tr>
<tr>
<td>122.476,66</td>
<td>86</td>
<td>10532993,11</td>
</tr>
<tr>
<td>121.534,54</td>
<td>73</td>
<td>8872021,354</td>
</tr>
<tr>
<td>120.592,41</td>
<td>84</td>
<td>10129762,13</td>
</tr>
<tr>
<td>119.650,28</td>
<td>90</td>
<td>10768525,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>118.708,15</td>
<td>81</td>
<td>9615360,02</td>
</tr>
<tr>
<td>117.766,02</td>
<td>73</td>
<td>8596919,708</td>
</tr>
<tr>
<td>116.823,90</td>
<td>65</td>
<td>7593553,396</td>
</tr>
<tr>
<td>115.881,77</td>
<td>79</td>
<td>9154659,482</td>
</tr>
<tr>
<td>114.939,64</td>
<td>68</td>
<td>7815895,561</td>
</tr>
<tr>
<td>113.997,51</td>
<td>73</td>
<td>8321818,069</td>
</tr>
<tr>
<td>113.055,38</td>
<td>82</td>
<td>9270541,39</td>
</tr>
<tr>
<td>112.113,26</td>
<td>85</td>
<td>9529626,913</td>
</tr>
<tr>
<td>111.171,13</td>
<td>72</td>
<td>8004321</td>
</tr>
<tr>
<td>110.229,00</td>
<td>58</td>
<td>6393282</td>
</tr>
<tr>
<td>109.287</td>
<td>54</td>
<td>5901490,829</td>
</tr>
<tr>
<td>108.344,74</td>
<td>61</td>
<td>6609029,274</td>
</tr>
<tr>
<td>107.402,62</td>
<td>62</td>
<td>6658962,266</td>
</tr>
<tr>
<td>106.460,48</td>
<td>63</td>
<td>6707010,517</td>
</tr>
<tr>
<td>105.518,36</td>
<td>56</td>
<td>5909028,126</td>
</tr>
<tr>
<td>104.576,23</td>
<td>53</td>
<td>5542540,01</td>
</tr>
<tr>
<td>103.634,10</td>
<td>67</td>
<td>6943484,807</td>
</tr>
<tr>
<td>102.691,97</td>
<td>37</td>
<td>3799602,846</td>
</tr>
<tr>
<td>101.749,84</td>
<td>42</td>
<td>4273493,44</td>
</tr>
<tr>
<td>100.807,72</td>
<td>45</td>
<td>4536347,346</td>
</tr>
<tr>
<td>99.865,59</td>
<td>54</td>
<td>5392741,641</td>
</tr>
<tr>
<td>98.923,46</td>
<td>41</td>
<td>4055861,899</td>
</tr>
<tr>
<td>97.981,33</td>
<td>34</td>
<td>3331365,156</td>
</tr>
<tr>
<td>97.039,20</td>
<td>31</td>
<td>3008215,297</td>
</tr>
<tr>
<td>96.097,08</td>
<td>43</td>
<td>4132174,36</td>
</tr>
<tr>
<td>95.154,95</td>
<td>37</td>
<td>3520732,976</td>
</tr>
<tr>
<td>94.212,82</td>
<td>39</td>
<td>3674299,992</td>
</tr>
<tr>
<td>93.270,69</td>
<td>33</td>
<td>3077932,688</td>
</tr>
<tr>
<td>92.328,56</td>
<td>45</td>
<td>4154785,313</td>
</tr>
<tr>
<td>91.386,44</td>
<td>43</td>
<td>3929616,813</td>
</tr>
<tr>
<td>90.444,30</td>
<td>35</td>
<td>3165550,664</td>
</tr>
<tr>
<td>89.502,18</td>
<td>29</td>
<td>2595563,211</td>
</tr>
<tr>
<td>88.560,05</td>
<td>30</td>
<td>2656801,406</td>
</tr>
<tr>
<td>87.617,92</td>
<td>24</td>
<td>2102830,125</td>
</tr>
<tr>
<td>86.675,80</td>
<td>28</td>
<td>2426922,313</td>
</tr>
<tr>
<td>85.733,66</td>
<td>28</td>
<td>2400542,594</td>
</tr>
<tr>
<td>84.791,54</td>
<td>26</td>
<td>2204580,016</td>
</tr>
<tr>
<td>83.849,41</td>
<td>23</td>
<td>1928536,344</td>
</tr>
<tr>
<td>82.907,28</td>
<td>14</td>
<td>1160701,938</td>
</tr>
<tr>
<td>81.965,16</td>
<td>38</td>
<td>3114675,938</td>
</tr>
<tr>
<td>81.023,02</td>
<td>22</td>
<td>1782506,516</td>
</tr>
<tr>
<td>Value</td>
<td>Count</td>
<td>Total</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>80.080,90</td>
<td>27</td>
<td>2162184,258</td>
</tr>
<tr>
<td>79.138,77</td>
<td>23</td>
<td>1820191,609</td>
</tr>
<tr>
<td>78.196,64</td>
<td>22</td>
<td>1720326,094</td>
</tr>
<tr>
<td>77.254,51</td>
<td>10</td>
<td>772545,0781</td>
</tr>
<tr>
<td>76.312,38</td>
<td>19</td>
<td>1449935,273</td>
</tr>
<tr>
<td>75.370,26</td>
<td>18</td>
<td>1356664,641</td>
</tr>
<tr>
<td>74.428,13</td>
<td>12</td>
<td>893137,5</td>
</tr>
<tr>
<td>73.486,00</td>
<td>20</td>
<td>1469720</td>
</tr>
<tr>
<td>72.544</td>
<td>20</td>
<td>1450877,344</td>
</tr>
<tr>
<td>71.601,74</td>
<td>12</td>
<td>859220,9063</td>
</tr>
<tr>
<td>70.659,62</td>
<td>14</td>
<td>989234,6407</td>
</tr>
<tr>
<td>69.717,48</td>
<td>13</td>
<td>906327,2969</td>
</tr>
<tr>
<td>68.775,36</td>
<td>13,00</td>
<td>894079,6719</td>
</tr>
<tr>
<td>67.833,23</td>
<td>13</td>
<td>881831,9453</td>
</tr>
<tr>
<td>66.891,10</td>
<td>8</td>
<td>535128,8125</td>
</tr>
<tr>
<td>65.948,98</td>
<td>11</td>
<td>725438,7422</td>
</tr>
<tr>
<td>65.006,84</td>
<td>2</td>
<td>130013,6875</td>
</tr>
<tr>
<td>64.064,72</td>
<td>6</td>
<td>384388,3125</td>
</tr>
<tr>
<td>63.122,59</td>
<td>11</td>
<td>694348,4882</td>
</tr>
<tr>
<td>62.180,46</td>
<td>12</td>
<td>746165,5313</td>
</tr>
<tr>
<td>61.238,33</td>
<td>4</td>
<td>244953,3281</td>
</tr>
<tr>
<td>60.296,20</td>
<td>5</td>
<td>301481,0157</td>
</tr>
<tr>
<td>59.354,07</td>
<td>1</td>
<td>59354,07422</td>
</tr>
<tr>
<td>58.411,95</td>
<td>6</td>
<td>350471,6953</td>
</tr>
<tr>
<td>57.469,82</td>
<td>6</td>
<td>344818,9219</td>
</tr>
<tr>
<td>56.527,69</td>
<td>9</td>
<td>508749,2227</td>
</tr>
<tr>
<td>55.585,56</td>
<td>9</td>
<td>500270,0625</td>
</tr>
<tr>
<td>54.643,43</td>
<td>3</td>
<td>163930,3008</td>
</tr>
<tr>
<td>53.701,31</td>
<td>12</td>
<td>644415,7031</td>
</tr>
<tr>
<td>52.759,18</td>
<td>10</td>
<td>527591,7969</td>
</tr>
<tr>
<td>51.817,05</td>
<td>5</td>
<td>259085,2539</td>
</tr>
<tr>
<td>50.874,92</td>
<td>5</td>
<td>254374,6094</td>
</tr>
<tr>
<td>49.932,79</td>
<td>5</td>
<td>249663,9649</td>
</tr>
<tr>
<td>48.990,66</td>
<td>5</td>
<td>244953,3203</td>
</tr>
<tr>
<td>48.048,54</td>
<td>6</td>
<td>288291,2344</td>
</tr>
<tr>
<td>47.106,41</td>
<td>7</td>
<td>329744,8711</td>
</tr>
<tr>
<td>46.164,28</td>
<td>5</td>
<td>230821,4063</td>
</tr>
<tr>
<td>45.222,15</td>
<td>9</td>
<td>406999,3711</td>
</tr>
<tr>
<td>44.280,02</td>
<td>10</td>
<td>442800,2344</td>
</tr>
<tr>
<td>43.337,90</td>
<td>2</td>
<td>86675,79688</td>
</tr>
<tr>
<td>42.395,77</td>
<td>7</td>
<td>296770,3867</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>41.453,64</td>
<td>9</td>
<td>373082,7657</td>
</tr>
<tr>
<td>40.511,51</td>
<td>2</td>
<td>81023,02344</td>
</tr>
<tr>
<td>39.569,38</td>
<td>6</td>
<td>237416,2969</td>
</tr>
<tr>
<td>38.627,25</td>
<td>2</td>
<td>77254,50782</td>
</tr>
<tr>
<td>37.685,13</td>
<td>2</td>
<td>75370,25782</td>
</tr>
<tr>
<td>36.743</td>
<td>3</td>
<td>110229</td>
</tr>
<tr>
<td>35.800,87</td>
<td>2</td>
<td>71601,74218</td>
</tr>
<tr>
<td>33.916,61</td>
<td>5</td>
<td>169583,0664</td>
</tr>
<tr>
<td>32.974,49</td>
<td>1</td>
<td>32974,48828</td>
</tr>
<tr>
<td>32.032,36</td>
<td>3</td>
<td>96097,07814</td>
</tr>
<tr>
<td>31.090,23</td>
<td>7</td>
<td>217631,6133</td>
</tr>
<tr>
<td>30.148,10</td>
<td>2</td>
<td>60296,20312</td>
</tr>
<tr>
<td>29.205,97</td>
<td>1</td>
<td>29205,97461</td>
</tr>
<tr>
<td>28.263,85</td>
<td>1</td>
<td>28263,8457</td>
</tr>
<tr>
<td>27.321,72</td>
<td>1</td>
<td>27321,7168</td>
</tr>
<tr>
<td>26.379,59</td>
<td>3</td>
<td>79138,76952</td>
</tr>
<tr>
<td>25.437,46</td>
<td>3</td>
<td>76312,38282</td>
</tr>
<tr>
<td>24.495,33</td>
<td>6</td>
<td>146971,9922</td>
</tr>
<tr>
<td>23.553,21</td>
<td>2</td>
<td>47106,41016</td>
</tr>
<tr>
<td>22.611,08</td>
<td>2</td>
<td>45222,15234</td>
</tr>
<tr>
<td>21.668,95</td>
<td>2</td>
<td>43337,89844</td>
</tr>
<tr>
<td>20.726,82</td>
<td>3</td>
<td>62180,46093</td>
</tr>
<tr>
<td>19.784,69</td>
<td>2</td>
<td>39569,38282</td>
</tr>
<tr>
<td>17.900,44</td>
<td>2</td>
<td>35800,8711</td>
</tr>
<tr>
<td>16.958,31</td>
<td>3</td>
<td>50874,91992</td>
</tr>
<tr>
<td>16.016,18</td>
<td>1</td>
<td>16016,17969</td>
</tr>
<tr>
<td>15.074,05</td>
<td>1</td>
<td>15074,05078</td>
</tr>
<tr>
<td>13.189,79</td>
<td>1</td>
<td>13189,79492</td>
</tr>
<tr>
<td>12.247,67</td>
<td>1</td>
<td>12247,66602</td>
</tr>
<tr>
<td>11.305,54</td>
<td>1</td>
<td>11305,53809</td>
</tr>
<tr>
<td>8.479,15</td>
<td>1</td>
<td>8479,15332</td>
</tr>
<tr>
<td>6.594,90</td>
<td>1</td>
<td>6594,897461</td>
</tr>
</tbody>
</table>

VOLUMEN TOTAL

2143336924

Fuente: Estudio.
Anexo 9: Mapa del Cálculo de Volumen Extraído del frente Norte.

Fuente: Estudio.

Anexo 10: Calculo del volumen Extraído del frente Norte.

<table>
<thead>
<tr>
<th>VOLUMEN POR PIXEL</th>
<th>NUMERO DE PIXELES</th>
<th>VOLUMEN TOTAL POR PIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>942,1281738</td>
<td>283</td>
<td>266622,2732</td>
</tr>
<tr>
<td>1.884,26</td>
<td>261</td>
<td>491790,9068</td>
</tr>
<tr>
<td>2.826,38</td>
<td>275</td>
<td>777255,7433</td>
</tr>
<tr>
<td>3.768,51</td>
<td>253</td>
<td>953433,7118</td>
</tr>
<tr>
<td>4.710,64</td>
<td>222</td>
<td>1045762,327</td>
</tr>
<tr>
<td>5.652,77</td>
<td>217</td>
<td>1226650,882</td>
</tr>
<tr>
<td>6.594,90</td>
<td>140</td>
<td>923285,6445</td>
</tr>
<tr>
<td>7.537,03</td>
<td>147</td>
<td>1107942,732</td>
</tr>
<tr>
<td>8.479,15</td>
<td>156</td>
<td>1322747,918</td>
</tr>
<tr>
<td>9.421,28</td>
<td>174</td>
<td>1639303,107</td>
</tr>
<tr>
<td>10.363,41</td>
<td>146</td>
<td>1513057,883</td>
</tr>
<tr>
<td>11.305,54</td>
<td>146</td>
<td>1650608,561</td>
</tr>
<tr>
<td>Value</td>
<td>Count</td>
<td>Total</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>12.247,67</td>
<td>133</td>
<td>1628939,581</td>
</tr>
<tr>
<td>13.189,79</td>
<td>133</td>
<td>1754242,724</td>
</tr>
<tr>
<td>14.131,92</td>
<td>134</td>
<td>1893677,662</td>
</tr>
<tr>
<td>15.074,05</td>
<td>155</td>
<td>2336477,871</td>
</tr>
<tr>
<td>16.016,18</td>
<td>122</td>
<td>1953973,922</td>
</tr>
<tr>
<td>16.958,31</td>
<td>133</td>
<td>2255454,783</td>
</tr>
<tr>
<td>17.900,44</td>
<td>112</td>
<td>2004848,782</td>
</tr>
<tr>
<td>18.842,56</td>
<td>146</td>
<td>2751014,413</td>
</tr>
<tr>
<td>19.784,69</td>
<td>121</td>
<td>2393947,661</td>
</tr>
<tr>
<td>20.726,82</td>
<td>133</td>
<td>2756667,101</td>
</tr>
<tr>
<td>21.668,95</td>
<td>125</td>
<td>2708618,653</td>
</tr>
<tr>
<td>22.611,08</td>
<td>138</td>
<td>3120328,511</td>
</tr>
<tr>
<td>23.553,21</td>
<td>114</td>
<td>2685065,379</td>
</tr>
<tr>
<td>24.495,33</td>
<td>98</td>
<td>2400542,539</td>
</tr>
<tr>
<td>25.437,46</td>
<td>96</td>
<td>2441996,25</td>
</tr>
<tr>
<td>26.379,59</td>
<td>97</td>
<td>2558820,214</td>
</tr>
<tr>
<td>27.321,72</td>
<td>92</td>
<td>2513597,946</td>
</tr>
<tr>
<td>28.263,85</td>
<td>87</td>
<td>2458954,576</td>
</tr>
<tr>
<td>29.205,97</td>
<td>91</td>
<td>2657743,69</td>
</tr>
<tr>
<td>30.148,10</td>
<td>141</td>
<td>4250882,32</td>
</tr>
<tr>
<td>31.090,23</td>
<td>163</td>
<td>5067707,567</td>
</tr>
<tr>
<td>32.032,36</td>
<td>154</td>
<td>4932983,345</td>
</tr>
<tr>
<td>32.974,49</td>
<td>154</td>
<td>5078071,195</td>
</tr>
<tr>
<td>33.916,61</td>
<td>166</td>
<td>5630157,804</td>
</tr>
<tr>
<td>34.858,74</td>
<td>139</td>
<td>4845365,164</td>
</tr>
<tr>
<td>35.800,87</td>
<td>111</td>
<td>3973896,691</td>
</tr>
<tr>
<td>36.743</td>
<td>119</td>
<td>4372417</td>
</tr>
<tr>
<td>37.685,13</td>
<td>140</td>
<td>5275918,047</td>
</tr>
<tr>
<td>38.627,25</td>
<td>162</td>
<td>6257615,133</td>
</tr>
<tr>
<td>39.569,38</td>
<td>130</td>
<td>5144019,765</td>
</tr>
<tr>
<td>40.511,51</td>
<td>154</td>
<td>6238772,805</td>
</tr>
<tr>
<td>41.453,64</td>
<td>140</td>
<td>5803509,688</td>
</tr>
<tr>
<td>42.395,77</td>
<td>158</td>
<td>6698531,586</td>
</tr>
<tr>
<td>43.337,90</td>
<td>164</td>
<td>7107415,344</td>
</tr>
<tr>
<td>44.280,02</td>
<td>140</td>
<td>6199203,282</td>
</tr>
<tr>
<td>45.222,15</td>
<td>117</td>
<td>5290991,824</td>
</tr>
<tr>
<td>46.164,28</td>
<td>133</td>
<td>6139849,406</td>
</tr>
<tr>
<td>47.106,41</td>
<td>129</td>
<td>6076726,911</td>
</tr>
<tr>
<td>48.048,54</td>
<td>167</td>
<td>8024106,023</td>
</tr>
<tr>
<td>48.990,66</td>
<td>144</td>
<td>7054655,625</td>
</tr>
<tr>
<td>49.932,79</td>
<td>163</td>
<td>8139045,254</td>
</tr>
<tr>
<td>50.874,92</td>
<td>149</td>
<td>7580363,36</td>
</tr>
<tr>
<td>51.817,05</td>
<td>124</td>
<td>6425314,297</td>
</tr>
<tr>
<td>52.759,18</td>
<td>99</td>
<td>5223158,789</td>
</tr>
<tr>
<td>53.701,31</td>
<td>100</td>
<td>5370130,859</td>
</tr>
<tr>
<td>54.643,43</td>
<td>117</td>
<td>6393281,73</td>
</tr>
<tr>
<td>55.585,56</td>
<td>106</td>
<td>5892069,625</td>
</tr>
<tr>
<td>56.527,69</td>
<td>94</td>
<td>5313602,993</td>
</tr>
<tr>
<td>57.469,82</td>
<td>104</td>
<td>5976861,312</td>
</tr>
<tr>
<td>58.411,95</td>
<td>108</td>
<td>6308490,516</td>
</tr>
<tr>
<td>59.354,07</td>
<td>99</td>
<td>5876053,348</td>
</tr>
<tr>
<td>60.296,20</td>
<td>88</td>
<td>5306065,875</td>
</tr>
<tr>
<td>61.238,33</td>
<td>80</td>
<td>4899066,562</td>
</tr>
<tr>
<td>62.180,46</td>
<td>107</td>
<td>6653309,321</td>
</tr>
<tr>
<td>63.122,59</td>
<td>67</td>
<td>4229213,519</td>
</tr>
<tr>
<td>64.064,72</td>
<td>91</td>
<td>5829889,406</td>
</tr>
<tr>
<td>65.006,84</td>
<td>104</td>
<td>6760711,75</td>
</tr>
<tr>
<td>65.948,98</td>
<td>117</td>
<td>7716030,258</td>
</tr>
<tr>
<td>66.891,10</td>
<td>125</td>
<td>8361387,695</td>
</tr>
<tr>
<td>67.833,23</td>
<td>214</td>
<td>14516310,48</td>
</tr>
<tr>
<td>68.775,36</td>
<td>86</td>
<td>5914680,907</td>
</tr>
<tr>
<td>69.717,48</td>
<td>97</td>
<td>6762595,985</td>
</tr>
<tr>
<td>70.659,62</td>
<td>74</td>
<td>5228811,672</td>
</tr>
<tr>
<td>71.601,74</td>
<td>78</td>
<td>5584935,891</td>
</tr>
<tr>
<td>72.543,87</td>
<td>146</td>
<td>10591404,61</td>
</tr>
<tr>
<td>73.486</td>
<td>90</td>
<td>6613740</td>
</tr>
<tr>
<td>74.428,13</td>
<td>81</td>
<td>6028678,125</td>
</tr>
<tr>
<td>75.370,26</td>
<td>68</td>
<td>5125177,531</td>
</tr>
<tr>
<td>76.312,38</td>
<td>69</td>
<td>5265554,414</td>
</tr>
<tr>
<td>77.254,51</td>
<td>70</td>
<td>5407815,547</td>
</tr>
<tr>
<td>78.196,64</td>
<td>62</td>
<td>4848191,719</td>
</tr>
<tr>
<td>79.138,77</td>
<td>54</td>
<td>4273493,344</td>
</tr>
<tr>
<td>80.080,90</td>
<td>58</td>
<td>4644692,11</td>
</tr>
<tr>
<td>81.023,02</td>
<td>65</td>
<td>5266496,524</td>
</tr>
<tr>
<td>81.965,16</td>
<td>65</td>
<td>5327735,156</td>
</tr>
<tr>
<td>82.907,28</td>
<td>59</td>
<td>4891529,594</td>
</tr>
<tr>
<td>83.849,41</td>
<td>66</td>
<td>5534060,813</td>
</tr>
<tr>
<td>84.791,54</td>
<td>53</td>
<td>4493951,57</td>
</tr>
<tr>
<td>85.733,66</td>
<td>66</td>
<td>5658421,828</td>
</tr>
<tr>
<td>86.675,80</td>
<td>50</td>
<td>4333789,844</td>
</tr>
<tr>
<td>87.617,92</td>
<td>45</td>
<td>3942806,485</td>
</tr>
<tr>
<td>88.560,05</td>
<td>4216</td>
<td>373369157,6</td>
</tr>
</tbody>
</table>
VOLUMEN TOTAL 799534248,7
Fuente: Estudio.

Anexo 11: Mapa del Cálculo de Volumen Acumulado del frente Norte.

Anexo 12: Calculo del volumen Acumulado del frente Norte.

<table>
<thead>
<tr>
<th>VOLUMEN POR PIXEL</th>
<th>NUMERO DE PIXEL</th>
<th>VOLUMEN TOTAL POR PIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>169.583,08</td>
<td>1</td>
<td>169583,0781</td>
</tr>
<tr>
<td>168.640,95</td>
<td>1</td>
<td>168640,9531</td>
</tr>
<tr>
<td>167.698,81</td>
<td>1</td>
<td>167698,8125</td>
</tr>
<tr>
<td>165.814,56</td>
<td>7</td>
<td>1160701,938</td>
</tr>
<tr>
<td>164.872,44</td>
<td>3</td>
<td>494617,3125</td>
</tr>
<tr>
<td>163.930,31</td>
<td>8</td>
<td>1311442,5</td>
</tr>
<tr>
<td>162.988,17</td>
<td>12</td>
<td>1955858,063</td>
</tr>
<tr>
<td>162.046,05</td>
<td>9</td>
<td>1458414,422</td>
</tr>
<tr>
<td>161.103,92</td>
<td>18,00</td>
<td>2899870,594</td>
</tr>
<tr>
<td>160.161,80</td>
<td>15</td>
<td>2402426,954</td>
</tr>
<tr>
<td>159.219,66</td>
<td>16</td>
<td>2547514,501</td>
</tr>
<tr>
<td>158.277,53</td>
<td>32</td>
<td>5064881,002</td>
</tr>
<tr>
<td>157.335,41</td>
<td>39</td>
<td>6136080,846</td>
</tr>
<tr>
<td>156.393,28</td>
<td>42</td>
<td>6568517,815</td>
</tr>
<tr>
<td>155.451,16</td>
<td>44</td>
<td>6839850,877</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>154.509,02</td>
<td>43</td>
<td>6643887,671</td>
</tr>
<tr>
<td>153.566,89</td>
<td>39</td>
<td>5989108,733</td>
</tr>
<tr>
<td>152.624,77</td>
<td>53</td>
<td>8089112,577</td>
</tr>
<tr>
<td>151.682,64</td>
<td>64</td>
<td>9707688,998</td>
</tr>
<tr>
<td>150.740,52</td>
<td>75</td>
<td>11305538,67</td>
</tr>
<tr>
<td>149.798,38</td>
<td>73</td>
<td>10935281,38</td>
</tr>
<tr>
<td>148.856,25</td>
<td>62</td>
<td>9229087,5</td>
</tr>
<tr>
<td>147.914,13</td>
<td>85</td>
<td>12572700,63</td>
</tr>
<tr>
<td>146.972</td>
<td>95</td>
<td>13962340</td>
</tr>
<tr>
<td>146.029,88</td>
<td>94</td>
<td>13726808,25</td>
</tr>
<tr>
<td>145.087,73</td>
<td>117</td>
<td>16975264,92</td>
</tr>
<tr>
<td>144.145,61</td>
<td>98</td>
<td>14126269,72</td>
</tr>
<tr>
<td>143.203,48</td>
<td>86</td>
<td>12315499,66</td>
</tr>
<tr>
<td>142.261,36</td>
<td>115</td>
<td>16360056,33</td>
</tr>
<tr>
<td>141.319,23</td>
<td>96</td>
<td>13566646,5</td>
</tr>
<tr>
<td>140.377,09</td>
<td>97</td>
<td>13616578,1</td>
</tr>
<tr>
<td>139.434,97</td>
<td>111</td>
<td>15477281,54</td>
</tr>
<tr>
<td>138.492,84</td>
<td>121</td>
<td>16757634,1</td>
</tr>
<tr>
<td>137.550,72</td>
<td>101</td>
<td>13892622,6</td>
</tr>
<tr>
<td>136.608,59</td>
<td>101</td>
<td>13797467,97</td>
</tr>
<tr>
<td>135.666,45</td>
<td>90</td>
<td>12209980,78</td>
</tr>
<tr>
<td>134.724,33</td>
<td>85</td>
<td>11451567,89</td>
</tr>
<tr>
<td>133.782,20</td>
<td>108</td>
<td>14448477,93</td>
</tr>
<tr>
<td>132.840,08</td>
<td>89</td>
<td>11822766,95</td>
</tr>
<tr>
<td>131.897,95</td>
<td>106</td>
<td>13981183,03</td>
</tr>
<tr>
<td>130.955,82</td>
<td>100</td>
<td>13095582,03</td>
</tr>
<tr>
<td>130.013,69</td>
<td>95</td>
<td>12351300,31</td>
</tr>
<tr>
<td>129.071,56</td>
<td>98</td>
<td>12649013,13</td>
</tr>
<tr>
<td>128.129,44</td>
<td>93</td>
<td>11916037,69</td>
</tr>
<tr>
<td>127.187,30</td>
<td>99</td>
<td>12591543,17</td>
</tr>
<tr>
<td>126.245,18</td>
<td>101</td>
<td>12750763,15</td>
</tr>
<tr>
<td>125.303,05</td>
<td>122</td>
<td>15286971,72</td>
</tr>
<tr>
<td>124.360,92</td>
<td>105</td>
<td>13057896,8</td>
</tr>
<tr>
<td>123.418,79</td>
<td>102</td>
<td>12588716,49</td>
</tr>
<tr>
<td>122.476,66</td>
<td>106</td>
<td>12982526,39</td>
</tr>
<tr>
<td>121.534,54</td>
<td>105</td>
<td>12761126,61</td>
</tr>
<tr>
<td>120.592,41</td>
<td>125</td>
<td>15074050,79</td>
</tr>
<tr>
<td>119.650,28</td>
<td>109</td>
<td>13041880,66</td>
</tr>
<tr>
<td>118.708,15</td>
<td>139</td>
<td>16500432,63</td>
</tr>
<tr>
<td>117.766,02</td>
<td>160</td>
<td>18842563,74</td>
</tr>
<tr>
<td>116.823,90</td>
<td>185</td>
<td>21612421,2</td>
</tr>
</tbody>
</table>

101
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>115.881,77</td>
<td>207</td>
<td>23987525,48</td>
</tr>
<tr>
<td>114.939,64</td>
<td>265</td>
<td>30459004,76</td>
</tr>
<tr>
<td>113.997,51</td>
<td>339</td>
<td>38645155,14</td>
</tr>
<tr>
<td>113.055,38</td>
<td>431</td>
<td>48726869,99</td>
</tr>
<tr>
<td>112.113,26</td>
<td>590</td>
<td>66146822,1</td>
</tr>
<tr>
<td>111.171,13</td>
<td>791</td>
<td>87936359,88</td>
</tr>
<tr>
<td>110.229</td>
<td>710</td>
<td>78262590</td>
</tr>
<tr>
<td>109.286,87</td>
<td>614</td>
<td>67102136,46</td>
</tr>
<tr>
<td>108.344,74</td>
<td>435</td>
<td>47129962,86</td>
</tr>
<tr>
<td>107.402,62</td>
<td>371</td>
<td>39846370,98</td>
</tr>
<tr>
<td>106.460,48</td>
<td>255</td>
<td>27147423,52</td>
</tr>
<tr>
<td>105.518,36</td>
<td>145</td>
<td>15300162,11</td>
</tr>
<tr>
<td>104.576,23</td>
<td>213</td>
<td>22274736,27</td>
</tr>
<tr>
<td>103.634,10</td>
<td>180</td>
<td>18654138,29</td>
</tr>
<tr>
<td>102.691,97</td>
<td>124</td>
<td>12733804,13</td>
</tr>
<tr>
<td>101.749,84</td>
<td>103</td>
<td>10480233,91</td>
</tr>
<tr>
<td>100.807,72</td>
<td>109</td>
<td>10988041,35</td>
</tr>
<tr>
<td>99.865,59</td>
<td>108</td>
<td>10785483,28</td>
</tr>
<tr>
<td>98.923,46</td>
<td>108</td>
<td>10683733,78</td>
</tr>
<tr>
<td>97.981,33</td>
<td>94</td>
<td>9210244,44</td>
</tr>
<tr>
<td>97.039,20</td>
<td>94</td>
<td>9121685,09</td>
</tr>
<tr>
<td>96.097,08</td>
<td>76</td>
<td>7303377,93</td>
</tr>
<tr>
<td>95.154,95</td>
<td>66</td>
<td>6280226,39</td>
</tr>
<tr>
<td>94.212,82</td>
<td>87</td>
<td>8196515,36</td>
</tr>
<tr>
<td>93.270,69</td>
<td>89</td>
<td>8301091,18</td>
</tr>
<tr>
<td>92.328,56</td>
<td>66</td>
<td>6093685,12</td>
</tr>
<tr>
<td>91.386,44</td>
<td>65</td>
<td>5940118,43</td>
</tr>
<tr>
<td>90.444,30</td>
<td>79</td>
<td>7145100,07</td>
</tr>
<tr>
<td>89.502,18</td>
<td>68</td>
<td>6086148,21</td>
</tr>
<tr>
<td>88.560,05</td>
<td>74</td>
<td>6553443,46</td>
</tr>
<tr>
<td>87.617,92</td>
<td>75</td>
<td>6571344,14</td>
</tr>
<tr>
<td>86.675,80</td>
<td>58</td>
<td>5027196,21</td>
</tr>
<tr>
<td>85.733,66</td>
<td>79</td>
<td>6772959,46</td>
</tr>
<tr>
<td>84.791,54</td>
<td>69</td>
<td>5850616,19</td>
</tr>
<tr>
<td>83.849,41</td>
<td>60</td>
<td>5030964,37</td>
</tr>
<tr>
<td>82.907,28</td>
<td>76</td>
<td>6300953,37</td>
</tr>
<tr>
<td>81.965,16</td>
<td>66</td>
<td>5409700,31</td>
</tr>
<tr>
<td>81.023,02</td>
<td>66</td>
<td>5347519,54</td>
</tr>
<tr>
<td>80.080,90</td>
<td>43</td>
<td>3443478,63</td>
</tr>
<tr>
<td>79.138,77</td>
<td>58</td>
<td>4590048,40</td>
</tr>
<tr>
<td>78.196,64</td>
<td>40</td>
<td>3127865,62</td>
</tr>
<tr>
<td>77.254,51</td>
<td>66</td>
<td>5098797,515</td>
</tr>
<tr>
<td>76.312,38</td>
<td>53</td>
<td>4044556,289</td>
</tr>
<tr>
<td>75.370,26</td>
<td>48</td>
<td>3617772,375</td>
</tr>
<tr>
<td>74.428,13</td>
<td>42</td>
<td>3125981,25</td>
</tr>
<tr>
<td>73.486</td>
<td>35</td>
<td>2572010</td>
</tr>
<tr>
<td>72.543,87</td>
<td>44</td>
<td>3191930,156</td>
</tr>
<tr>
<td>71.601,74</td>
<td>45</td>
<td>3222078,399</td>
</tr>
<tr>
<td>70.659,62</td>
<td>38</td>
<td>2685065,453</td>
</tr>
<tr>
<td>69.717,48</td>
<td>46</td>
<td>3207004,281</td>
</tr>
<tr>
<td>68.775,36</td>
<td>35</td>
<td>2407137,578</td>
</tr>
<tr>
<td>67.833,23</td>
<td>41</td>
<td>2781162,289</td>
</tr>
<tr>
<td>66.891,10</td>
<td>32</td>
<td>2140515,25</td>
</tr>
<tr>
<td>65.948,98</td>
<td>30</td>
<td>1978469,297</td>
</tr>
<tr>
<td>65.006,84</td>
<td>39</td>
<td>2535266,906</td>
</tr>
<tr>
<td>64.064,72</td>
<td>29</td>
<td>1857876,844</td>
</tr>
<tr>
<td>63.122,59</td>
<td>26</td>
<td>1641187,336</td>
</tr>
<tr>
<td>62.180,46</td>
<td>25</td>
<td>1554511,524</td>
</tr>
<tr>
<td>61.238,33</td>
<td>21</td>
<td>1286004,973</td>
</tr>
<tr>
<td>60.296,20</td>
<td>33</td>
<td>1989774,703</td>
</tr>
<tr>
<td>59.354,07</td>
<td>32</td>
<td>1899330,375</td>
</tr>
<tr>
<td>58.411,95</td>
<td>15</td>
<td>876179,2383</td>
</tr>
<tr>
<td>57.469,82</td>
<td>21</td>
<td>1206866,227</td>
</tr>
<tr>
<td>56.527,69</td>
<td>18</td>
<td>1017498,445</td>
</tr>
<tr>
<td>55.585,56</td>
<td>12</td>
<td>667026,75</td>
</tr>
<tr>
<td>54.643,43</td>
<td>17</td>
<td>928938,371</td>
</tr>
<tr>
<td>53.701,31</td>
<td>26</td>
<td>1396234,023</td>
</tr>
<tr>
<td>52.759,18</td>
<td>23</td>
<td>1213461,133</td>
</tr>
<tr>
<td>51.817,05</td>
<td>22</td>
<td>1139975,117</td>
</tr>
<tr>
<td>50.874,92</td>
<td>18</td>
<td>915748,5938</td>
</tr>
<tr>
<td>49.932,79</td>
<td>12</td>
<td>599193,5156</td>
</tr>
<tr>
<td>48.990,66</td>
<td>14</td>
<td>685869,2968</td>
</tr>
<tr>
<td>48.048,54</td>
<td>25</td>
<td>1201213,477</td>
</tr>
<tr>
<td>47.106,41</td>
<td>25</td>
<td>1177660,254</td>
</tr>
<tr>
<td>46.164,28</td>
<td>17</td>
<td>784792,7813</td>
</tr>
<tr>
<td>45.222,15</td>
<td>14</td>
<td>633110,1328</td>
</tr>
<tr>
<td>44.280,02</td>
<td>7</td>
<td>309960,1641</td>
</tr>
<tr>
<td>43.337,90</td>
<td>9</td>
<td>390041,086</td>
</tr>
<tr>
<td>42.395,77</td>
<td>13</td>
<td>551145,0039</td>
</tr>
<tr>
<td>41.453,64</td>
<td>6</td>
<td>248721,8438</td>
</tr>
<tr>
<td>40.511,51</td>
<td>7</td>
<td>283580,582</td>
</tr>
<tr>
<td>39.569,38</td>
<td>9</td>
<td>356124,4453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>38.627,25</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>37.685,13</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>36.743</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>35.800,87</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>34.858,74</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>33.916,61</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>32.974,49</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>32.032,36</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>31.090,23</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>30.148,10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>28.263,85</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27.321,72</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26.379,59</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25.437,46</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23.553,21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22.611,08</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>19.784,69</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>18.842,56</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13.189,79</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8.479,15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7.537,03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>VOLUMEN TOTAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Estudio.