Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/1943
Title: Establecimiento de características técnicas para el diseño e implementación de instrumentación geofísica de inspección y monitoreo a baja frecuencia
Authors: Rodríguez Condia, Josie Esteban
metadata.dc.contributor.role: Pérez Holguín, Wilson Javier (Director de tesis)
Keywords: Geofísica - Aparatos e instrumentos
Prospección geofísica - Aparatos e instrumentos
Prospección eléctrica - Métodos geofísicos
Prospeccion geofísica - Tesis y disertaciones académicas
Geología física
Geología estructural
Instrumentación
Sismología
Maestría en Ingeniería Enfasis en Ingeniería electrónica - Tesis y disertaciones académicas
Issue Date: 2017
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Rodríguez Condia, J. R. (2017). Establecimiento de características técnicas para el diseño e implementación de instrumentación geofísica de inspección y monitoreo a baja frecuencia. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Sogamoso. http://repositorio.uptc.edu.co/handle/001/1943
Abstract: La instrumentación juega un papel importante en los procesos de exploración y monitoreo en estudios geofísicos. Un instrumento de exploración es el que se dedica a adquirir la información a partir de la cual se puede determinar la existencia de algún material de interés sobre el área de estudio; de la misma forma, un instrumento de monitoreo es el que permite observar comportamientos, anomalías y fenómenos naturales o culturales del subsuelo. Cuando se emplean sobre el terreno, este tipo de instrumentos efectúan un conjunto de mediciones que luego son analizadas e interpretadas por los expertos y sirven como base para la toma de decisiones en diversas actividades humanas desarrolladas con fines económicos, medioambientales y/o sociales. Como es natural, los principales fabricantes de instrumentos para estudios geofísicos buscan para mantener su dominio tecnológico y económico sobre la producción y comercialización de este tipo de equipos. Para esto emplean estrategias como el monopolio estratégico comercial, los secretos industriales, las patentes, etc., que hacen que buena parte de las características técnicas y aspectos clave del funcionamiento de los instrumentos sea desconocida total o parcialmente. Ante la relevancia de la instrumentación y sus potenciales campos de aplicación, este trabajo se centra en el estudio de los procedimientos técnicos requeridos para el diseño y construcción de los sistemas electrónicos que conforman los instrumentos de exploración y monitoreo geofísico. Particularmente, en este trabajo se aborda la realización de dos prototipos de instrumentación geofísica que exhiben características técnicas diferentes y representan retos distintos, como una manera de identificar y establecer los requisitos y consideraciones de diseño a tener en cuenta en el desarrollo de este tipo de equipos de instrumentación. En el primer caso, se plantea el desarrollo de un prototipo de instrumento de monitoreo de aceleración multicanal o acelerógrafo triaxial, empleado para establecer aceleraciones de la superficie y el subsuelo ante actividad símica. La realización de este prototipo involucra el desarrollo de sistemas de adquisición de señales, detección, almacenamiento y transmisión de datos. En el segundo caso, se plantea el desarrollo de un prototipo de instrumento de prospección geoeléctrica basado en resistividad, el cual es empleado como instrumento de caracterización del subsuelo. El procedimiento de diseño incluye el sistema electrónico encargado de la transmisión de las señales eléctricas hacia el terreno bajo estudio, así como los procedimientos de adquisición, almacenamiento y procesamiento de las señales recibidas a través de los electrodos dispuestos sobre este. El sistema electrónico debe estar en capacidad de realizar de forma automática la emisión de señales de voltaje y la posterior detección multicanal de tensión y/o corriente registradas en la zona bajo estudio. Cuatro etapas comunes requeridas para el desarrollo de los dos casos de estudio son: i) el reconocimiento de necesidades, ii) la determinación de las especificaciones de diseño, iii) el diseño conceptual y iv) el diseño detallado. Información más detallada acerca del proceso genérico de desarrollo de prototipos es presentado en el Anexo A.
Description: 161 páginas : ilustraciones color, figuras, tablas.
metadata.dcterms.bibliographicCitation: KAMRANI, Ali K. y SALHIEH, Sa'ed. M., Product Design for Modularity, Springer US, 2013.
URIBE P., Sandra, Diseño, eslabón perdido de la innovación en Colombia, UN Periódico, ed. Bogota: Unimedios, Universidad Nacional de Colombia, 2012.
HOLGUIN, Víctor Manuel, A Colombia le falta mucha ciencia, UN Periodico, ed. Bogota: Unimedios, Universidad Nacional de Colombia, 2014.
MEYERS, Robert A., Encyclopedia of Physical Science and Technology, Third Edition, vol. 3, Elsevier, 2001.
REYNOLDS, John M., An Introduction to Applied and Environmental Geophysics, JOHN WILEY & SONS, 1998.
KEAREY, Philip et al., An Introduction to Geophysical Exploration, Blackwell Science Ltd Editorial Offices, 2002.
MAYA, Mario et al., Estado del conocimiento de la exploración de esmeraldas en Colombia, INGEOMINAS, Bogotá, 2004.
GIRALDO, Jaramillo et al., Application of gravimetry and electric tomography methods to obtain stratigrafic profiles: case study at University of Quindío and Puerto Espejo area, Armenia-Colombia, Earth Sciences Research Journal, Vol. 9, 2005.
SAINATO, Claudia M. et al., Assessment of contamination by intensive cattle activity through electrical resistivity tomography, Journal of Applied Geophysics, vol. 76, pp. 82-91, 2012.
ARRUBARRENA-MORENO, Manuel et al., Use of electrical resistivity tomography in the study of soil pollution caused by hydrocarbons: Case study in Puebla (Mexico), Bol. Soc. Geol. Mex, vol. 65, pp. 419-426, 2013.
SCHMIDT-HATTENBERGER, C. et al., Electrical Resistivity Tomography (ERT) for Monitoring of CO2 Migration - from Tool Development to Reservoir Surveillance at the Ketzin Pilot Site, Energy Procedia, vol. 37, pp. 4268-4275, 2013.
RUCKER, Dale F.; LEVITT, Marc T.; GREENWOOD, William J. Three-dimensional electrical resistivity model of a nuclear waste disposal site. Journal of Applied Geophysics, 2009, vol. 69, no 3, p. 150-164.
WISÉN, Roger, et al. Experience from Two Resistivity Inversion Techniques Applied in Three Cases of Geotechnical Site Investigation. Journal of geotechnical and geoenvironmental engineering, 2008, vol. 134, no 12, p. 1730-1742.
ZHANG, Qisheng; DENG, Ming; LIU, Ning. A New Method for High-Precision Geoelectric Data Acquisition Based on CS5372. Information Engineering and Computer Science (ICIECS), 2010 2nd International Conference on. IEEE, 2010.
ZHEN, Huang, et al. A Novel Design of Master Control Syetem for Induced Polarization Logging Instrument. En Electrical and Control Engineering (ICECE), 2010 International Conference on. IEEE, 2010. p. 183-186.
REN, Yong-sheng, et al. Design of transmitting circuit for Micro-Resistivity Imaging Logging tool. En Intelligent Signal Processing and Communication Systems (ISPACS), 2010 International Symposium on. IEEE, 2010. p. 1-4.
SAMOUËLIAN, Anatja, et al. Electrical resistivity survey in soil science: a review. Soil and Tillage research, 2005, vol. 83, no 2, p. 173-193.
ROSEN, D. W.; PETERS, T. J. The role of topology in engineering design research. Research in Engineering Design, 1996, vol. 8, no 2, p. 81-98.
SCHIRRMEISTER, F., Chapter 2 - Embedded Systems Hardware/Software Co-Development, Software Engineering for Embedded Systems, R. Oshana and M. Kraeling, Eds., ed Oxford: Newnes, 2013, pp. 33-57.
STUMMER, Peter, et al. Optimization of DC resistivity data acquisition: Real-time experimental design and a new multielectrode system. IEEE Transactions on Geoscience and Remote Sensing, 2002, vol. 40, no 12, p. 2727-2735.
LUECK, E.; RUEHLMANN, J. Resistivity mapping with GEOPHILUS ELECTRICUS—Information about lateral and vertical soil heterogeneity. Geoderma, 2013, vol. 199, p. 2-11.
ISHAI, Paul Ben, et al. Electrode polarization in dielectric measurements: a review. Measurement Science and Technology, 2013, vol. 24, no 10, p. 102001.
AUKEN, Esben, et al. A survey of current trends in near-surface electrical and electromagnetic methods. Geophysics, 2006, vol. 71, no 5, p. G249-G260.
STEFANO, Antonio Di y FIANDACA, Gianluca, Modular apparatus for the electronic prospection of a medium, WO 2011158103 A1, 2011.
WERKEMA, Douglas D., et al. A generic automated/semiautomated digital multi-electrode instrument for field resistivity measurements. IEEE Transactions on Instrumentation and Measurement, 2000, vol. 49, no 6, p. 1249-1253.
COUSIN, Isabelle, et al. From spatial-continuous electrical resistivity measurements to the soil hydraulic functioning at the field scale. Comptes Rendus Geoscience, 2009, vol. 341, no 10, p. 859-867.
SECHMAN, Henryk et al., Pollution of near-surface zone in the vicinity of gas wells, Geoderma, vol. 197–198, 2013.
LAMBOT, Sébastien, et al. Measuring and processing protocols description. 2009.
DABAS, Michel. Theory and practice of the new fast electrical imaging system ARP©. CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2009.
RHOADES, J. D. Instrumental field methods of salinity appraisal. Advances in measurement of soil physical properties: Bringing theory into practice, 1992, no advancesinmeasu, p. 231-248.
RHOADES, J. D. Electrical conductivity methods for measuring and mapping soil salinity. Advances in agronomy, 1993, vol. 49, p. 201-251.
PAPADOPOULOS, Nikos G., et al. 3D inversion of Automated Resistivity Profiling (ARP) data. ArcheoSciences. Revue d'archéométrie, 2009, no 33 (suppl.), p. 329-332.
LABRECQUE, Douglas; DAILY, William. Assessment of measurement errors for galvanic-resistivity electrodes of different composition. Geophysics, 2008, vol. 73, no 2, p. F55-F64.
GEOSCAN RESEARCH, Mobile Sensor Platform MSP40, Instruction Manual, ed. 1.2, 2006.
LÜCK, E., et al. Geophilus electricus-a new soil mapping system. En International Conference on Agricultural Engineering- AgEng 2010: towards environmental technologies, Clermont-Ferrand, France, 6-8 September 2010. Cemagref, 2010.
PAN, Luan, et al. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach. Sensors, 2014, vol. 14, no 7, p. 13243-13255.
RUEN, J., Sensored Soils Boost Agronomics, New Sensor Technology is the Next Management Frontier. Presicion AG, 2012.
KURAS, Oliver, et al. Fundamentals of the capacitive resistivity technique. Geophysics, 2006, vol. 71, no 3, p. G135-G152.
DANIELSEN, Berit E. et al., Geoelectrical and IP Imaging Used for Pre-investigation at a Tunnel Project, 14th Meeting Environmental and Engineering Geophysics, Krakow, Poland, 2008.
TABBAGH, A., et al. First in Situ Test of a New Electrostatic Resistivity Meter. En Near Surface 2011-17th EAGE European Meeting of Environmental and Engineering Geophysics. 2011.
TERZIC, Edin, et al. Capacitive Sensing Technology. En A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments. Springer London, 2012. p. 11-37.
CHRISTENSEN, Niels B.; SØRENSEN, Kurt I. Surface and borehole electric and electromagnetic methods for hydrogeological investigations, European Journal of Environmental and Engineering Geophysics, 1998, vol. 3, p. 75-90.
TERRAPLUS, CORIM Continuous Profiling Resistivity System, Available: http://terraplus.ca/products/resistivity/corim.aspx, 22/12/2015.
IEEE Guide for Measurement of Impedance and Safety Characteristics of Large, Extended or Interconnected Grounding Systems. IEEE Std 81.2-1991: 1-112, 1992.
MILSOM, John. Field geophysics. John Wiley and Sons, 2007
KIRSCH, Reinhard, Groundwater Geophysics: A Tool for Hydrogeology: Springer Berlin Heidelberg, 2008
OGILVY, R. D.; MELDRUM, P. I.; KURAS, O. y BEAMISH, D., Systems and methods for resistivity measurement, 2009
KURAS, Oliver. The capacitive resistivity technique for electrical imaging of the shallow subsurface. 2002. Tesis Doctoral. University of Nottingham.
OSELLA, A.; BONGIOVANNI, M. V.; DE LA VEGA, M. Development of a Geoelectric Device of Capacitive Contact for Studying Archaeological Targets in Very Resistive Zones. En Near Surface Geoscience 2012–18th European Meeting of Environmental and Engineering Geophysics. 2012.
GRIFFITHS, D. H.; TURNBULL, J. A multi-electrode array for resistivity surveying. First break, 1985, vol. 3, no 7, p. 16-20.
LATASTE, J.F. et al., Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering, NDT & E International, vol. 36, pp. 383-394, 2003.
DAHLIN, Torleif; BERNSTONE, Christian. A roll-along technique for 3D resistivity data acquisition with multi-electrode arrays. En Symposium on the Application of Geophysics to Engineering and Environmental Problems 1997. Society of Exploration Geophysicists, 1997, p. 927-935.
ANING, Akwasi Acheampong; TUCHOLKA, Piotr; DANUOR, Sylvester K. 2D Electrical Resistivity Tomography (ERT) Survey using the Multi-Electrode Gradient Array at the Bosumtwi Impact Crater, Ghana. Journal of Environmental and Earth Science, 2013, vol. 3, no 5):, p. 12-27.
LAGMANSON, Mats Sven Bertilsooh. Methods and apparatus for measuring electrical properties of a ground using an electrode configurable as a transmitter or receiver. U.S. Patent No 6,404,203, 11 Jun. 2002.
CAI, Lukai; VERMA, Shireesh; GAJSKI, Daniel D. Comparison of Specfic and SystemC languages for system design. CECS, University of California, Irvine, CA, USA, Tech. Rep, 2003.
ABDELHADI, Abderrahim. Identically programmed intelligent electrodes for use in geoelectrical surveys. U.S. Patent No 7,158,048, 2 Ene. 2007.
SCINTREX LTD, Saris Manual, Available: http://scintrexltd.com/downloads/ saris.manual.pdf, 2015, August 31.
JIAO, Yang; WANG, Jun; HE, Gang. Design on Measuring System of New Type Electrical Resistivity Imaging Exploring Ground Instrument. En Key Engineering Materials. Trans Tech Publications, 2014. p. 369-374.
ZHONGWEN ZHANG, J. L.; LI, Anjing; LI, Yongjun; ZHANG, Wei, Two-way communication type electrode conversion device of high-density electric device, 2012
GOLDIE, Mark. A comparison between conventional and distributed acquisition induced polarization surveys for gold exploration in Nevada. The Leading Edge, 2007, vol. 26, no 2, p. 180-183.
ATTWA, M.; GÜNTHER, T. Application of spectral induced polarization (SIP) imaging for characterizing the near-surface geology: an environmental case study at Schillerslage, Germany. Australian Journal of Applied Sciences, 2012, vol. 6, no 9, p. 693-701.
BLOME, Mark. Efficient measurement and data inversion strategies for large scale geoelectric surveys. 2009. Tesis Doctoral. University of Göttingen.
HALLAJI, Milad et al., Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials," Cement and Concrete Research, vol. 69, pp. 10-18, 2015.
KINGMAN, J. E. E.; DONOHUE, J. G.; RITCHIE, T. J. Distributed acquisition in electrical geophysical systems. En Proceedings of Exploration. 2007. p. 425-432.
KILLEN, P. G., Induced Polarization. Explorations Trends and Developments. 23-24.
OPEN SYSTEMC INITIATIVE, et al. IEEE standard SystemC language reference manual. IEEE Computer Society, 2006, p. 1666-2005.
NEYENS, D., Method and system for measuring the resistivity of subsoil, 2014
PEZARD, P., System und Verfahren zur unterirdischen Widerstandsmessung, 2013
ZIEGLER, Silvio, et al. Current sensing techniques: A review. IEEE Sensors Journal, 2009, vol. 9, no 4, p. 354-376.
RIPKA, Pavel. Electric current sensors: a review. Measurement Science and Technology, 2010, vol. 21, no 11, p. 112001.
DAHLIN, Torleif; LEROUX, Virginie; NISSEN, Johan. Measuring techniques in induced polarisation imaging. Journal of Applied Geophysics, 2002, vol. 50, no 3, p. 279-298.
LOKE, M. H.; CHAMBERS, J. E.; OGILVY, R. D. Inversion of 2D spectral induced polarization imaging data. Geophysical Prospecting, 2006, vol. 54, no 3, p. 287-301.
KEMNA, Andreas, et al. An overview of the spectral induced polarization method for near-surface applications. Near Surface Geophysics, 2012, vol. 10, no 6, p. 453-468.
LUO, Yanzhong; ZHANG, Guiqing. Theory and application of spectral induced polarization. Society of Exploration Geophysicists, 1998.
BELLMUNT, F. et al., Time-lapse cross-hole electrical resistivity tomography monitoring effects of an urban tunnel, Journal of Applied Geophysics, vol. 87, pp. 60-70, 2012.
HUI, Luan, et al. Transmitter Research of Great Deep Resistivity Imaging. Procedia Engineering, 2011, vol. 16, p. 376-382.
EINWICH, Karsten. Introduction to the SystemC AMS extension standard. En Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2011 IEEE 14th International Symposium on. IEEE, 2011. p. 6-8.
YAO, Sun; ZHENFENG, Li; SHUANG, Zhao. Research on key technology of well-ground ERT transmitter. Procedia Engineering, 2012, vol. 29, p. 1099-1106.
ONUORAH, L. O.; NWOZOR, K. K. Instrumentation Geophysics: Design and Construction of a DC Variable Power Supply. International Journal of Instrumentation Science, 2014, vol. 3, no 2, p. 13-16.
WANG, Mi (ed.). Industrial tomography: systems and applications. Elsevier, 2015.
GUO, Xiucai; ZHANG, Xiutong. Development of multi-functional grounding resistance meter based on DSP, Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011 2nd International Conference on. IEEE, 2011.
WANG, Baoliang; HUANG, Zhiyao; LI, Haiqing. Design of high-speed ECT and ERT system. En Journal of Physics: Conference Series. IOP Publishing, 2009. p. 012035.
AWOTOYE, K. S.; SELEMO, A. O. Design and construction of a resistivity meter for shallow investigation. Nigerian Journal of Physics, 2006, vol. 18, no 2, p. 261-270.
SUMNER, John S. Principles of induced polarization for geophysical exploration. Elsevier, 2012.
QIYUN, Jiang, et al. The hardware design of a mine resistivity tomography instrument. En Imaging Systems and Techniques, 2009. IST'09. IEEE International Workshop on. IEEE, 2009. p. 235-238.
TILDEN, S., et al. Ieee standard for terminology and test methods for analog-to-digital converters. IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000), p. 1-139.
REVIL, M. et al., Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology, Hydrogeology Journal, vol. 20, pp. 617-658, 2012.
AKYILDIZ, Ian F., et al. Wireless sensor networks: a survey. Computer networks, 2002, vol. 38, no 4, p. 393-422.
SHAO, Lei; LIN, Jun. Design and Application of Network Borehole-Ground Electrical Measurement System. En Advanced Materials Research. Trans Tech Publications, 2011. p. 1926-1929.
RUJUN, Chen; WEIBING, Luo; JISHAN, He. High precision multi-frequency multi-function receiver for electrical exploration. En Electronic Measurement and Instruments, 2007. ICEMI'07. 8th International Conference on. IEEE, 2007. p. 1-599-1-601.
FENG, D. O. N. G., et al. Design of parallel electrical resistance tomography system for measuring multiphase flow. Chinese Journal of Chemical Engineering, 2012, vol. 20, no 2, p. 368-379.
BAGALONI, Vanesa N.; PERDOMO, Santiago; AINCHIL, Jerónimo. Geoelectric and magnetic surveys at La Libertad archaeological site (San Cayetano County, Buenos Aires Province, Argentina): A transdisciplinary approach. Quaternary International, 2011, vol. 245, no 1, p. 13-24.
WEI, Yaoguang, et al. Design of Intelligent Conductivity Meter Based on MSP430F149. En International Conference on Computer and Computing Technologies in Agriculture. Springer Berlin Heidelberg, 2009. p. 240-247.
SEVILLA, Raúl Melo; MONTES, Javier Rojas. Diseño y construcción de un prototipo para la medición de la resistividad del suelo usando dispositivos programables en un chip. Ingenium, 2014, vol. 8, no 20, p. 39-46.
YAN, Fabao; LIU, Jianxin; CHUN, Shaoheng. Study of the way to firmware program upgrade in FPGA reconfiguration of distributed geophysical instruments. Sensors & Transducers, 2014, vol. 172, no 6, p. 130.
NATIONAL INSTRUMENTS, Fundamentals of Building a Test System Switching and Multiplexing, 2016.
AGILENT TECHNOLOGIES, Essential Components of Data Acquisition Systems - Application Note 1386. USA, 2002.
FAN, Hongbing; WU, Yu-Liang. Crossbar based design schemes for switch boxes and programmable interconnection networks. En Proceedings of the 2005 Asia and South Pacific Design Automation Conference. ACM, 2005. p. 910-915.
KHAN, Shafiullah; PATHAN, Al-Sakib Khan; ALRAJEH, Nabil Ali (ed.). Wireless Sensor Networks: Current Status and Future Trends. CRC Press, 2012.
GANCE, J. et al, Electrical monitoring of the Super-Sauze landslide (French Alps), Extended Abstract EAGE, 2012.
FENG, Tse-yun. A survey of interconnection networks. Computer, 1981, vol. 14, no 12, p. 12-27.
ÇAKIR, Abdülkadir; AKPANCAR, Seyit. Resistivity-induced Polarization Receiver/Transmitter Design and PC-assisted Data Analysis. Acta Polytechnica Hungarica, 2015, vol. 12, no 2.
GRIFFITHS, Donald H.; TURNBULL, John. Electrical resistivity geological surveying apparatus and method utilizing plural cable sections with controlled distributed electrode/cable conductor switching. U.S. Patent No 4,752,881, 21 Jun. 1988. ALLEN, David A. A review of geophysical equipment applied to groundwater and soil investigation. Land and Water Australia, 2008.
WILKINSON, P. B., et al. Array Optimisation for Multi-channel Electrical Resistivity Tomography Instruments. En Near Surface 2007-13th EAGE European Meeting of Environmental and Engineering Geophysics. 2007.
PARRA, Jorge O.; OWEN, Thomas E.; DUFF, Bob M. Method and apparatus for detecting subsurface anomalies. U.S. Patent No 4,835,474, 30 Mayo 1989
WANG, J. et al, Enhanced electrode conversion device of high-density electric instrument, Universidad de Jilin, 2012.
EVERETT, Mark E. Near-surface applied geophysics. Cambridge University Press, 2013.
WU, Ai Ping; PAN, He Ping. The Transmitter Controller Design of Induced Polarization Instrument. En Applied Mechanics and Materials. Trans Tech Publications, 2012. p. 221-224.
FISHER, Roderick John. Pole-Pot ential Mapping and Synt hetic Arrays in Electrical Exploration. 2000. Tesis Doctoral. University of Toronto.
TEXAS INSTRUMENTS INC., Comparing Bus Solutions, Application Report, SLLA067B–October 2009.
BENEŠ, Václav E. (ed.). Mathematical theory of connecting networks and telephone traffic. Academic press, 1965.
AFSHAR, Ahmad, et al. Geophysical investigation of underground water content zones using electrical resistivity tomography and ground penetrating radar: A case study in Hesarak-Karaj, Iran. Engineering Geology, vol. 196, p. 183-193, 2015.
AHLER, Marco; PAULI, Simon; KOPP, Thomas. Sensor device and method for the geoelectrical prospecting of raw mineral deposits. U.S. Patent No 9,051,832, 9 Jun. 2015.
MORAIS, Fernando de; BACELLAR, Luis de Almeida Prado; ARANHA, Paulo Roberto Antunes. Study of flow in vadose zone from electrical resistivity surveys. Revista Brasileira de Geofísica, 2008, vol. 26, no 2, p. 115-122.
DAHLIN, Torleif; ZHOU, Bing. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical prospecting, 2004, vol. 52, no 5, p. 379-398.
ALLEGRO MICROSYSTEMS, LLC, ACS714 Hoja de Características, Rev 9., 2013.
ROYER, Elizabeth M.; TOH, Chai-Keong. A review of current routing protocols for ad hoc mobile wireless networks. IEEE personal communications, 1999, vol. 6, no 2, p. 46-55.
WEHRLE, Klaus; GÖTZ, Stefan; RIECHE, Simon. 7. distributed hash tables. En Peer-to-Peer systems and applications. Springer Berlin Heidelberg, 2005. p. 79-93.
CHAMBERS, J. E., et al. River terrace sand and gravel deposit reserve estimation using three-dimensional electrical resistivity tomography for bedrock surface detection. Journal of Applied Geophysics, 2013, vol. 93, p. 25-32.
LONGO, Vittorio, et al. Prospecting for clay minerals within volcanic successions: application of electrical resistivity tomography to characterise bentonite deposits in northern Sardinia (Italy). Journal of Applied Geophysics, 2014, vol. 111.
ZARROCA, Mario, et al. Application of electrical resistivity imaging (ERI) to a tailings dam project for artisanal and smallscale gold mining in Zaruma-Portovelo, Ecuador. Journal of Applied Geophysics, 2015, vol. 113, p. 103-113.
CORWIN, D. L.; LESCH, S. M. Apparent soil electrical conductivity measurements in agriculture. Computers and electronics in agriculture, 2005, vol. 46, no 1, p. 11-43.
AMATO, Mariana, et al. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. Tree physiology, 2008, vol. 28, no 10, p. 1441-1448.
PAGLIS, Carlos Mauricio. Application of electrical resistivity tomography for detecting root biomass in coffee trees. International Journal of Geophysics, 2013, vol. 2013.
ANDRENELLI, M. C., et al. The use of the ARP© system to reduce the costs of soil survey for precision viticulture. Journal of Applied Geophysics, 2013, vol. 99, p. 24-34.
CHOUZENOUX, Christian; MANIN, Yves; POHL, Didier y SOUHAITE Philippe, Apparatus for monitoring underground formations, US 20040263175 A1, 2004.
RISTOLAINEN, Antti; FARKAS, Csilla; TÓTH, Tibor. Prediction of Soil Properties with Field Geo‐electrical Probes. Communications in soil science and plant analysis, 2009, vol. 40, no 1-6, p. 555-565.
LILIENTHAL, H., et al. Comparison of different geo-electric measurement techniques to detect in-field variability of soil parameters. LANDBAUFORSCHUNG VOLKENRODE, 2005, vol. 55, no 4, p. 237.
VEEKEN, Paul C., et al. Benefits of the induced polarization geoelectric method to hydrocarbon exploration. Geophysics, 2009, vol. 74, no 2, p. B47-B59.
LIZARAZO C., Tatiana, Preocupante déficit de ingenieros en Colombia, Periódico EL TIEMPO, edición del día 28 de octubre de 2015.
VESGA, Rafael. Emprendimiento e innovación en Colombia:¿ qué nos está haciendo falta. Observatorio de Competitividad del Centro de Estrategia y Competitividad. Recuperado el, 2008, vol. 3.
DE PASCALE, Gregory P.; POLLARD, Wayne H.; WILLIAMS, Kevin K. Geophysical mapping of ground ice using a combination of capacitive coupled resistivity and ground‐penetrating radar, Northwest Territories, Canada. Journal of Geophysical Research: Earth Surface, 2008, vol. 113, no F2.
RICHARD, Page. Inexpensive geophysical instruments supporting groundwater exploration in developing nations. Journal of Water Resource and Protection, 2011, vol. 2011.
SÁNCHEZ, Fabio Héctor Giraldo; LOSADA, Fernando Diego Sendoya. Diseño y Construcción de Equipo para Realizar Prospección Geofísica Aplicando el Método VDE Tomografía Eléctrica. Publicaciones e Investigación, 2015, vol. 7, p. 71-81.
PASIGEOPHYSICS, Earth Resistivity Meter 16GL-N, Hoja de caracteristicas tecnicas, 2010.
ABEM INSTRUMENT AB, Terrameter SAS 4000/SAS 1000, Manual de usuario, ed. Sundbyberg, Sweden, 2000.
SCHMITT, Benoit; CHOUZENOUX, Christian; BABOUR, Kamal y BEGUIN, Paul, Surface formation monitoring system and method, US 8056623 B2, 2011.
_____________________, Terrameter LS, Manual de usuario, ed. Sundbyberg, Sweden, 1012.
GEOMETRICS, OhmMapper – Resistivity Mapping, Manual de características, 2002.
SHANGHAI AIDU ENERGY SCIENCE CO. LTD, A-DJF10-2 high power IP., Hoja de características técnicas, 2008.
GRIFFITHS, D. H.; TURNBULL, J.; OLAYINKA, A. I. Two-dimensional resistivity mapping with a computer-controlled array. First break, 1990, vol. 8, no 4, p. 121-129.
MEJU, Max A.; MONTAGUE, M. Basis for a flexible low-cost automated resistivity data acquisition and analysis system. Computers & Geosciences, 1995, vol. 21, no 8, p. 993-999.
SCHNEIDER, George W.; RYCK, SM De; FERRE, P. A. The application of automated high resolution DC resistivity in monitoring hydrogeological field experiments. En Symposium on the Application of Geophysics to Engineering and Environmental Problems 1993. Society of Exploration Geophysicists, 1993. p. 145-162.
LAINE, Daren L.; PARRA, J. O.; OWEN, T. E. Application of an automatic earth resistivity system for detecting ground water migration under a municipal landfill. Proceedings of NWWAConference on Surface and Borehole Geophysical Methods in Groundwater Investigations, 1982, p. 34-51.
PROULX, Tom, Sensors, Instrumentation and Special Topics, Proceedings of the 29th IMAC, A Conference on Structural Dynamics, Volume 6 vol. 6, United Stated: Springer, 2011.
DRATLER, Jay; MCJOHN, Stephen M. Intellectual Property Law: Commercial, Creative, and Industrial Property. Law Journal Press, 1991.
PRESIDENCIA DE LA REPUBLICA DE COLOMBIA, Plan Nacional de Desarrollo 2010-2014. Bogotá DC, Colombia: Imprenta Nacional de Colombia, 2011.
OWEN, Thomas E.; DARILEK, Glenn T.; PETERS, Wendell R. y BRYAN Edward L., Bryan, Electrical geophysical exploration system with addressable current probes, US 4467283 A, 1984.
DAY, Robert W. Geotechnical earthquake engineering handbook. McGraw-Hill, 2002.
GROAT, Charles G. Seismographs, sensors, and satellites: better technology for safer communities. Technology in Society, 2004, vol. 26, no 2, p. 169-179.
TEUPSER, Christian; PLEŠINGER, Axel. Design of feedback-controlled wide-band seismographs with respect to undesired side-effects. Physics of the Earth and Planetary Interiors, 1979, vol. 18, no 2, p. 58-63.
USHER, M.J., et al., Physics of the Earth and Planetary Interiors, Volume 18, Issue 2, Pages 38-50, 1979.
ZHANG, Wentao, et al. Fiber laser sensors for micro seismic monitoring. Measurement, 2016, vol. 79, p. 203-210.
HUTT, Charles R.; BOLTON, Harold F.; HOLCOMB, L. Gary. 20 US contribution to digital global seismograph networks. International Geophysics, 2002, vol. 81, p. 319-332.
MADETI, Siva Ramakrishna; SINGH, S. N. Monitoring system for photovoltaic plants: A review. Renewable and Sustainable Energy Reviews, 2017, vol. 67, p. 1180-1207.
ASOCIACIÓN COLOMBIANA DE INGENIERÍA SÍSMICA, Normas Colombianas de Diseño y Construcción Sismo Resistente NSR-98, Ley 400 de 1997, 1998.
ASOCIACIÓN COLOMBIANA DE INGENIERÍA SÍSMICA, Normas Colombianas de Diseño y Construcción Sismo Resistente NSR-10, Actualización de la Ley 400 de 1997, 2010.
DIARIO OFICIAL, Republica de Colombia, imprenta nacional de Colombia, No 47.663, ISSN-0122-2112, Bogotá, Colombia, viernes 26 de marzo de 2010.
CHEN BAOHUA, N. Z.; XIAOJUAN, BAI; GUANGTAO, ZHANG. Novel electric prospecting device, 2013.
ALLEN, Rex V., Automatic earthquake recognition and timing from single traces, Bulletin of the Seismological Society of America, 1978.
KÜPERKOCH, Ludger, MEIER,Thomas y otros, Automated determination of P-phase arrival times at regional and local distances using higher order statistics, Geophysical Journal International, 2010.
KRADOLFER, U. y BAER, M., An automatic phase picker for local and teleseismic events, Bulletin of the Seismological Society of America, 1987.
WITHERS, Mitchell, ASTER, Richard y otros, A Comparison of Select Trigger Algorithms for Automated Global Seismic Phase and Event Detection, Bulletin of the Seismological Society of America, 1998.
KÜPERKOCH, Ludger, MEIER,Thomas y DIEHL, Tobias, Automated Event and Phase Identification, Tesis de doctorado, Universidad de Bochum, Alemania, 2011.
CICHOWICZ, Artur, An automatic S-phase picker, Bulletin of the Seismological Society of America, 1993.
MORITZ, Beyreuther, Speech Recognition based Automatic Earthquake Detection and Classification, Tesis de doctorado, Universidad Ludwig-Maximilians de Munich, 2011.
ROMEO, Giovanni, Seismic signals detection and classification using artificial neural networks, Annali di geofisica, 1994.
SANTIAGO P., Julian B., Calibración de acelerómetros para la medida de micro aceleraciones en aplicaciones espaciales, tesis doctoral, Universidad Politécnica de Madrid, 2000
SPARACINO, Adam R., et al. Survey of battery energy storage systems and modeling techniques. En Power and Energy Society General Meeting, 2012 IEEE. IEEE, 2012. p. 1-8.
SUPPER, Robert, et al, The GEOMON 4D electrical monitoring system: current state and future developments, Ber. Geol. Bundesanstalt 93, 2012.
RATES, Battery Discharge. Isco Nickel-Cadmium and Lead-Acid Battery Comparisons. 1994.
ANUPHAPPHARADORN, Suratsawadee, et al. Comparison the economic analysis of the battery between lithium-ion and lead-acid in PV stand-alone application. Energy Procedia, 2014, vol. 56, p. 352-358.
ACAR, Cenk; SHKEL, Andrei M. Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers. Journal of micromechanics and microengineering, 2003, vol. 13, no 5, p. 634.
COLLETTE, C., et al. Review of sensors for low frequency seismic vibration measurement. 2011.
STEINFELD, Edward F. FAT32 is made for data-intensive embedded applications. REAL TIME MAGAZINE, 1998, p.91-100.
AVERY, H. R.; BERRILL, J. B.; DEWE, M. B. Design and development of a low-cost, high-performance, strong-motion accelerograph. En Proc. of the 2004 NZSEE Conference. 2004.
EARLE, Paul S.; SHEARER, Peter M. Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America, 1994, vol. 84, no 2, p. 366-376.
SABBIONE, Juan y otros, Análisis comparativo de diferentes métodos de picado automático de fases en terremotos registrados en la estación sismológica de la plata (LPA), Geoacta, Asociación Argentina de Geofísicos y Geodestas, 2011
DARGIE, Waltenegus; POELLABAUER, Christian. Fundamentals of wireless sensor networks: theory and practice. John Wiley & Sons, 2010.
BHATTACHARYA, P. K., Methods in Geochemistry and Geophysics - direct current geoelectric sounding, Elsevier publishing company, 1968.
JINGUUJI, Motoharu. Development of multi-transmission high speed survey system and the application of geyser monitoring, Ber. Geol. Bundesanstalt 93, 2012.
KAUFMAN, Alex A.; ANDERSON, B. Principles of electric methods in surface and borehole geophysics. Elsevier, 2010.
STUMMER, Peter. New developments in electrical resistivity imaging. 2003. Tesis Doctoral. University of Leoben, Austria.
LOKE, M. H., et al. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 2013, vol. 95, p. 135-156.
GISH, O. H.; ROONEY, W. J. Measurement of resistivity of large masses of undisturbed earth. Terrestrial Magnetism and Atmospheric Electricity, 1925, vol. 30, no 4, p. 161-188.
NORZAGARAY-CAMPOS, Mariano; MUÑOZ-SEVILLA, Patricia; GARCÍA-GUTIÉRREZ, Cipriano. DISEÑO Y APLICACIÓN DE UN EQUIPO PARA EL MONITOREO DE LA SALINIDAD EN EL SUBSUELO. Ra Ximhai, 2012, vol. 8, no 3.
MIKAILU, A., et al. Development of Digital Resistivity Meter. Development, 2015, vol. 42.
WAGNER, Florian M., et al. Monitoring freshwater salinization in analog transport models by time-lapse electrical resistivity tomography. Journal of Applied Geophysics, 2013, vol. 89, p. 84-95.
FLORES-MÁRQUEZ, E. Leticia, et al. Two algorithms to compute the electric resistivity response using Green's functions for 3D structures. Geofísica internacional, 2015, vol. 54, no 1, p. 7-20.
TABBAGH, Jeanne, et al. Numerical modelling of direct current electrical resistivity for the characterisation of cracks in soils. Journal of Applied Geophysics, 2007, vol. 62, no 4, p. 313-323.
BLOME, Mark; MAURER, H. R.; SCHMIDT, Kersten. Advances in three-dimensional geoelectric forward solver techniques. Geophysical Journal International, 2009, vol. 176, no 3, p. 740-752.
MUKHEDKAR, D., et al. IEEE Guide for Measuring Earth Resistivity Ground Impedance and Earth Surface Potentials of a Ground System. IEEE Standards Board.
SHAN, Wei, et al. A Model for the Electrical Resistivity of Frozen Soils and an Experimental Verification of the Model. Cold Regions Science and Technology, 2015, vol. 119, p. 75-83.
URI: http://repositorio.uptc.edu.co/handle/001/1943
Appears in Collections:JNG. Trabajos de Grado y Tesis

Files in This Item:
File Description SizeFormat 
TGT-616.pdf
  Restricted Access
Archivo principal10.05 MBAdobe PDFView/Open Request a copy
Autor_JER.pdf
  Restricted Access
Autorización publicaciónj1.98 MBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons