Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2008
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeneses Ortegón, Luz Andrea-
dc.date.accessioned2018-04-23T20:29:49Z-
dc.date.available2018-04-23T20:29:49Z-
dc.date.issued2013-
dc.identifier.citationMeneses Ortegón, L. A. (2013). Bacterioplancton de tres lagunas de alta montaña tropical andina en el departamento de Boyacá, Colombia. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2008spa
dc.identifier.urihttps://repositorio.uptc.edu.co/handle/001/2008-
dc.description73 páginas : ilustraciones (algunas color), tablas, figuras.spa
dc.description.abstractLa cadena trófica tradicional es una interacción directa entre depredadores y presas, en donde un depredador tope puede afectar positivamente a las especies basales ya que controla los depredadores de estos. En ésta, una parte de la energía se creía perdida de un nivel a otro, sin embargo, gracias al concepto de cadena trófica detritívora y “bucle microbiano”, se describió que es reciclada y reincorporada al ciclo de materia y energía, a través de las bacterias en tres pasos: procesamiento y descomposición de la materia orgánica, remineralización de nutrientes y alimento de otros niveles tróficos. A pesar de su importancia es poco lo que se conoce de su estructuración en los ecosistemas tropicales altoandinos, por esta razón, el objetivo de este trabajo fue evaluar la variabilidad bacterioplanctónica en lagos altoandinos de Boyacá en tres épocas climáticas. Para lo cual se tomaron muestras triplicadas en tres zonas, superficie, fondo y litoral, en las Lagunas Cristalina, Negra y Verde de Boyacá y se determinó la biomasa, abundancia y formas bacterianas, así como variables físico-químicas (nitritos, nitratos, fosfatos, materia orgánica, temperatura, pH, conductividad, oxígeno) y clorofila α. Se encontró que la abundancia y biomasa bacteriana están dentro del rango establecido para lagos oligotróficos y las formas bacilares son las más comunes en estos ecosistemas. La clorofila α es importante para explicar la estructuración del bacterioplancton gracias a la correlación que existe de aporte de materia orgánica por parte del fitoplancton y remineralización de nutrientes por parte de las bacterias. Se concluyó que el fósforo puede ser un nutriente limitante para el bacterioplancton.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2013 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleBacterioplancton de tres lagunas de alta montaña tropical andina en el departamento de Boyacá, Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dcterms.bibliographicCitationAbarzúa, M., S. Basualto, and H. Urrutia. 1995. Relación entre la abundancia y biomasa de fitoplancton y bacterioplancton heterotrófico en aguas superficiales del Golfo de Arauco, Chile. Investigaciones Marinas, Valparaíso 23:67-74.spa
dcterms.bibliographicCitationAmerican Public Health Association. 1999. Standard methods for the examination of water and wastewater. Lenore S. Clescerl, Arnold E. Greenberg, Andrew D. Eaton edition, Washington, DC.spa
dcterms.bibliographicCitationAnesio, A. M., P. C. Abreu, and F. de Assis Esteves. 1997. Influence of the Hydrological Cycle on the Bacterioplankton of an Impacted Clear Water Amazonian Lake. Microbial Ecology 34:66-73.spa
dcterms.bibliographicCitationAraújo, M. F. F. d. and M. J. L. Godinho. 2008. Seasonal and spatial distribution of Bacterioplankton in a fluvial-lagunar system of a tropical region: density, biomass, cellular volume and morphologic variation. Brazilian Archives of Biology and Technology 51:203-212.spa
dcterms.bibliographicCitationAzam, F., T. Fenchel, J. Field, J. Gray, L. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Marine ecology progress series. Oldendorf 10:257-263.spa
dcterms.bibliographicCitationBaines, S. B. and M. L. Pace. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnology and Oceanography:1078-1090.spa
dcterms.bibliographicCitationBarragán, R., A. Canosa, and J. P. Niño. 2009. Bacterioplancton en Bahía Gaira, mar Caribe (Colombia): comparación de la variabilidad en abundancia y biomasa bacteriana durante diferentes períodos. Boletín de Investigaciones Marinas y Costeras 38:75-90.spa
dcterms.bibliographicCitationBelgrano, A., U. M. Scharler, J. Dunne, and R. E. Ulanowicz. 2005. Aquatic Food Webs, An Ecosystem Approach. Belgrano, Andrea, Scharler, Ursula M. Dunne, Jennifer Ulanowicz, Robert E. edition, United States.spa
dcterms.bibliographicCitationBertoni, R., C. Callieri, and A. Pugnetti. 1998. Dinamica del carbonio organico nel Lago di Cadagno e attività microbiche nel mixolimnio. Documenta dell'Istituto Italiano di Idrobiologia 63:105-120.spa
dcterms.bibliographicCitationBiddanda, B., M. Ogdahl, and J. Cotner. 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceanography 46:730-739.spa
dcterms.bibliographicCitationBillen, G., P. Servais, and S. Becquevort. 1990. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia 207:37-42.spa
dcterms.bibliographicCitationWetzel, R. G. 1983. Limnology. Saunders.spa
dcterms.bibliographicCitationWhite, P. A., J. Kalff, J. B. Rasmussen, and J. M. Gasol. 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial Ecology 21:99-118.spa
dcterms.bibliographicCitationWille, A., B. Sonntag, B. Sattler, and R. Psenner. 1999. Abundance, biomass and size-structure of the microbial assemblage in the high mountain lake Gossenkollesee (Tyrol, Austria) during the ice-free period. Journal of Limnology 58:117-126.spa
dcterms.bibliographicCitationWilliams, P. l. B. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the plankton food web. Pages 1-28 in G. e. a. Rheinheimer, editor. Lower Organisms and their Role in the Food Web: Proceedings of the 15th European Marine Biology Symposium, Kiel, Damp 2000, Federal Republic of Germany (September 29-October 3, 1980). Kieler Meeresforschungen.spa
dcterms.bibliographicCitationWork, K., K. Havens, B. Sharfstein, and T. East. 2005. How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake? Journal of plankton research 27:357-372.spa
dcterms.bibliographicCitationWright, R. T., R. B. Coffin, and M. E. Lebo. 1987. Dynamics of planktonic bacteria and heterotrophic microflagellates in the Parker Estuary, northern Massachusetts. Continental shelf research 7:1383-1397.spa
dcterms.bibliographicCitationBird, D. F. and J. Kalff. 1984. Empirical Relationships between Bacterial Abundance and Chlorophyll Concentration in Fresh and Marine Waters. Canadian Journal of Fisheries and Aquatic Sciences 41:1015-1023.spa
dcterms.bibliographicCitationBjornsen, P. and J. Kuparinen. 1991. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean. Marine Ecology Progress Series 71:185-194.spa
dcterms.bibliographicCitationBjornsen, P. K. 1986. Automatic determination of bacterioplankton biomass by image analysis. Applied and Environmental Microbiology 51:1199-1204.spa
dcterms.bibliographicCitationBoteva, S., I. Traykov, A. Kenarova, and V. Bogoev. 2010. Abundance and spatial dynamics of bacterioplankton in the Seven Rila Lakes, Bulgaria. Chinese Journal of Oceanology and Limnology 28:451-458.spa
dcterms.bibliographicCitationBoulion, V. 2012. Assimilation and turnover time of phosphorus by size fractions of microplankton in lakes of different types. Inland water biology 5:304-309.spa
dcterms.bibliographicCitationBrett, M. T., F. S. Lubnow, M. Villar-Argaiz, A. Müller-Solger, and C. R. Goldman. 1999. Nutrient control of bacterioplankton and phytoplankton dynamics. Aquatic Ecology 33:135-145.spa
dcterms.bibliographicCitationBrönmark, C. and L.-A. Hansson. 2005. The biology of lakes and Ponds. Oxford University Press Inc. edition, New York.spa
dcterms.bibliographicCitationBurns, C. W. and L. M. Galbraith. 2007. Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of plankton research 29:127-139.spa
dcterms.bibliographicCitationBurns, C. W. and M. Schallenberg. 1996. Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. Journal of plankton research 18:683-714.spa
dcterms.bibliographicCitationBurns, C. W. and M. Schallenberg. 1998. Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. Journal of plankton research 20:1501-1525.spa
dcterms.bibliographicCitationCallieri, C. and R. Bertoni. 1999. Organic carbon and microbial food web assemblages in an oligotrophic alpine lake. Journal of Limnology 58:136-143.spa
dcterms.bibliographicCitationCanosa, A. and G. Pinilla. 2001. Total bacterial populations in three lentic water bodies of the Colombian Andes using the epifluorescence technique. Lakes & Reservoirs: Research & Management 6:169-174.spa
dcterms.bibliographicCitationCanosa, A. and G. Pinilla. 2007. Relaciones entre las abundancias del bacterioplancton y del fitoplancton en tres ecosistemas lénticos de los Andes Colombianos. Revista de Biología Tropical 55:135-146.spa
dcterms.bibliographicCitationCaraballo-Gracia, P. R. 2010. O papel da alça microbiana na dinâmica trofica de um lago de várzea na Amazônia central. Instituto Nacional de Pesquisas da Amazônia, Manaus - Amazonas.spa
dcterms.bibliographicCitationCaraballo, P. 2009. Uso de isótopos estables de carbono y nitrógeno para estudios de ecología acuática. Boletín Científico CIOH 27:176-187.spa
dcterms.bibliographicCitationCarpenter, S. R., J. F. Kitchell, and J. R. Hodgson. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634-639.spa
dcterms.bibliographicCitationCastillo, M. M. 2000. Influence of hydrological seasonality on bacterioplankton in two neotropical floodplain lakes. Hydrobiologia 437:57-69.spa
dcterms.bibliographicCitationCatalan, J., L. Camarero, M. Felip, S. Pla, M. Ventura, T. Buchaca, F. Bartumeus, G. de Mendoza, A. Miró, and E. O. Casamayor. 2006. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25:551-584.spa
dcterms.bibliographicCitationĆirić, S., B. Milošević, Z. Spasić, J. Knežević, and S. Anđelković. 2012. Seasonal and Vertical Distributions of Bacterioplankton in Lake Ćelije, Serbia. University of Priština, Republic of Macedonia.spa
dcterms.bibliographicCitationCole, J. J. 1999. Aquatic Microbiology for Ecosystem Scientists: New and Recycled Paradigms in Ecological Microbiology. Ecosystems 2:215-225.spa
dcterms.bibliographicCitationCole, J. J., S. Findlay, and M. L. Pace. 1988. Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Marine Ecology Progress Series 43:1-10.spa
dcterms.bibliographicCitationCole, J. J., M. L. Pace, N. F. Caraco, and G. S. Steinhart. 1993. Bacterial biomass and cell size distributions in lakes: More and larger cells in anoxic waters. Limnology and Oceanography:1627-1632.spa
dcterms.bibliographicCitationCoveney, M. F. and R. G. Wetzel. 1992. Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures. Applied and Environmental Microbiology 58:150-156.spa
dcterms.bibliographicCitationCoveney, M. F. and R. G. Wetzel. 1995. Biomass, production, and specific growth rate of bacterioplankton and coupling to phytoplankton in an oligotrophic lake. Limnology and Oceanography:1187-1200.spa
dcterms.bibliographicCitationCovich, A. P. 2006. Protección de la biodiversidad del bentos para asegurar procesamiento de materia orgánica y servicios del ecosistema: Importancia de los invertebrados fragmentadores de redes de drenaje. ECOTROPICOS 19:109-127.spa
dcterms.bibliographicCitationCurrie, D. J. 1990. Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus. Limnology and Oceanography 35:1437-1455.spa
dcterms.bibliographicCitationCurrie, D. J. and J. Kalff. 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnology and Oceanography:298-310.spa
dcterms.bibliographicCitationDel Giorgio, P. A., J. J. Cole, and A. Cimbleris. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148-151.spa
dcterms.bibliographicCitationDufour, P. and J. P. Torréton. 1996. Bottom-up and top-down control of bacterioplankton from eutrophic to oligotrophic sites in the tropical northeastern Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers 43:1305-1320.spa
dcterms.bibliographicCitationElser, J., T. Chrzanowski, R. Sterner, J. Schampel, and D. Foster. 1995. Elemental ratios and the uptake and release of nutrients by phytoplankton and bacteria in three lakes of the Canadian Shield. Microbial Ecology 29:145-162.spa
dcterms.bibliographicCitationFelip, M., F. Bartumeus, S. Halac, and J. Catalan. 1999. Microbial plankton assemblages, composition and biomass, during two ice-free periods in a deep high mountain lake (Estany Redó, Pyrenees). Journal of Limnology 58:193-202.spa
dcterms.bibliographicCitationFenchel, T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Marine Ecology Progress Series 9:35.spa
dcterms.bibliographicCitationFenchel, T. 2008. The microbial loop - 25 years later. Journal of Experimental Marine Biology and Ecology 366:99-103.spa
dcterms.bibliographicCitationFrioni, L. 1999. Procesos microbianos. Editorial de la Fundación Universidad Nacional de Río Cuarto.spa
dcterms.bibliographicCitationFujii, M., H. Kojima, T. Iwata, J. Urabe, and M. Fukui. 2012. Dissolved Organic Carbon as Major Environmental Factor Affecting Bacterioplankton Communities in Mountain Lakes of Eastern Japan. Microbial Ecology 63:496-508.spa
dcterms.bibliographicCitationGocke, K., C. Hernández, H. Giesenhagen, and H. G. Hoppe. 2004. Seasonal variations of bacterial abundance and biomass and their relation to phytoplankton in the hypertrophic tropical lagoon Ciénaga Grande de Santa Marta, Colombia. Journal of plankton research 26:1429-1439.spa
dcterms.bibliographicCitationGonzalez, J. M., E. B. Sherr, and B. F. Sherr. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Applied and Environmental Microbiology 56:583-589.spa
dcterms.bibliographicCitationGuillemette, F. and P. A. del Giorgio. 2012. Simultaneous consumption and production of fluorescent dissolved organic matter by lake bacterioplankton. Environmental Microbiology 14:1432-1443.spa
dcterms.bibliographicCitationHadas, O., R. Pinkas, C. Albert-Diez, J. Bloem, T. Cappenberg, and T. Berman. 1990. The effect of detrital addition on the development of nanoflagellates and bacteria in Lake Kinneret. Journal of plankton research 12:185-199.spa
dcterms.bibliographicCitationHerrera-Martínez, Y. 2012. Estudio ecológico de las comunidades hidrobiológicas en humedales altoandinos de la Cordillera Oriental de Colombia. Pages 1-109. Universidad Pedagógica y Tecnológica de Colombia, Colombia.spa
dcterms.bibliographicCitationHinder, B., I. Baur, K. Hanselmann, and F. Schanz. 1999. Microbial food web in an oligotrophic high mountain lake (Jori Lake III. Switzerland). Journal of Limnology 58:162-168.spa
dcterms.bibliographicCitationHobbie, J. E., R. J. Daley, and S. Jasper. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33:1225-1228.spa
dcterms.bibliographicCitationHodgson, J. Y. S. 2005. A trophic cascade synthesis: review of top-down mechanisms regulating lake ecosystems. BIOS 76:137-144.spa
dcterms.bibliographicCitationIturriaga, R. and A. Zsolnay. 1983. Heterotrophic uptake and transformation of phytoplankton extracellular products. Botanica Marina 26:375-382.spa
dcterms.bibliographicCitationJones, J., B. Simon, and C. Cunningham. 1983. Bacterial uptake of algal extracellular products: An experimental approach. Journal of Applied Microbiology 54:355-365.spa
dcterms.bibliographicCitationKepner Jr, R. L. and J. R. Pratt. 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiology and Molecular Biology Reviews 58:603-615.spa
dcterms.bibliographicCitationKerner, M., H. Hohenberg, S. Ertl, M. Reckermann, and A. Spitzy. 2003. Self-organization of dissolved organic matter to micelle-like microparticles in river water. Nature 422:150-154.spa
dcterms.bibliographicCitationKirchman, D. 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microbial Ecology 28:255-271.spa
dcterms.bibliographicCitationKlug, J. L. 2005. Bacterial response to dissolved organic matter affects resource availability for algae. Canadian Journal of Fisheries and Aquatic Sciences 62:472-481.spa
dcterms.bibliographicCitationKritzberg, E. S., S. Langenheder, and E. S. Lindström. 2006. Influence of dissolved organic matter source on lake bacterioplankton structure and function–implications for seasonal dynamics of community composition. FEMS microbiology ecology 56:406-417.spa
dcterms.bibliographicCitationLindeman, R. L. 1942. The Trophic-Dynamic Aspect of Ecology. Ecology 23:399-417.spa
dcterms.bibliographicCitationLindström, E. S. 2000. Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microbial Ecology 40:104-113.spa
dcterms.bibliographicCitationLogue, J. B., S. Langenheder, A. F. Andersson, S. Bertilsson, S. Drakare, A. Lanzén, and E. S. Lindström. 2012. Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species–area relationships. The ISME Journal 6:1127-1136.spa
dcterms.bibliographicCitationLlames, M. E., P. A. del Giorgio, H. Zagarese, M. Ferraro, and I. Izaguirre. 2013. Alternative states drive the patterns in the bacterioplankton composition in shallow Pampean lakes (Argentina). Environmental Microbiology Reports 5:310-321.spa
dcterms.bibliographicCitationMalone, T. C. and H. W. Ducklow. 1990. Microbial biomass in the coastal plume of Chesapeake Bay: Phytoplankton-bacterioplankton relationships. Limnology and Oceanography 35:296-312.spa
dcterms.bibliographicCitationMcKnight, D. M., R. Harnish, R. L. Wershaw, J. S. Baron, and S. Schiff. 1997. Chemical Characteristics of Particulate, Colloidal, and Dissolved Organic Material in Loch Vale Watershed, Rocky Mountain National Park. Biogeochemistry 36:99-124.spa
dcterms.bibliographicCitationMedina-Sánchez, J. M., M. Villar-Argaiz, and P. Carrillo. 2004. Neither with nor without you: A complex algal control on bacterioplankton in a high mountain lake. Limnology and Oceanography 49:1722-1733.spa
dcterms.bibliographicCitationMorales, M., J. Otero, T. V. d. Hammen, A. Torres, C. Cadena, C. Pedraza, N. Rodríguez, C. Franco, J. C. Betancourth, É. Olaya, E. Posada, and L. Cárdenas. 2007. Atlas de páramos de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt edition, Bogotá, D.C.spa
dcterms.bibliographicCitationMorris, D. P. and W. M. Lewis Jr. 1992. Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado. Limnology and Oceanography 37(6):1179-1192.spa
dcterms.bibliographicCitationMuylaert, K., K. Van der Gucht, N. Vloemans, L. D. Meester, M. Gillis, and W. Vyverman. 2002. Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Applied and Environmental Microbiology 68:4740-4750.spa
dcterms.bibliographicCitationNalewajko, C. and D. Lean. 1972. Growth and excretion in planktonic algae and bacteria. Journal of Phycology 8:361-366.spa
dcterms.bibliographicCitationNeal, C. o. 2001. Alkalinity measurements within natural waters: towards a standardised approach. Science of the Total Environment, The 265:99-113.spa
dcterms.bibliographicCitationNoges, T. 2009. Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633:33-43.spa
dcterms.bibliographicCitationNorland, S. 1993. The relationship between biomass and volume of bacteria Pages 303–307 in P. Kemp, B. Sherr, E. Sherr, and J. J. Cole, editors. Aquatic Microbial Ecology, Boca Raton.spa
dcterms.bibliographicCitationNusch, E. A. 1980. Comparison of different methods for chlorophyll and phaeopigments determination. Archiv fur Hydrobiologie Beih Ergebn Limnology 14:14-36.spa
dcterms.bibliographicCitationPace, M. and J. Cole. 1994. Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microbial Ecology 28:181-193.spa
dcterms.bibliographicCitationPaganin, P., L. Chiarini, A. Bevivino, C. Dalmastri, A. Farcomeni, G. Izzo, A. Signorini, C. Varrone, and S. Tabacchioni. 2012. Vertical distribution of bacterioplankton in Lake Averno in relation to water chemistry. FEMS microbiology ecology 84:176-188.spa
dcterms.bibliographicCitationPinilla, G. A., A. Canosa, A. Vargas, M. Gavilán, and L. López. 2007. Acoplamiento entre las comunidades planctónicas de un lago amazónico de aguas claras (lago Boa, Colombia). Limnetica 26:53-65.spa
dcterms.bibliographicCitationPomeroy, L. R. 1974. The ocean's food web, a changing paradigm. Bioscience 24:499-504.spa
dcterms.bibliographicCitationPomeroy, L. R. and C. Darwin. 2007. The microbial loop. Oceanography 20:28-33.spa
dcterms.bibliographicCitationPosch, T., M. Loferer-Krößbacher, G. Gao, A. Alfreider, J. Pernthaler, and R. Psenner. 2001. Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquatic Microbial Ecology 25:55-63.spa
dcterms.bibliographicCitationPulido-Villena, E., I. Reche, and R. Morales-Baquero. 2008. Evidence of an atmospheric forcing on bacterioplankton and phytoplankton dynamics in a high mountain lake. Aquatic Sciences-Research Across Boundaries 70:1-9.spa
dcterms.bibliographicCitationReche, I. 1997. Efectos de la disponibilidad de Carbono Orgánico Fotodegradado y de Nutrientes Minerales sobre la Abundancia de bacterias activas. Limnetica 13:79-85.spa
dcterms.bibliographicCitationRejas, D., K. Muylaert, and L. De Meester. 2002. Primeros datos sobre la comunidad microbiana en una laguna de várzea en la Amazonía Boliviana (Laguna Bufeos, Cochabamba). Ecología en Bolivia 37:51-63.spa
dcterms.bibliographicCitationRheinheimer, G. 1978. Microbiología de Aguas, España.spa
dcterms.bibliographicCitationRodier, J., C. Geoffray, G. Kovacsik, J. Laporte, M. Plissier, J. Scheidhauer, J. Verneaux, and J. Vial. 1990. Análisis de las aguas. Omega edition, Barcelona.spa
dcterms.bibliographicCitationRodríguez, P., J. Ask, C. L. Hein, M. Jansson, and J. Karlsson. 2013. Benthic organic carbon release stimulates bacterioplankton production in a clear-water subarctic lake. Freshwater Science 32:176-182.spa
dcterms.bibliographicCitationRoldan-Pérez, G. 1992. Fundamentos de Limnología Neotropical. Editorial Universidad de Antioquia edition, Medellín, Colombia.spa
dcterms.bibliographicCitationRomina Schiaffino, M., F. Unrein, J. M. Gasol, R. Massana, V. BalaguÉ, and I. Izaguirre. 2011. Bacterial community structure in a latitudinal gradient of lakes: the roles of spatial versus environmental factors. Freshwater Biology 56:1973-1991.spa
dcterms.bibliographicCitationSalonen, K., J. Keskitalo, and L. Arvola. 1994. Effect of rapid pH changes on phyto- and bacterioplankton of clear and humic waters Archiv fur Hydrobiologie 129:425-441.spa
dcterms.bibliographicCitationSartory, D. and J. Grobbelaar. 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177-187.spa
dcterms.bibliographicCitationShiah, F. K. and H. W. Ducklow. 1994. Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA. Marine Ecology-Progress Series 103:297-297.spa
dcterms.bibliographicCitationSpears, B. M. and L. F. W. Lesack. 2006. Bacterioplankton production, abundance, and nutrient limitation among lakes of the Mackenzie Delta (western Canadian arctic). Canadian Journal of Fisheries and Aquatic Sciences 63:845-857.spa
dcterms.bibliographicCitationSundh, I. 1992. Biochemical Composition of Dissolved Organic Carbon Derived from Phytoplankton and Used by Heterotrophic Bacteria. Applied and Environmental Microbiology 58:2938-2947.spa
dcterms.bibliographicCitationVrede, K. 1996. Regulation of bacterioplankton production and biomass in an oligotrophic cleanvater lake—the importance of the phytoplankton community. Journal of plankton research 18:1009-1032.spa
dcterms.bibliographicCitationVrede, K., T. Vrede, A. Isaksson, and A. Karlsson. 1999. Effects of nutrients (phosphorous, nitrogen, and carbon) and zooplankton on bacterioplankton and phytoplankton-a seasonal study. Limnology and Oceanography 44:1616-1624.spa
dc.description.notesBibliografía: páginas 59-73.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.lembFitoplancton - Boyacá (Colombia)-
dc.subject.lembOrganismos acuáticos-
dc.subject.lembEcosistemas andinos - Investigaciones - Boyacá (Colombia)-
dc.subject.lembEcosistemas forestales-
dc.subject.lembFitoplancton-
dc.subject.lembMaestría en Ciencias Biológicas - Tesis y disertaciones académicas-
dc.thesis.disciplineFacultad de Ciencias Básicas, Maestría en Ciencias Biológicasspa
dc.thesis.levelMaestríaspa
dc.thesis.nameMagister en Ciencias Biológicasspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.contributor.roleHerrera Martínez, Yimy (Director tesis)spa
dc.description.abstractenglishThe traditional food chain is a direct interaction between predators and preys, where a top predator can positively affect basal species due to the control the predators over the other preys. In that section, a part of the energy in one level to another is believed get lost however thank to the detritivore food chain concept and "microbial ring", have been reported that is recycled and reincorporated into the cycle of matter and energy by bacteria in three steps: (1) Processing and decomposition of organic matter, (2) remineralization of nutrients and (3) other food trophic levels. Despite its importance, little is known of its structure in high Andean tropical ecosystems, for this reason, the aim of this study was to evaluate the bacterioplanctónic variability in Andean lakes of Boyaca in three climatic seasons. Triplicate samples were taken in three zones on each lake, surface and coastal background in Laguna Cristalina, Negra and Verde-Boyacá and determined biomass, abundance and bacterial forms and physico-chemical variables (nitrites, nitrates, phosphates, organic matter, temperature, pH, conductivity, oxygen) and chlorophyll α. We found that bacterial abundance and biomass are within the range for oligotrophic. Bacillary forms are most common in these ecosystems and Chlorophyll α is important part to explain the structure of bacterioplankton by the correlation of input of organic matter by phytoplankton and nutrient remineralization by bacteria. It was concluded that phosphorus could be a limiting nutrient from the bacterioplankton.spa
dc.rights.creativecommonsAtribución-NoComercialspa
Appears in Collections:AGG. Trabajos de Grado y Tesis

Files in This Item:
File Description SizeFormat 
TGT-635.pdfArchivo principal921.35 kBAdobe PDFThumbnail
View/Open
Aut_LAMO.pdf
  Restricted Access
Autorización publicación74.49 kBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons