Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2150
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMadrid Usuga, Duvalier-
dc.contributor.authorVillamil Barrios, Pablo Emilio-
dc.date.accessioned2018-09-06T14:45:05Z-
dc.date.available2018-09-06T14:45:05Z-
dc.date.issued2018-01-01-
dc.identifier.citationMadrid Usuga, D. & Villamil Barrios, P. E. (2018). A Study of the Quantum Correlations in a Tavis-Cummings System. Ciencia en Desarrollo, 9(1), 41-50. https://doi.org/10.19053/01217488.v9.n1.2018.7232.http://repositorio.uptc.edu.co/handle/001/2150spa
dc.identifier.issn2462-7658-
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2150-
dc.description1 recurso en línea (páginas 41-50).spa
dc.description.abstractSe estudian las correlaciones cuánticas de dos qubits en una microcavidad con disipación y un solo modo cuantificado del campo electromagnético interactuado con ella. Para estudiar nuestro sistema físico, se utiliza el modelo de Tavis-Cummings y el formalismo de la ecuación maestra del operador de densidad bajo las aproximaciones de Born-Markov. El modo de cavidad estará acoplado con un láser pulsado externo y la ecuación maestra del operador de densidad que describe la evolución del sistema será resuelta numéricamente. La concurrencia, la información mutua cuántica y la discordancia cuántica se determinan para el sistema de dos qubits. Las correlaciones se estudian como una función de la cantidad adimensional τ = gt cuando la intensidad de acoplamiento cavidad láser varía, y se consideran dos condiciones iniciales en el régimen de acoplamiento débil en los que se estudió la evolución dinámica de estas correlaciones.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.relation.ispartofseriesCiencia en Desarrollo;Volumen 9, número 1 (Enero-Junio 2018)-
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/7232/pdfspa
dc.titleA Study of the Quantum Correlations in a Tavis-Cummings Systemspa
dc.title.alternativeEstudio de correlaciones cuánticas en un sistema Tavis-Cummingspa
dc.typeArtículo de revistaspa
dcterms.bibliographicCitationN. Gershenfeld and I. L. Chuang, “Quantum computing with molecules,” Scientific American, vol. 278, no. 6, pp. 66–71, 1998.spa
dcterms.bibliographicCitationP. Benioff, “The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines,” Journal of statistical physics, vol. 22, no. 5, pp. 563– 591, 1980.spa
dcterms.bibliographicCitationY. Manin, “Computable and uncomputable,”spa
dcterms.bibliographicCitationR. P. Feynman, “Simulating physics with computers,” International journal of theoretical physics, vol. 21, no. 6, pp. 467– 488, 1982.spa
dcterms.bibliographicCitationD. Deutsch, “Quantum theory, the churchturing principle and the universal quantum computer,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engi- neering Sciences, vol. 400, pp. 97–117, The Royal Society, 1985.spa
dcterms.bibliographicCitationD. Finkelstein, “Space-time structure in high energy interactions,” 1969.spa
dcterms.bibliographicCitationE. Gershon, “New qubit control bodes well for future of quantum computing,” Phys. org, 2014.spa
dcterms.bibliographicCitationF. Dimer, B. Estienne, A. Parkins, and H. Carmichael, “Proposed realization of the dickemodel quantum phase transition in an optical cavity qed system,” Physical Review A, vol. 75, no. 1, p. 013804, 2007.spa
dcterms.bibliographicCitationH. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Physical review letters, vol. 88, no. 1, p. 017901, 2001.spa
dcterms.bibliographicCitationL. Henderson and V. Vedral, “Classical, quantum and total correlations,” Journal of physics A: mathematical and general, vol. 34, no. 35, p. 6899, 2001.spa
dcterms.bibliographicCitationY.-J. Zhang, X.-B. Zou, Y.-J. Xia, and G.C. Guo, “Quantum discord dynamics in the presence of initial system–cavity correlations,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 44, no. 3, p. 035503, 2011.spa
dcterms.bibliographicCitationA. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of nonclassical light on a chip via photoninduced tunneling and blockade,” arXiv preprint arXiv:0804.2740, 2008.spa
dcterms.bibliographicCitationA. Faraon, A. Majumdar, and J. Vuckovic, “Generation of nonclassical states of light via photon blockade in optical nanocavities,” Physical Review A, vol. 81, no. 3, p. 033838, 2010.spa
dcterms.bibliographicCitationW. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Physical Review Letters, vol. 80, no. 10, p. 2245, 1998.spa
dcterms.bibliographicCitationS. Luo, “Quantum discord for two-qubit systems,” Physical Review A, vol. 77, no. 4, p. 042303, 2008.spa
dcterms.bibliographicCitationX.-Q. Yan and Z.-L. Yue, “Correlated relation between quantum discord and entanglement of two-atom in thermal reservoirs,” Journal of Atomic and Molecular Physics, vol. 2014, 2014.spa
dcterms.bibliographicCitationJ. Kasprzak, Condensation of exciton polaritons. PhD thesis, Université Joseph- Fourier- Grenoble I, 2006.spa
dcterms.bibliographicCitationF. Fanchini, L. Castelano, M. Cornelio, and M. De Oliveira, “Locally inaccessible informa tion as a fundamental ingredient to quantum information,” New Journal of Physics, vol. 14, no. 1, p. 013027, 2012.spa
dcterms.bibliographicCitationC. Zu, Y. Wang, X. Chang, Z. Wei, S. Zhang, and L. Duan, “Experimental demonstration of quantum gain in a zero-sum game,” New Journal of Physics, vol. 14, no. 3, p. 033002, 2012.spa
dc.description.notesBibliografía: páginas 49-50.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.description.abstractenglishThe quantum correlations of two qubits in a microcavity with dissipation and a single quantized mode of the electromagnetic field are studied. In order to study our physical system, the Tavis-Cummings model and the formalism of the master equation of the density operator under the Born-Markov approximations will be used. The cavity mode will be coupled with an external pulsed laser and the master equation of the density operator that describes the evolution of the system will be solved numerically. The concurrence, the quantum mutual information, and the quantum discord are determined for the system of two qubits. The correlations are studied as a function of the dimensionless quantity τ = gt when the intensity of the laser cavity coupling varies, and two initial conditions are considered in the weak coupling regime in which the dynamic evolution of these correlations was studied.spa
dc.identifier.doihttps://doi.org/10.19053/01217488.v9.n1.2018.7232-
dc.rights.creativecommonsAtribución-NoComercialspa
dc.subject.armarcModelo de Tavis-Cummings-
dc.subject.armarcOptica cuántica - Modelos matemáticos-
dc.subject.armarcDecoherencia (Física)-
dc.subject.armarcEntreveramiento (Física)-
dc.subject.proposalOpen Quantum Systemsspa
dc.subject.proposalMaster Equationspa
dc.subject.proposalTavis-Cummings Modelspa
dc.subject.proposalQuantum Correlationsspa
dc.subject.proposalConcurrencespa
dc.subject.proposalMutual Informationspa
dc.subject.proposalQuantum Discordspa
Appears in Collections:Ciencia en Desarrollo

Files in This Item:
File Description SizeFormat 
PPS-865.pdfArchivo principal933.87 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons