Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2155
Title: A comparison of two graphical methods for detecting dependence
Other Titles: Una comparación de dos métodos gráficos para detectar dependencia
Authors: Guarín Escudero, Julieth Veronica
Jaramillo Elorza, Mario César
Lopera Gómez, Carlos Mario
Keywords: Cópulas (Estadística matemática)
Análisis multivariado
Dependencia (Estadística)
Estadística matemática
Probabilidades
Copula
Graphics
Dependence
Issue Date: 1-Jan-2018
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Guarín Escudero, J. V., Jaramillo Elorza, M. C. & Lopera Gómez, C. M. (2018). A comparison of two graphical methods for detecting dependence. Ciencia en Desarrollo, 9(1), 71-88. https://doi.org/10.19053/01217488.v9.n1.2018.5490. http://repositorio.uptc.edu.co/handle/001/2155
Abstract: Las cópulas se han convertido en una herramienta útil para modelar datos cuando existe una dependencia entre las variables aleatorias y el supuesto de normalidad no se cumple. Las cópulas se han aplicado en diversos campos, tales como finanzas, estudios biomédicos y en ingeniería. El interés en modelar problemas multivariados que involucran variables dependientes se generaliza en diversas áreas, haciendo de esta metodología una forma conveniente para modelar la estructura de dependencia entre las variables aleatorias. Sin embargo, en la práctica un primer paso antes de empezar a modelar fenómenos mediante cópulas es evaluar si existe dependencia entre las variables involucradas y en qué grado. En este artículo algunos métodos gráficos para detectar dependencia son discutidos y el desempeño de los mismos se evaluará a través de un estudio de simulación. Se ilustran los métodos gráficos presentados mediante una aplicación a datos de seguros.
Description: 1 recurso en línea (páginas 71-88).
metadata.dcterms.bibliographicCitation: Escarela, G. and Hernández, A. “Modelado de parejas aleatorias usando cópulas”, Revista Colombiana de Estadística 32(1), 33–58, 2009.
Genest, C. and Favre, A. “Everything you always wanted to know about copula modeling but were afraid to ask”, Journal of Hydrologic Engineering 12(4), 347–368, 2007.
Nelsen, R. An Introduction to Copulas, Sprin- ger Science & Business Media, 2007.
Fisher, N. and Switzer, P. “Chi-plots for asses- sing dependence”, Biometrika 72(2), 253–265, 1985.
Genest, C. and Boies, J. “Detecting dependence with Kendall plots”, The American Statistician 57(4), 275–284, 2003.
Nguyen, C. C. and Bhatti, M. I. “Copula model dependency between oil prices and stock markets: Evidence from China and Vietnam”. Jour- nal of International Financial Markets, Institu- tions and Money, 22(4), 758–773, 2012.
Vandenberghe, S., Verhoest, N. E. C., and De Baets, B. “Fitting bivariate copulas to the dependence structure between storm characteristics: A detailed analysis based on 105 year 10 min rainfall”. Water resources research, 46(1), 2010.
Gargouri-Ellouze, E., and Bargaoui, Z. “Investigation with Kendall plots of infiltration index?maximum rainfall intensity relationship for regionalization”. Physics and Chemistry of the Earth, Parts A/B/C, 34(10), 642-653, 2009.
Genest, C. and Mackay, R. J. “Copules archimédiennes et familles de lois bidimensionne- lles dont les marges sont données”, Canadian Journal of Statistics 14(2), 145–159, 1986.
Evin, G., Favre A.C. and Genest, C. “Comparison of goodness-of-fit tests adapted to copulas”, Geophysical Research Abstracts, 2005.
De Matteis, R. “Fitting copulas to data”. Insti- tute of Mathematics of the University of Zürich, 2001.
Embrechts, P., Lindskog, F. and McNeil, A. “Modelling dependence with copulas and applications to risk management”, Technical Re- port, Department of Mathematics, ETH Zurich, 2001.
Joe, H. Multivariate models and dependence concepts, Chapman and Hall/CRC, 1997.
Cintas del Río, R. “Teoría de cópulas y control de riesgo financiero”, PhD thesis, Universidad Complutense de Madrid, 2007.
Moreno, D. C. “Método para elegir una cópula Arquimediana óptima”, Master’s thesis, Universidad Nacional de Colombia, 2012.
R Core Team R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.
Lopera, C.M., Jaramillo, M.C. and Arcila, L.D. “Selección de un Modelo Cópula para el Ajuste de Datos Bivariados Dependientes”, Dyna 76(158), 253–263, 2009.
URI: http://repositorio.uptc.edu.co/handle/001/2155
ISSN: 2462-7658
Series/Report no.: Ciencia en Desarrollo;Volumen 9, número 1 (Enero-Junio 2018)
Appears in Collections:Ciencia en Desarrollo

Files in This Item:
File Description SizeFormat 
PPS-868.pdfArchivo principal1.58 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons