Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2159
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZurita Hurtado, Omar José-
dc.contributor.authorDi Graci Tiralongo, Verónica Carmen-
dc.contributor.authorCapace Aguirre, María Cristina-
dc.date.accessioned2018-09-07T14:55:27Z-
dc.date.available2018-09-07T14:55:27Z-
dc.date.issued2018-01-01-
dc.identifier.citationZurita Hurtado. O. J., Di Graci Tiralongo, V. C.& Capace Aguirre, M. C. (2018). Effect of cutting parameters on surface roughness in turning of annealed AISI-1020 steel. Revista Facultad de Ingeniería, 27(47), 111-118. https://doi.org/10.19053/01211129.v27.n47.2018.7928. http://repositorio.uptc.edu.co/handle/001/2159spa
dc.identifier.issn2357-5328-
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2159-
dc.description1 recurso en línea (páginas 111-118).spa
dc.description.abstractEn este trabajo se estudian los efectos de los parámetros de corte: velocidad de corte (Vc), velocidad de avance (f) y profundidad de corte (d) en la rugosidad inducida en la superficie de acero AISI 1020 recocido torneado, empleando herramientas de insertos de carburo. Se encontró, a partir de los resultados obtenidos, que la rugosidad de la superficie aumentó, con velocidades de avance cada vez mayores y velocidades de corte decrecientes. Se encontró una ligera influencia de la rugosidad de la profundidad de corte. Análisis de la varianza (ANOVA) y múltiples técnicas de regresión se utilizaron para formular una ecuación cuantitativa para la estimación de valores de rugosidad en función de los parámetros de corte. Los resultados mostraron que la velocidad de corte es el parámetro que más influye en la rugosidad de la superficie (69,35 %), la velocidad de avance está en segundo (30,13 %), mientras que la profundidad de corte no afectó sustancialmente (0,52 %). El modelo propuesto puede ser utilizado para seleccionar los parámetros óptimos para la obtención de rugosidad superficial mínima en el torneado de metales.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.relation.ispartofseriesRevista Facultad de Ingeniería;Volumen 27, número 47 (Enero-Abril 2018)-
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/7928/6275spa
dc.titleEffect of cutting parameters on surface roughness in turning of annealed AISI-1020 steelspa
dc.title.alternativeEfecto de los parámetros de corte del torneado en la rugosidad superficial de acero AISI-1020 recocidospa
dc.title.alternativeEfeito dos parâmetros de corte do torneado na rugosidade superficial de aço AISI-1020 recozidospa
dc.typeArtículo de revistaspa
dcterms.bibliographicCitationD. P. Selvaraj, and P. Chandramohan, “Influence of cutting speed, feed rate and bulk texture on the surface finish of nitrogen alloyed duplex stainless steels during dry turning,” Engineering, vol. 2 (6), pp. 453-460, 2010. DOI: http://doi.org/10.4236/ eng.2010.26059.spa
dcterms.bibliographicCitationD. P. Selvaraj, and P. Chandramohan, “Optimization of surface roughness of AISI 304 austenitic stainless steel in dry turning operation using Taguchi design method,” Journal of Engineering Science and Technology, vol. 5 (3), pp. 293- 301, 2010.spa
dcterms.bibliographicCitationB.A. Khidhir, and B. Mohamed, “Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based Hastelloy – 276,” IOP Conf. Series: Materials Science and Engineering, vol. 17, pp. 012043-012053, 2011. DOI: http://doi.org/10.1088/1757-899X/17/1/012043.spa
dcterms.bibliographicCitationC. J. Rao, D. Nageswara, and P. Srihari, “Influence of cutting parameters on cutting force and surface finish in turning operation,” Procedia Engineering, vol. 64, pp. 1405 – 1415, 2013. DOI: http://doi.org/10.1016/j. proeng.2013.09.222.spa
dcterms.bibliographicCitationM. Hanief, and M. F. Wani, “Influence of cutting parameters on surface roughness of red brass (C23000) in turning using exponential model,” Hidráulica, vol. 3, pp. 55-58, 2015.spa
dcterms.bibliographicCitationP. Deepakkumar, and M. Sadaiah, “Investigations on finish turning of AISI 4340 steel in different cutting environments by CBN insert,” International Journal of Engineering Science and Technology, vol. 3 (10), pp. 7690-7706, 2011.spa
dcterms.bibliographicCitationD. Deepak, and B. Rajendra, “Investigations on the surface roughness produced in turning of AL 6061 (as-cast) by Taguchi method,” International Journal of Research in Engineering and Technology, vol. 4 (8), pp. 295-298, Aug. 2015. DOI: http://doi. org/10.15623/ijret.2015.0408051.spa
dcterms.bibliographicCitationC. H. Che-Haron, and A. Jawaid, “The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V,” Journal of Materials Processing Technology, vol. 166 (2), pp. 188- 192, Aug. 2005. DOI: http://doi.org/10.1016/j. jmatprotec.2004.08.012.spa
dcterms.bibliographicCitationA. R. C. Sharman, J. I. Hughes, and K. Ridgway, “An analysis of the residual stresses generated in Inconel 718TM when turning,” Journal of Materials Processing Technology, vol. 173 (3), pp. 359-367, Apr. 2006. DOI: http://doi.org/10.1016/j. jmatprotec.2005.12.007.spa
dcterms.bibliographicCitationD.C. Montgomery, Design and analysis of experiments, USA, Wiley, 2012.spa
dcterms.bibliographicCitationH. Sasahara, “The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel,” International Journal of Machine Tools and Manufacture, vol. 45(2), pp. 131–136, Feb. 2005. DOI: http://doi. org/10.1016/j.ijmachtools.2004.08.002.spa
dcterms.bibliographicCitationD.C. Montgomery, E.A. Peck, and G.G. Vining, Introduction to linear regression analysis, USA, Wiley, 2012.spa
dcterms.bibliographicCitationP. Deepakkumar, and M., Sadaiah, “Investigations on finish turning of AISI 4340 steel in different cutting environments by CBN insert,” International Journal of Engineering Science and Technology, vol. 3 (10), pp. 7690-7706, 2011.spa
dcterms.bibliographicCitationJ. P. Davim, Surface integrity in machining, England, Springer-Verlag, 2010. DOI: http://doi. org/10.1007/978-1-84882-874-2.spa
dcterms.bibliographicCitationD. Peña, Estadística; modelos y métodos, Spain: Alianza, 2001.spa
dc.description.notesBibliografía: páginas 117-118.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.description.abstractenglishThis study focuses on the effects of cutting parameters such as cutting speed (Vc), feed rate (f), and depth of cut (d) on roughness induced on the surface of annealed AISI 1020 steel when machined by turning using carbide insert tools. The results indicated that surface roughness increased when feed rate increased and cutting speed decreased. Depth of cut slightly influenced roughness. Analysis of variance and multiple regression techniques were used to formulate a quantitative equation for estimating predicted values of roughness as functions of the cutting parameters. The results showed that cutting speed is the most influencing parameter on surface roughness (69.35%), followed by feed rate (30.13%), while depth of cut failed to affect the responses substantially (0.52%). The proposed model can be used to select the optimum parameters for minimum surface roughness in metal turning.spa
dc.description.abstractportuguesNeste trabalho estudam-se os efeitos dos parâmetros de corte: velocidade de corte (Vc), velocidade de avanço (f) e profundidade de corte (d) na rugosidade induzida na superfície de aço AISI 1020 recozido torneado, empregando ferramentas de insertos de carburo. Encontrou-se, a partir dos resultados obtidos, que a rugosidade da superfície aumentou, com velocidades de avanço cada vez maiores e velocidades de corte decrescentes. Encontrou-se uma ligeira influência da rugosidade da profundidade de corte. Análise da variância (ANOVA) e múltiplas técnicas de regressão foram utilizadas para formular uma equação quantitativa para a estimação de valores de rugosidade em função dos parâmetros de corte. Os resultados mostraram que a velocidade de corte é o parâmetro que mais influi na rugosidade da superfície (69,35 %), a velocidade de avanço está em segundo (30,13 %), enquanto que a profundidade de corte não afetou substancialmente (0,52 %). O modelo proposto pode ser utilizado para selecionar os parâmetros ótimos para a obtenção de rugosidade superficial mínima no torneado de metais.spa
dc.identifier.doihttps://doi.org/10.19053/01211129.v27.n47.2018.7928-
dc.rights.creativecommonsAtribución-NoComercialspa
dc.subject.armarcTurning-
dc.subject.armarcMetal-cutting-
dc.subject.armarcThermal analysis-
dc.subject.armarcThermochemistry-
dc.subject.proposalAISI 1020spa
dc.subject.proposalANOVAspa
dc.subject.proposalCutting speedspa
dc.subject.proposalDepth of cutspa
dc.subject.proposalFeed ratespa
dc.subject.proposalSurface roughnessspa
Appears in Collections:Revista Facultad de Ingeniería

Files in This Item:
File Description SizeFormat 
PPS-883.pdfArchivo principal624.62 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons