Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2165
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSepúlveda Cepeda, Guillermo Andrés-
dc.contributor.authorJaimes Reatiga, Luis Eduardo-
dc.contributor.authorPacheco Sandoval, Leonardo Esteban-
dc.contributor.authorDíaz González, Carlos Alirio-
dc.date.accessioned2018-09-07T21:09:14Z-
dc.date.available2018-09-07T21:09:14Z-
dc.date.issued2018-01-01-
dc.identifier.citationSepúlveda Cepeda, G. A. y otros. (2018). Simulation of a biogas cleaning process using different amines. Revista Facultad de Ingeniería, 27(47), 51-60. Simulation of a biogas cleaning process using different amines.spa
dc.identifier.issn2357-5328-
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2165-
dc.description1 recurso en línea (páginas 51-60).spa
dc.description.abstractLa utilización del biogás producido en vertederos de basura ha ganado importancia en países en vía de desarrollo, como Colombia. Teniendo en cuenta que este biogás tiene propiedades pobres de combustión que dificultan el intercambio con otros combustibles, la eliminación de gases y vapores, como el CO2 y el H2O, por medio de procesos de purificación en los que el biogás es convertido a biometano, mejora las propiedades del biogás como combustible para uso general. En este trabajo se simuló la producción de biogás en el vertedero de basura El Carrasco (Bucaramanga), usando el modelo de emisiones de gases en vertederos de la US EPA (United States Environmental Protection Agency). Adicionalmente, se simuló el proceso de purificación del biogás utilizando el software ProMax; el objetivo de este proceso es extraer la humedad del biogás, para lo cual se utilizaron tres aminas diferentes (MDEA, MEA y DEA) y un proceso posterior de deshidratación con glicol. Los resultados mostraron que la purificación con amina MEA logró producir el mayor incremento en la concentración de CH4 (90.37 %) en el biogás generado en el vertedero. Además, la deshidratación con glicol fue un proceso eficiente para obtener gas con un alto porcentaje de metano (91.47 %) y un bajo porcentaje de agua (1.27 %); estos resultados sugieren que el biometano se podría usar en procesos industriales convencionales y en generación de energía.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.relation.ispartofseriesRevista Facultad de Ingeniería;Volumen 27, número 47 (Enero-Abril 2018)-
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/7751/6141spa
dc.titleSimulation of a biogas cleaning process using different aminesspa
dc.title.alternativeSimulación de un proceso de purificación de biogas utilizando diferentes soluciones de aminasspa
dc.title.alternativeSimulação de um processo de purificação de biogás utilizando diferentes soluções de aminasspa
dc.typeArtículo de revistaspa
dcterms.bibliographicCitationG. Mundaca, “How much can CO2 emissions be reduced if fossil fuel subsidies are removed?,” Energy Economics, vol. 64, pp. 91-104, May. 2017. DOI: http://doi.org/10.1016/j.eneco.2017.03.014.spa
dcterms.bibliographicCitationInternational Energy Agency, CO2 Emissions from Fuel Combustion Highlights 2016. IEA Publications, 2016.spa
dcterms.bibliographicCitationBiogas Power (Off-grid) Programme. Available: http://mnre.gov.in/schemes/offgrid/biogas-2/.spa
dcterms.bibliographicCitationW. Ortiz, J. Terrapon-Pfaff, and C. Dienst, “Understanding the diffusion of domestic biogas technologies. Systematic conceptualization of existing evidence from developing and emerging countries,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 1287-1299, Jul. 2017. DOI: http://doi.org/10.1016/j.rser.2016.11.090.spa
dcterms.bibliographicCitationI. Pérez, et al., “Technical, economic and environmental assessment of household biogas digesters for rural communities,” Renewable Energy, vol. 62, pp. 313-318, Feb. 2014. DOI: http://doi. org/10.1016/j.renene.2013.07.017.spa
dcterms.bibliographicCitationK. C. Surendra, D. Takara, A. G. Hashimoto, and S. K. Khanal, “Biogas as a sustainable energy source for developing countries: Opportunities and challenges,” Renewable and Sustainable Energy Reviews, vol. 31, pp. 846-859, Mar. 2014. DOI: http://doi.org/10.1016/j.rser.2013.12.015.spa
dcterms.bibliographicCitationQ. Aguilar-Virgen, P. Taboada-González, and S. Ojeda-Benítez, “Analysis of the feasibility of the recovery of landfill gas: a case study of Mexico,” J. Clean. Prod., vol. 79, pp. 53-60, Sep. 2014. DOI: http://doi.org/10.1016/j.jclepro.2014.05.025.spa
dcterms.bibliographicCitationW. Tsai, “Bioenergy from landfill gas (LFG) in Taiwan,” Renewable and Sustainable Energy Reviews, vol. 11(2), pp. 331-344, Feb. 2007. DOI: http://doi.org/10.1016/j.rser.2005.01.001.spa
dcterms.bibliographicCitationJ. García, et al., “Compositional analysis of excavated landfill samples and the determination of residual biogas potential of the organic fraction,” Waste Manage, vol. 55, pp. 336-344, Sep. 2016. DOI: http://doi.org/10.1016/j.wasman.2016.06.003.spa
dcterms.bibliographicCitationQ. Aguilar-Virgen, et al., “Power generation with biogas from municipal solid waste: Prediction of gas generation with in situ parameters,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 412- 419, Feb. 2014. DOI: http://doi.org/10.1016/j. rser.2013.10.014.spa
dcterms.bibliographicCitationR. Kadam, and N. L. Panwar, “Recent advancement in biogas enrichment and its applications,” Renewable and Sustainable Energy Reviews, vol. 73, pp. 892- 903, Jun. 2017. DOI: http://doi.org/10.1016/j. rser.2017.01.167.spa
dcterms.bibliographicCitationC. Díaz González, A. Amell, and J. Suárez, “Comparison of combustion properties of simulated biogas and methane,” CT&F Ciencia, Tecnología y Futuro, vol. 3(5), pp. 225-236, 2009.spa
dcterms.bibliographicCitationC. E. Lee, C. B. Oh, I. S. Jung, and J. Park, “A study on the determination of burning velocities of LFG and LFG-mixed fuels,” Fuel, vol. 81(13), pp. 1679-1686, Aug. 2002. DOI: http://doi.org/10.1016/ S0016-2361(02)00049-2.spa
dcterms.bibliographicCitationZ. L. Wei, C. W. Leung, C. S. Cheung, and Z. H. Huang, “Effects of equivalence ratio, H2 and CO2 addition on the heat release characteristics of premixed laminar biogas-hydrogen flame,” Int. J. Hydrogen Energy, vol. 41(15), pp. 6567-6580, Apr. 2016. DOI: http:// doi.org/10.1016/j.ijhydene.2016.01.170.spa
dcterms.bibliographicCitationL. Pizzuti, C. A. Martins, and P. T. Lacava, “Laminar burning velocity and flammability limits in biogas: A literature review,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 856-865, Sep. 2016. DOI: http://doi.org/10.1016/j.rser.2016.05.011.spa
dcterms.bibliographicCitationC. Lee, and C. Hwang, “An experimental study on the flame stability of LFG and LFG-mixed fuels,” Fuel, vol. 86(5-6), pp. 649-655, Mar. 2007. DOI: http://doi.org/10.1016/j.fuel.2006.08.033.spa
dcterms.bibliographicCitationC. A. Díaz González, A. Amell Arrieta, and L. F. Cardona, “Estudio experimental de la estabilidad de llama de biogás en un sistema de premezcla,” Energética, 39, 2008.spa
dcterms.bibliographicCitationL. Pizzuti, et al., “Laminar burning velocity and flammability limits in biogas: A state of the art,” in 10th Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics, 2014.spa
dcterms.bibliographicCitationH. Nonaka, and F. M. Pereira, “Experimental and numerical study of CO2 content effects on the laminar burning velocity of biogas,” Fuel, vol. 182, pp. 382-390, Oct. 2016. DOI: http://doi.org/10.1016/j. fuel.2016.05.098.spa
dcterms.bibliographicCitationN. Hamidi, “Carbon dioxide effects on the flammability characteristics of biogas,” Applied Mechanics and Materials, vol. 493, pp. 129-133, Jan. 2014. DOI: http://doi.org/10.4028/www.scientific. net/AMM.493.129.spa
dcterms.bibliographicCitationK. Biernat, W. Gis, and I. Samson-Bręk, “Review of technology for cleaning biogas to natural gas quality,” Combustion Engines, vol. 148, pp. 33-39, 2012.spa
dcterms.bibliographicCitationM. J. Khalil, K. Sharma, and R. Gupta, “Strategic technologies for biogas purification,” in National Conference on Synergetic Trends in Engineering and Technology (STET-2014), 2014.spa
dcterms.bibliographicCitationB. Morero, and E. A. Campanella, “Simulación del Proceso de Absorción Química con Soluciones de Aminas para la Purificación Biogás,” Información Tecnológica, vol. 24(1), pp. 25-32, 2013. DOI: http:// doi.org/10.4067/S0718-07642013000100004.spa
dcterms.bibliographicCitationN. Abatzoglou, and S. Boivin, “A review of biogas purification processes,” Biofuels, Bioproducts and Biorefining, vol. 3(1), pp. 42-71, Jan. 2009. DOI: http://doi.org/10.1002/bbb.117.spa
dcterms.bibliographicCitationP. L. Fosbøl, et al., “Design and simulation of rate-based CO2 capture processes using carbonic anhydrase (CA) applied to biogas,” in 13th International Conference on Greenhouse Gas Control Technologies (GHGT-13), 2017.spa
dcterms.bibliographicCitationR. Ochieng et al., “Simulation of the Benfield HiPure process of natural gas sweetening for LNG production and evaluation of alternatives,” in Proceedings of Sour Oil and Gas Advanced Technology, 2012.spa
dcterms.bibliographicCitationV. N. Hernández, M. W. Hlavinka, and J. Bullin, “Design glycol units for maximum efficiency”, in Proceedings of the Annual Convention-Gas Processors Association, 1992.spa
dcterms.bibliographicCitationK. W. Mattsson-Bose, and L. G. Lyddon, “Using a process simulator to improve sulphur recovery,” Sulphur-London-, pp. 37-42, 1997.spa
dcterms.bibliographicCitationS. Rasi, Biogas Composition and Upgrading to Biomethane. Jyväskyla: University of Jyväskyla, 2009.spa
dcterms.bibliographicCitationA. Alexander, C. Burklin, and A. Singleton, “Landfill Gas Emissions Model (LandGEM) Version 3.02,” US Environmental Protection Agency, Eastern Research Group, 2005.spa
dcterms.bibliographicCitationH. Kamalan, M. Sabour, and N. Shariatmadari, “A review on available landfill gas models,” Journal of Environmental Science and Technology, vol. 4(2), pp. 79-92, Feb. 2011. DOI: http://doi.org/10.3923/ jest.2011.79.92.spa
dcterms.bibliographicCitationAlcaldía de Bucaramanga, Plan de Gestión Integral de Residuos Sólidos Pgirs. Bucaramanga: 2015.spa
dcterms.bibliographicCitationE. Erdmann, et al., “Endulzamiento de gas natural con aminas. Simulación del proceso y análisis de sensibilidad paramétrico,” Avances en Ciencias e Ingeniería, vol. 3(4), 2012.spa
dcterms.bibliographicCitationF. R. Abdeen, et al., “A review of chemical absorption of carbon dioxide for biogas upgrading,” Chin. J. Chem. Eng., vol. 24(6), pp. 693-702, Jun. 2016. DOI: http://doi.org/10.1016/j.cjche.2016.05.006.spa
dc.description.notesBibliografía y webgrafía: páginas 59-60.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.lembBiogás-
dc.subject.lembRefuse as fuel-
dc.type.dcmi-type-vocabularyTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.description.abstractenglishThe use of biogas generated in landfills has gained importance in developing countries like Colombia. Taking into account that this biogas presents poor combustion properties that make interchangeability with other combustible gases difficult, the elimination of gases and vapors, such as CO2 and H2O, through a cleaning process, in which the biogas is converted to biomethane, improves the biogas properties as a fuel gas for general use. In this work, we simulated the generation of biogas at El Carrasco sanitary landfill in Bucaramanga, using the US EPA (United States Environmental Protection Agency) landfill gas emissions model. Additionally, we simulated the biogas cleaning process to extract the remaining moisture using the ProMax software; for this, we used three different amines (MDEA, MEA, and DEA), followed by a glycol dehydration process. The results showed that the amine MEA produced the largest increase in the concentration of CH4 (90.37 %) for the biogas generated in the landfill. Furthermore, dehydration with glycol was an efficient process to obtain a gas with a high percentage of methane (91.47 %) and low water presence (1.27 %); this would allow the use of biomethane in conventional industrial combustion processes and power generation.spa
dc.description.abstractportuguesA utilização do biogás produzido em depósitos de lixo tem ganhado importância em países em via de desenvolvimento, como a Colômbia. Tendo em conta que este biogás tem propriedades pobres de combustão que dificultam o intercâmbio com outros combustíveis, a eliminação de gases e vapores, como o CO2 e o H2O, por meio de processos de purificação nos quais o biogás é convertido a biometano, melhora as propriedades do biogás como combustível para uso geral. Neste trabalho simulou-se a produção de biogás no depósito de lixo El Carrasco (Bucaramanga), usando o modelo de emissões de gases em depósitos da US EPA (United States Environmental Protection Agency). Adicionalmente, simulou-se o processo de purificação do biogás utilizando o software ProMax; o objetivo deste processo é extrair a humidade do biogás, para o qual utilizaram-se três aminas diferentes (MDEA, MEA e DEA) e um processo posterior de desidratação com glicol. Os resultados mostraram que a purificação com amina MEA logrou produzir o maior incremento na concentração de CH4 (90.37 %) no biogás gerado no depósito. Além disso, a desidratação com glicol foi um processo eficiente para obter gás com uma alta porcentagem de metano (91.47 %) e uma baixa porcentagem de água (1.27 %); estes resultados sugerem que o biometano poderia ser usado em processos industriais convencionais e em geração de energia.spa
dc.identifier.doihttps://doi.org/10.19053/01211129.v27.n47.2018.7751-
dc.rights.creativecommonsAtribución-NoComercialspa
dc.subject.proposalAminespa
dc.subject.proposalDeacidificationspa
dc.subject.proposalBiogas cleaningspa
dc.subject.proposalSimulationspa
Appears in Collections:Revista Facultad de Ingeniería

Files in This Item:
File Description SizeFormat 
PPS-877.pdfArchivo principal649.97 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons