Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2169
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVera Romero, Iván-
dc.contributor.authorHeard Wade, Christopher Lionel-
dc.date.accessioned2018-09-10T16:04:34Z-
dc.date.available2018-09-10T16:04:34Z-
dc.date.issued2018-01-01-
dc.identifier.citationVera Romero, I. & Heard Wade, C. L. (2018). Evaluation of irreversibility in an ammonia-water absorption refrigeration system using three different mathematical models to calculate the thermodynamic properties. Revista Facultad de Ingeniería, 27(47), 9-19. https://doi.org/10.19053/01211129.v27.n47.2018.7746.spa
dc.identifier.issn2357-5328-
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2169-
dc.description1 recurso en línea (páginas 9-19).spa
dc.description.abstractAs análises por Segunda Lei, ou de Exergia, nos Sistemas de Refrigeração por Absorção (SRA) são muito importantes, já que permitem realizar análises de optimização de acordo com o trabalho disponível, os quais se estabelecem a partir das condições de operação e do cálculo de suas propriedades. Para a modelagem destes sistemas existem diversas metodologias de cálculo para as propriedades termodinâmicas. Neste trabalho realizase um estudo termodinâmico sobre um SRA com a mistura amoníaco-água proposta (Caso Base), com a finalidade de avaliar a sensibilidade nas irreversibilidades globais e por equipamento. Para tal propósito, empregaram-se três metodologias existentes: (M1) o modelo de Ibrahim e Klein (1993), através do software comercial Engineering Equation Solver (EES); (M2) o modelo proposto por Tillner-Roth e Friend (1998), através do software REFPROP v.8.0, desenvolvido pelo National Institute of Standars and Technology (NIST), e (M3) a metodologia proposta por Xu e Goswami (1999), programada para esta análise. As diferenças entre as propriedades obtidas e o funcionamento do SRA por Primeira Lei não são significativas na avaliação do COP, obtendo variações mínimas (Caso Base: 0.595, M1: 0.596, M2: 0.594, M3: 0.599). Para a análise por Segunda Lei, a irreversibilidade total do sistema para os três modelos resultou ser a mesma (Irr Global: 123.339 kW), apesar de que na irreversibilidade por equipamento sobressaem as diferenças entre o Intercambiador da Solução (M1: 5.783kW, M2: 6.122kW, M3: 8.701kW), o Dessorbedor (M1: 51.302kW, M2: 45.713kW, M3: 49.098kW) e o Retificador (M1: 0.766kW, M2: 3.565kW, M3: 0.427kW). Os equipamentos que mais destroem exergia são o Dessorbedor, o Absorvedor e o Condensador, respectivamente.por
dc.description.abstractSecond Law or Exergy Analyses of Absorption Refrigeration Systems (ARS) are very important for optimisations based on available work; these analyses are derived from the operating conditions and property calculations. There are several methods available for calculating the thermodynamic properties used in modelling these systems. A thermodynamic study on an ARS with the ammonia-water mixture (base case) was carried out with the objective of analysing the sensitivity of the overall and individual component irreversibility to the thermodynamic property. To this end, three existing methods were used: (M1), a model proposed by Ibrahim and Klein (1993) and used in the Engineering Equation Solver (EES) commercial software; (M2), a model proposed by Tillner-Roth and Friend (1998) and embodied in REFPROP v.8.0 developed by the National Institute of Standards and Technology (NIST); and (M3), a method proposed by Xu and Goswami (1999) that was programmed for this analysis. The obtained differences in the properties and the first law performance of the ARS are insignificant in the determination of the coefficient of performance (COP) (base case: 0.595, M1: 0.596, M2: 0.594, M3: 0.599). For the second law analysis, the overall irreversibility was the same (123.339kW) despite the irreversibilities per component had important differences: the solution heat exchanger (M1: 5.783kW, M2: 6.122kW, M3: 8.701kW), the desorber (generator) (M1: 51.302kW, M2: 45.713kW, M3: 49.098kW) and the rectifier (M1: 0.766kW, M2: 3.565kW, M3: 0.427kW). The components that destroy exergy the most are the desorber, the absorber and the condenser.eng
dc.description.abstractLos análisis por Segunda Ley, o de Exergia, en los Sistemas de Refrigeración por Absorción (SRA) son muy importantes, ya que permiten realizar análisis de optimización de acuerdo con el trabajo disponible, los cuales se establecen a partir de las condiciones de operación y del cálculo de sus propiedades. Para el modelado de estos sistemas existen diversas metodologías de cálculo para las propiedades termodinámicas. En este trabajo se realiza un estudio termodinámico sobre un SRA con mezcla amoniaco-agua propuesto (Caso Base), con la finalidad de evaluar la sensibilidad en las irreversibilidades globales y por equipo. Para tal efecto se emplearon tres metodologías existentes: (M1) el modelo de Ibrahim y Klein (1993), a través del software comercial Engineering Equation Solver (EES); (M2) el modelo propuesto por Tillner-Roth y Friend (1998), a través del software REFPROP v.8.0, desarrollado por el National Institute of Standars and Technology (NIST), y (M3) la metodología propuesta por Xu y Goswami (1999), programada para este análisis. Las diferencias entre las propiedades obtenidas y el funcionamiento del SRA por Primera Ley no son significativas en la evaluación del COP, obteniendo variaciones mínimas (Caso Base: 0.595, M1: 0.596, M2: 0.594, M3: 0.599). Para el análisis por Segunda Ley, la irreversibilidad total del sistema para los tres modelos resultó ser la misma (Irr Global: 123.339 kW), a pesar de que en la irreversibilidad por equipo sobresalen las diferencias entre el Intercambiador de la Solución (M1: 5.783kW, M2: 6.122kW, M3: 8.701kW), el Desorbedor (M1: 51.302kW, M2: 45.713kW, M3: 49.098kW) y el Rectificador (M1: 0.766kW, M2: 3.565kW, M3: 0.427kW). Los equipos que más destruyen exergia son el Desorbedor, el Absorbedor y el Condensador, respectivamente.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/7746/6136spa
dc.titleEvaluation of irreversibility in an ammonia-water absorption refrigeration system using three different mathematical models to calculate the thermodynamic propertiesspa
dc.title.alternativeEvaluación de irreversibilidades en un sistema de refrigeración por absorción amoniaco-agua empleando tres modelos matemáticos diferentes para calcular las propiedades termodinámicasspa
dc.title.alternativeAvaliação de irreversibilidades em um sistema de refrigeração por absorção amoníaco-água empregando três modelos matemáticos diferentes para calcular as propriedades termodinâmicasspa
dc.typeArtículo de revistaspa
dc.description.notesBibliografía: páginas 17-19.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.19053/01211129.v27.n47.2018.7746-
dc.relation.referencesA. Rivera, J. Cerezo, R. Rivero, et al., “Single Stage and Double Absorption heat transformers used to recover energy in a distillation column of butane and pentane,” Int J of Energy Research, vol. 27 (14), pp. 1279-1292, Nov. 2003. DOI: http://doi.org/10.1002/ er.943.spa
dc.relation.referencesA. I. Kalina, “Combined Cycle and wasteheat recovery power systems based on a novel thermodynamic energy cycle utilizing lowtemperature heat for power generation,” ASME paper No. 83-JPGC-GT-3, 1983.spa
dc.relation.referencesS. Stecco, and U. Desideri, “A thermodynamic analysis of the kalina cycles: comparisons, problems and perspectives,” Gas Turbine and Aeroengine Congress and Exposition: ASME, 1989.spa
dc.relation.referencesS. H. Rizvi, and R. A. Heidemann, “Vapor-Liquid equilibria in the ammonia-water system,” J Chem Eng Data, vol. 32 (2), pp. 183-191, Apr. 1987. DOI: http://doi.org/10.1021/je00048a017.spa
dc.relation.referencesR. A. Macris, B. E. Eakin, R. T. Ellington, et al., “Physical and thermodynamic properties of ammonia-water mixtures,” Research Bulletin No. 14. Inst. of Gas Technology, 1964.spa
dc.relation.referencesR. T. Ellington, G. Kinst, R. E. Peck, el at., “The absorption cooling process,” Research Bulletin, Institute of Gas Technology, 1957.spa
dc.relation.referencesR. Tillner-Roth, and G. Friend, “Survey and Assessment of available measurements on thermodynamic properties of the mixture {Water+Ammonia},” J Phys Chem Ref Data, vol. 27(1), pp. 45-61, Jan. 1998. DOI: http://doi. org/10.1063/1.556014.spa
dc.relation.referencesA. Vidal, R. Best, R. Rivero, et al., “Analysis of a combined power and refrigeration cycle by the exergy method,” Energy, vol. 31 (15), pp. 3401- 3414, Dec. 2006. DOI: http://doi.org/10.1016/j. energy.2006.03.001.spa
dc.relation.referencesE. Thorin, C. Dejfors, and G. Svedberg, “Thermodynamic properties of ammonia-water mixtures for power cycles,” Int J Thermophys, vol. 19(2), pp. 501-510, 1998. DOI: http://doi. org/10.1023/A:1022525813769.spa
dc.relation.referencesA. A. Zatorskii, “Algorithm for calculation of the parameters of the junction points of the cycles of absorption-type water-ammonia refrigeration machines in a digital computer,” Plenum Publishing Corporation, pp. 716-719, 1979.spa
dc.relation.referencesK. E. Herold, K. Hain, and M. J. Moran, “AMMWAT: A computer program for calculating the thermodynamic properties of ammonia and water mixtures using a Gibbs Free Energy formulation,” ASME 4, pp. 65-75, 1988.spa
dc.relation.referencesY. M. Park, and R. E. Sonntag, “Thermodynamic properties of ammonia-water mixtures: a generalized equation-of-state approach,” ASME Trans, vol. 97, pp. 150-159, 1991.spa
dc.relation.referencesS. N. Mumah, S.S. Adefila, and E.A. Arinze, “Properties generation procedures for first and second law analyses of ammonia-water heat pump system,” Energy Convers Mgmt, vol. 35 (8), pp. 727- 736, Aug. 1994. DOI: http://doi.org/10.1016/0196- 8904(94)90058-2.spa
dc.relation.referencesR. Tillner-Roth, and G. Friend, “A Helmholtz free energy formulation of the thermodynamic properties of the mixture {Water+Ammonia},” J Phys Chem Ref Data, vol. 27(1), pp. 63-96, Jan. 1998. DOI: http://doi.org/10.1063/1.556015.spa
dc.relation.referencesA. Nowarski, and D. G. Friend, “Application of the Extended Corresponding States Method to the Calculation of the Ammonia-Water Mixture Thermodynamic Surface,” International Journal of Thermophysics, vol. 19 (4), pp. 1133-1142, 1998. DOI: http://doi.org/10.1023/A:1022641709904.spa
dc.relation.referencesR. M. Enick, G. P. Donahey, and M. Holsinger, “Modeling the High-Pressure Ammonia-Water System with WATAM and the Peng-Robinson Equation of Sstate for Kalina Cycle Studies,” Ind Eng Chem Res, vol. 37 (5), pp. 1644-1650, May. 1998. DOI: http://doi.org/10.1021/ie970638s.spa
dc.relation.referencesL. A. Weber, “Estimating the virial coefficients of the ammonia + water mixture,” Fluid Phase Equilibria, vol. 162 (1-2), pp. 31-49, Aug. 1999. DOI: http://doi. org/10.1016/S0378-3812(99)00181-8.spa
dc.relation.referencesF. Xu, and D. Y. Goswami, “Thermodynamic properties of ammonia-water mixtures for powercycle applications,” Energy, vol. 24 (6), pp. 525-536, Jun. 1999. DOI: http://doi.org/10.1016/S0360- 5442(99)00007-9.spa
dc.relation.referencesR. Sharma, D. Singhal, R. Ghosh, and A. Dwivedi, “Potential applications of artificial neural networks to thermodynamics: vapor-Liquid equilibrium predictions,” Computers and Chemical Engineering, vol. 23 (3), pp. 385-390, Feb. 1999. DOI: http://doi. org/10.1016/S0098-1354(98)00281-6.spa
dc.relation.referencesR. Lugo, J. Guilpart, and L. Fournaison, “Calculation method of thermophysical properties of ammoniawater mixtures,” Presentación Second Workshop on Ice Slurries, Paris France: International Institute of Refrigeration, 2000.spa
dc.relation.referencesA. A. Vasserman, A. G. Slynko, S. V. Bodyul, et al., “A Thermophysical Property Databank for Technically Important Gases and Liquids,” International Journal of Thermodynamics, vol. 22 (2), pp. 477-485, 2001. DOI: http://doi.org/10.1023/A:1010774831521.spa
dc.relation.referencesR. Lugo, L. Fournaison, J. M. Chourot, et al., “An excess function method to model the thermophysical properties of one-phase secondary refrigerants,” International Journal of Refrigeration, vol. 25 (7), pp. 916-923, Nov. 2002. DOI: http://doi.org/10.1016/ S0140-7007(01)00105-0.spa
dc.relation.referencesR. Span, and W. Wagner, “Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids,” Int J of Thermophysics, vol. 24 (1), pp. 1-39, 2003. DOI: http://doi.org/10.1023/A:1022390430888.spa
dc.relation.referencesR. Span, and W. Wagner, “Equations of State for Technical Applications. III. Results for Polar Fluids,”Int J of Thermophysics, vol. 24 (1), pp. 111-162, 2003. DOI: http://doi. org/10.1023/A:1022362231796.spa
dc.relation.referencesM. Barhoumi, A. Snoussi, E. N. Ben, et al., “Modélistion des données thermodynamiques du mélange ammoniac/eau,” Int J Refrig, vol. 27 (3), pp. 271-283, May. 2004. DOI: http://doi.org/10.1016/j. ijrefrig.2003.09.005.spa
dc.relation.referencesKh. Mejbri, and A. Bellagi, “Modelling of the thermodynamic properties of the water-ammonia mixture by three different approaches,” Int J Refrig, vol. 29 (2), pp. 211-218, Mar. 2006. DOI: http://doi. org/10.1016/j.ijrefrig.2005.06.002.spa
dc.relation.referencesA. Sencan, “Artificial intelligent methods for thermodynamic evaluation of ammonia-water refrigeration system,” Energy Conv & Man, vol. 47, pp. 3319-3332, 2006. DOI: http://doi.org/10.1016/j. enconman.2006.01.002.spa
dc.relation.referencesA. H. Farrokh-Niae, H. Moddarress, and M. Mohsen- Nia, “A three-parameter cubic equation of state for prediction of thermodynamic properties of fluids,” J Chem Thermodynamics, vol. 40 (1), pp. 84-95, Jan. 2008. DOI: http://doi.org/10.1016/j.jct.2007.05.012.spa
dc.relation.referencesN. S. Ganesh, and T. Srinivas, “Evaluation of thermodynamic properties of ammonia-water mixture up to 100 bar for power application systems,” Journal of Mechanical Engineering Research, vol. 3(1), pp. 25-39, 2011.spa
dc.relation.referencesK. Sadhukhan, A. K. Chowdhuryi, and B. K. Mandal, “Computer Based Thermodynamic Properties of Ammonia-Water Mixture for the Analysis of Power and Refrigeration Cycles,” Int J of Thermodynamics, vol. 12(3), pp. 133-139, 2012. DOI: http://doi. org/10.5541/ijot.375.spa
dc.relation.referencesE. Thorin, “Thermophysical properties of ammonia-water mixtures for prediction of heat transfer areas in power cycles,” Int J Thermophys, vol. 22(1), pp. 201-214, 2001. DOI: http://doi. org/10.1023/A:1006745100278.spa
dc.relation.referencesJ. Pátek, and J. Klomfar, “Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system,” Int J Refrig, vol. 18(4), pp. 228-234, May. 1995. DOI: http://doi. org/10.1016/0140-7007(95)00006-W.spa
dc.relation.referencesE. Thorin, “Comparison of correlations for predicting thermodynamic properties of ammonia-water mixtures,” Int J Thermophys, vol. 21(4), pp. 853-870, 2000. DOI: http://doi. org/10.1023/A:1006658107014.spa
dc.relation.referencesK. E. Herold, R. Radermacher, and S. A. Klein, “Absorption chillers and heat pump,” CRC Press Inc, USA, 1996.spa
dc.relation.referencesO. M. Ibrahim, and S. A. Klein, “Thermodynamic properties of ammonia-water mixtures,” ASHRAE Trans, pp. 1495-1502, 1993.spa
dc.relation.referencesF. Xu, and D. Y. Goswami, “Erratum to: Thermodynamic properties of ammonia-water mixture for power-cycle applications,” Energy, vol. 24 (1999), pp. 525-536, Energy, vol. 27 (6), p. 203, Jun. 2002. DOI: http://doi.org/10.1016/S0360- 5442(99)00007-9.spa
dc.relation.referencesC. Martin, “Study of cooling production with a combined power and cooling thermodynamic cycle,” Ph. D. Thesis, University of Florida, USA. 2004.spa
dc.relation.referencesY. M. El-Sayed, and M. Tribus, “Thermodynamic properties of water ammonia mixtures theoretical implementation for use in power cycles analysis,” Special publication AES (1) New York, ASME, pp. 89-95, 1985.spa
dc.relation.referencesP. C. Gillespie, W. V. Wilding, and G. M. Wilson, “Vapor-Liquid equilibrium measurements on the ammonia-water system from 313 K to 589 K,” AIChE Symp Ser, vol. 83(256), pp. 97-127, 1987.spa
dc.relation.referencesB. Ziegler, and Ch. Trepp, “Equation of state for ammonia-water mixtures,” Int J Refrig, vol. 7 (2), pp. 101-106, Mar. 1984. DOI: http://doi. org/10.1016/0140-7007(84)90022-7.spa
dc.relation.referencesA. A. Hasan, and D. Y. Goswami, “Exergy analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source,” Journal of Solar Energy Engineering, vol. 125 (1), pp. 55-60, 2003. DOI: http://doi.org/10.1115/1.1530628.spa
dc.relation.referencesD. Boer, B. H. Gebreslassie, M. Medrano, et al., “Effect of internal heat recovery in ammonia-water absorption cooling cycles: exergy and structural analysis,” vol. 12(1), pp. 17-27, Mar. 2009.spa
dc.relation.referencesI. Vera-Romero and Ch. L. Heard-Wade, “Desarrollo de una aplicación para el cálculo de las propiedades de la mezcla amoniaco-agua,” Revista Ingeniería Investigación y Desarrollo,” vol. 17(2), pp. 58-72, Jun. 2017. DOI: http://doi.org/10.19053/1900771X. v17.n2.2017.7185.spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.armarcHeat -Radiation and absortion-
dc.subject.armarcProcess control-
dc.subject.proposalAmmonia-water propertiesspa
dc.subject.proposalAbsorption refrigerationspa
dc.subject.proposalCoefficient of performancespa
dc.subject.proposalIrreversibilityspa
dc.relation.ispartofjournalRevista Facultad de Ingeniería;Volumen 27, número 47 (Enero-Abril 2018)spa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:Revista Facultad de Ingeniería

Files in This Item:
File Description SizeFormat 
PPS-873.pdfArchivo principal711.16 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons