Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2188
Title: Validación del modelo matemático de un panel solar empleando la herramienta Simulink de Matlab
Other Titles: Validation of the mathematical model of a solar panel using Matlab/Simulink tool
Authors: Vera Dávila, Anderson Guillermo
Delgado Ariza, Jhan Carlos
Sepúlveda Mora, Sergio Basilio
Keywords: Energía solar
Generación de energía fotovoltaica
Sistemas de energía fotovoltaica
Sistemas dinámicos diferenciales
Coeficiente de determinación
Modelo matemático
Panel solar
Matlab
Issue Date: 1-Jan-2018
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Vera Dávila, A. G., Delgado Ariza, J. C. & Sepúlveda Mora, S. B. (2018). Validación del modelo matemático de un panel solar empleando la herramienta Simulink de Matlab. Revista de Investigación, Desarrollo e Innovación, 8 (2), 343-356. DOI: https://doi.org/10.19053/20278306.v8.n2.2018.7972. http://repositorio.uptc.edu.co/handle/001/2188
Abstract: El objetivo de este trabajo es realizar un análisis estadístico y una validación de los resultados obtenidos de las simulaciones de un panel solar, con la herramienta Matlab/Simulink. Se realizaron una serie de mediciones de la potencia generada por el panel solar, bajo diferentes condiciones de radiación y temperatura de operación; luego se simuló el comportamiento del panel mediante el modelo matemático y el modelo del mismo establecido por Simulink; por último, se realizó un análisis de la aproximación de cada una de las simulaciones con los datos reales. Los resultados indican que, para la simulación por medio del modelo matemático del panel solar, se obtuvo un coeficiente de determinación de 0.9889, mientras que, para el modelo del panel solar establecido por Simulink fue de 0,8673. Lo anterior evidencia la buena correlación de cada una de las simulaciones realizadas con los valores reales, llegando a la conclusión que, aunque los dos métodos utilizados se acercan a la realidad, el modelo matemático del panel solar consigue una mejor aproximación.
Description: 1 recurso en línea (páginas 343-356).
metadata.dcterms.bibliographicCitation: Acevedo-Luna, A., & Morales-Acevedo, A. (2018). Study of validity of the single-diode model for solar cells by I–V curves parameters extraction using a simple numerical method. Journal of Materials Science: Materials in Electronics, 1–7. doi: http://doi.org/10.1007/s10854-018-8793-x
Agency, I. I. E. (2016). Tracking Clean Energy Progress 2016. Recuperado de: www.iea.org/etp/tracking for
Altas, I. H., & Sharaf, A. M. (2007). A Photovoltaic Array Simulation Model for Matlab-Simulink GUI Environment. In International Conference on Clean Electrical Power, 341–345. Capri, Italy: IEEE.
De Soto, W., Klein, S. A., & Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80 (1), 78–88. doi: http://doi.org/10.1016/j. solener.2005.06.010
González-Longatt, F. (2005). Model of photovoltaic module in Matlab. In Ii Cibelec, (2006), 1–5. Recuperado: http://www.academia.edu/875827/ Model_of_Photovoltaic_Module_in_Matlab
Granda-Gutiérrez, E. E., Orta-Salomón, O. A., Díaz-Guillén, J. C., Jimenez, M. A., Osorio, M., & González, M. A. (2013). Modelado y Simulacion de Celdas y Paneles Solares. Congreso Internacional de Ingeniería Electrónica 2013. 17–22. doi: http://doi. org/10.13140/2.1.4192.8968
Icaza-Alvarez, D., Calle-Castro, C. J., Córdova- González, F., Lojano-Uguña, A., & Toledo-Toledo, J. F. (2017). Modeling and Simulation of a hybrid system Solar panel and wind turbine in the locality of Molleturo in Ecuador. In 6th International Conference on Renewable Energy Research and Applications (5), 620–625. San Diego: IEEE. doi: http://doi.org/10.1109/DISTRA.2017.8191134
Ideam. (2017). Atlas de Radiación Solar. Recuperado de: http://atlas.ideam.gov.co/ basefiles/RadiacionPDF/Cucuta.pdf
Jimenez, F., & Solé, D. B. (2009). Estudio y simulación de sistemas de conversión fotovoltaica-eléctrica mediante Matlab/Simulink. Saaei’09.
Kapoor, D., Sodhi, P., & Deb, D. (2012). Solar panel simulation using adaptive control. In International Conference on Control Applications, 1124–1130. Dubrovnik, Croatia. doi: http://doi.org/10.1109/ CCA.2012.6402674
Marín, C. E. (2004). La Energía Solar Fotovoltaica En España. Ninbus, 13–14, 5–31.
MathWorks. (2017a). Evaluating Goodness of Fit. Recuperado de: https://www.mathworks.com/ help/curvefit/evaluating-goodness-of-fit.html
MathWorks. (2017b). PV Array. Recuperado de: https://www.mathworks.com/help/physmod/sps/ powersys/ref/pvarray.html
Navidi, W. (2006). Estadística para ingenieros y científicos. México: M.-H. Interamericana, Ediciones.
Nguyen, X. H., & Nguyen, M. P. (2015). Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink. Environmental Systems Research, 4 (1), 24. doi: http://doi.org/10.1186/ s40068-015-0047-9
Reyes-Caballero, F., Fernández-Morales, F., & Duarte, J. (2016). Panorama energético. Revista de Investigación, Desarrollo e Innovación, 7 (1), 151- 163. doi:http://dx.doi.org/10.19053/20278306. v7.n1.2016.5605
Rezk, H., & Hasaneen, E. S. (2015). A new MATLAB/ Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems. Ain Shams Engineering Journal, 6 (3), 873–881. doi: http://doi. org/10.1016/j.asej.2015.03.001
Salmi, T., Bouzguenda, M., Gastli, A., & Masmoudi, A. (2012). MATLAB / Simulink Based Modelling of Solar Photovoltaic Cell. International Journal of Renewable Energy Research, 2(2), 213–218. doi: http://doi.org/10.1234/IJRER.V2I2.157
Selmi, T., & Belghouthi, R. (2017). A novel widespread Matlab/Simulink based modeling of InGaN double hetero-junction p-i-n solar cell. International Journal of Energy and Environmental Engineering, 8 (4), 273–281. doi: http://doi. org/10.1007/s40095-017-0243-7
Setiawan, E. A., Setiawan, A., & Siregar, D. (2017). Analysis on solar panel performance and PVinverter configuration for tropical region. Journal of Thermal Engineering, 3 (3), 1259–1270. doi: http://doi.org/10.18186/journal-of-thermalengineering. 323392
Silvestre, S., Castañar, L., & Guasch, D. (2008). Herramientas de Simulación para Sistemas Fotovoltaicos en Ingeniería. Formación Universitaria, 1 (1), 13–18. doi: http://doi. org/10.4067/S0718-50062008000100003
Smets, A., Jäger, K., Isabella, O., Van Swaaij, R., & Zeman, M. (2016). Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. UK: Uit Cambridge.
Tsai, H., Tu, C., & Su, Y. (2008). Development of Generalized Photovoltaic Model Using MATLAB / SIMULINK. In Proceedings of the World Congress on Engineering and Computer Science 2008 WCECS 2008, 6. San Francisco, USA.
URI: http://repositorio.uptc.edu.co/handle/001/2188
ISSN: 2389-9417
Series/Report no.: Revista de Investigación, Desarrollo e Innovación;Volumen 8, número 2 (Enero-Junio 2018)
Appears in Collections:Revista de Investigación, Desarrollo e Innovación

Files in This Item:
File Description SizeFormat 
PPS-912.pdfArchivo principal532.2 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons