Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2203
Title: Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013
Other Titles: Bayesian model for the study of dengue disease in the department of Atlántico Colombia years 2010 to 2013
Modelo bayesiano para o estudo da doença do dengue no departamento de Atlántico, Colômbia, anos 2010 a 2013
Authors: Montoya González, Angie Andrea
Ortíz Beltrán, Fabián Gabriel
Santa Guzmán, Luis Fernando
Keywords: Métodos estadísticos
Teoría bayesiana de decisiones estadísticas.
Virus del dengue
Dengue - Modelos matemáticos
Enfermedades transmitidas por vectores - Estudio de casos
Atlántico
Colombia
Dengue
Epidemiología
Estadística espacial
Modelo bayesiano
Issue Date: 1-Jul-2017
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Montoya González, A. A., Ortiz Beltrán, F. G. & Santa Guzmán, L.F. (2017). Modelo bayesiano para el estudio de la enfermedad del dengue en el departamento de Atlántico, Colombia, años 2010 a 2013. Perspectiva Geográfica, 22(2),85-104 DOI: 10.19053/01233769.7603. http://repositorio.uptc.edu.co/handle/001/2203
Abstract: El propósito en este artículo es estudiar la relación entre los casos de dengue y las variables dadas por los datos sociales, geográficos y económicos de los 23 municipios del departamento del Atlántico, Colombia, mediante el uso de modelos espaciales completamente bayesianos para el período 2010 a 2013. Se analizaron 7786 casos de dengue presentados en los cuatro años de estudio, en los que se encontró que los municipios más afectados por cantidad de población fueron Tubará, Candelaria, Puerto Colombia, Baranoa, Polonuevo y Ponedera. Se escogió el mejor modelo por cada año de estudio, basados en el Criterio de Información de Desviación (DIC), se encontró que las variables afines a las características sociales presentes en las viviendas y el crecimiento desordenado del casco urbano fueron las que mayor influencia tuvieron en el aumento del número de casos de dengue. El modelo bayesiano permitió identificar la relación del dengue con factores fuera del sector de salud estableciendo áreas de mayor riesgo de enfermedad.
Description: 1 recurso en línea (páginas 85-104).
metadata.dcterms.bibliographicCitation: Aburas, H. M., Cetiner, B. G. y Sari, M. (2010). Dengue confirmed-cases prediction: A neural network model. Expert Systems with Applications, 37(6), 4256-4260. Recuperado de http://doi.org/10.1016/j.eswa.2009.11.077
Alto Comisionado de las Naciones Unidas para los Refugiados (ACNUR). (s. f.). Diagnóstico departamental Atlántico. Recuperado de http://www.acnur.org/t3/ uploads/media/COI_2163.pdf?view=1
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., … Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507. Recuperado de http://doi.org/10.1038/nature12060
Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G., … Hay, S. I. (2012). Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Neglected Tropical Diseases, 6(8), e1760. Recuperado de http://doi.org/10.1371/journal.pntd.0001760
Cadena, M., Guzmán, D. y Ruíz, J. F. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través de análisis de componentes principales (ACP). Grupo de modelamiento de tiempo, clima, y escenarios de cambio climático. Subdirección de meteorología–IDEAM. Recuperado de http://www.ideam.gov.co/documents/
Departamento Administrativo Nacional de Estadística (DANE). (2005). Recuperado de http://www.dane.gov.co/index.php/poblacion-y-demografia/proyecciones-depoblacion
Del Valle, J. A. (2016). Introducción a las Cadenas o Procesos de Markov. Recuperado de http://www.ingenieria.unam.mx/javica1/ingsistemas2/Simulacion/Cadenas_de_ Markov.htm
Dom, N. C., Hassan, A. A., Latif, Z. A. & Ismail, R. (2013). Generating temporal model using climate variables for the prediction of dengue cases in Subang Jaya, Malaysia. Asian Pacific Journal of Tropical Disease, 3(5), 352-361. Recuperado de http://doi.org/10.1016/S2222-1808(13)60084-5
Echavarria, A. y Quintero, O. L. (2012). Estudio de los factores climaticos y geográficos que influyen en la presencia de casos de dengue y criaderos de Aedes aegypti en el municipio de Bello. Recuperado de http://repository.eafit.edu.co:80/ handle/10784/4614
Espinosa, R. (1998). La problemática de los desplazados en el Atlántico. Recuperado de http://www.eltiempo.com/archivo/documento/MAM-824868
Feres, J. C. y Mancero, X. (2001). El método de las necesidades básicas insatisfechas (NBI) y sus aplicaciones en América Latina. CEPAL. Recuperado de http://dds.cepal.org/ infancia/guide-to-estimating-child-poverty/bibliografia/capitulo-III/Feres%20 Juan%20Carlos%20y%20Xavier%20Mancero%20%282001b%29%20El%20 metodo%20de%20las%20necesidades%20basicas%20insatisfechas%20 %28NBI%29%20y%20sus%20aplicaciones%20en%20America%20Latina.pdf
Gobernación de Atlántico. Secretaría de planeación Atlántico (2010). Anuario estadístico del Atlántico 2010. Recuperado de http://atlantico.gov.co
González, R., Infante, S. y Hernández, A. (2012). Modelos jerárquicos espacio temporales para mapear riesgos relativos de dengue, en el Municipio Girardot, Estado Aragua, Venezuela. Boletín de Malariología y Salud Ambiental, 52(1), 33-45. Recuperado de http://www.scielo.org.ve/scielo.php?script=sci_ arttext&pid=S1690-46482012000100004&lng=es&nrm=iso&tlng=es
Honorato, T., Lapa, P. P. de A., Sales, C. M. M., Reis-Santos, B., Tristão-Sá, R., Bertolde, A. I. y Maciel, E. L. N. (2014). Spatial analysis of distribution of dengue cases in Espírito Santo, Brazil, in 2010: use of Bayesian model. Revista Brasileira de Epidemiologia, 17, 150-159. Recuperado de http://doi.org/10.1590/1809- 4503201400060013
Instituto Nacional de Salud. (2013). Situación del dengue en Colombia, 2013. Recuperado de http://www.ins.gov.co/noticias/paginas/situaci%C3%B3n-deldengue- en-colombia-hasta-el-16-de-febrero-de-2013.aspx#.V2n3vVnKuU4
Lawson, A. (2008). Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Boca Raton: Chapman and Hall/CRC.
Mena, N., Troyo, A., Bonilla-Carrión, R. y Calderón-Arguedas, Ó. (2011). Factors associated with incidence of dengue in Costa Rica. Revista Panamericana de Salud Pública, 29(4), 234-242. http://doi.org/10.1590/S1020-49892011000400004
Ministerio de Educación Nacional. (2012) Región Caribe (Costa Atlántica) en Educación. Recuperado de http://www.mineducacion.gov.co/1621/ articles-283230_archivo_pdf_perfil.pdf
Monsalve, N. C., Rubio-Palis, Y. y Pérez, M. E. (2010). Modelaje bayesiano espaciotemporal de factores asociados con la incidencia del dengue en el área metropolitana de Maracay, Venezuela. Boletín de Malariología y Salud Ambiental, 50(2), 219-232. Recuperado de http://www.scielo.org.ve/scielo.php?script=sci_ arttext&pid=S1690-46482010000200006&lng=pt&nrm=iso&tlng=es
Mosquera, M., Obregón, R., Lloyd, L. S., Orozco, M. y Peña, A. (2010). Reflexiones sobre el alcance de la investigación formativa en comunicación en salud en los programas de prevención y control de dengue. El caso de Barranquilla (Colombia). Investigación y Desarrollo, 18(1), 186-217. Recuperado de https:// dialnet.unirioja.es/servlet/articulo?codigo=3685496
Murcia, C. E. y Sarmiento F. J. (2015). Modelos bayesianos para describir el comportamiento del cáncer gástrico en Colombia en el periodo 2005-2012 (tesis de pregrado). Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.
Organización Mundial de la Salud (OMS). (2012). Dengue. Recuperado de http://www. who.int/topics/dengue/es/
Padilla, J. C., Rojas, D. P. y Sáenz Gómez, R. (2012). Dengue en Colombia: epidemiología de la reemergencia a la hiperendemia. Bogotá, Colombia: Guías de Impresión Ltda.
Pfeiffer, D., Robinson, T., Stevenson, M., Stevens, K., Rogers, D. y Clements, A. (2008) Spatial Analysis in Epidemiology. Oxford: University Press
Phung, D., Huang, C., Rutherford, S., Chu, C., Wang, X., Nguyen, M., … Manh, C. D. (2015). Identification of the prediction model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam. Acta Tropica, 141, Part A, 88-96. http://doi. org/10.1016/j.actatropica.2014.10.005
Santos, S. L. dos, Parra-Henao, G., Silva, M. B. C. & Augusto, L. G. da S. (2014). Dengue in Brazil and Colombia: a study of knowledge, attitudes, and practices. Revista Da Sociedade Brasileira de Medicina Tropical, 47(6), 783-787. http://doi. org/10.1590/0037-8682-0048-2014
Segebre, J. A. (2012). Plan de desarrollo 2012-2015. Gobernación de Atlántico- Atlántico más social. Recuperado de http://www.atlantico.gov.co/images/stories/ plan_desarrollo/plan_desarrollo_2012-2015.pdf
Silveira, G. P. y de Barros, L. C. (2015). Analysis of the dengue risk by means of a Takagi–Sugeno-style model. Fuzzy Sets and Systems, 277, 122-137. https://doi. org/10.1016/j.fss.2015.03.003
SIVIGILA. (2013). Vigilancia Rutinaria. Recuperado de http://www.ins.gov.co/lineas-deaccion/ Subdireccion-Vigilancia/sivigila/Paginas/vigilancia-rutinaria.aspx
Torres, C., Barguil, S., Melgarejo, M. y Olarte, A. (2014). Fuzzy model identification of dengue epidemic in Colombia based on multiresolution analysis. Artificial Intelligence in Medicine, 60(1), 41-51. Recuperado de http://doi.org/10.1016/j. artmed.2013.11.008
Waller, L. A. y Gotway, C. A. (2004). Applied spatial statistics for public health data. Hoboken, N.J: John Wiley & Sons.
Wongkoon, S., Jaroensutasinee, M. y Jaroensutasinee, K. (2012). Development of temporal modeling for prediction of dengue infection in Northeastern Thailand. Asian Pacific Journal of Tropical Medicine, 5(3), 249-252. http://doi.org/10.1016/ S1995-7645(12)60034-0
URI: http://repositorio.uptc.edu.co/handle/001/2203
ISSN: 2500-8684
Series/Report no.: Perspectiva Geográfica;Volumen 22, número 2 (Julio-Diciembre 2017)
Appears in Collections:Perspectiva Geográfica

Files in This Item:
File Description SizeFormat 
PPS-917.pdfArchivo principal3.06 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons