Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2279
Title: Impacto del uso de antimicrobianos en medicina veterinaria
Other Titles: The antimicrobials use impact on veterinary medicine
Authors: Hernández Barrera, Jenny Carolina
Angarita Merchán, Maritza
Prada Quiroga, Carlos Fernando
Keywords: Contaminación de alimentos
Enfermedades transmitidas por alimentos
Medicina veterinaria
Farmacorresistencia bacteriana
Profilaxis antibiótica
Issue Date: 1-Jul-2017
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Hernández Barrera J. C., Angarita Merchán M. & Prada Quiroga, C. F. (2017). Impacto del uso de antimicrobianos en medicina veterinaria. Revista Ciencia y Agricultura, 14(2), 27-38. DOI: ://doi.org/10.19053/01228420.v14.n2.2017.7146. http://repositorio.uptc.edu.co/handle/001/2279
Abstract: Actualmente, la resistencia a los antimicrobianos es de gran interés a nivel mundial, debido a su impacto en la salud animal y humana y en la contaminación ambiental y a su costo económico. Se presentan diversos datos sobre la utilización de antibacterianos en la explotación pecuaria; sobre el porcentaje de antibacterianos detectados en el estiércol o en la orina animal, el tiempo que tarda en su degradación en el ambiente y la consecuente contaminación de varios ambientes, y sobre el impacto en la fauna salvaje. Se han descrito diferentes hipótesis sobre la resistencia a antimicrobianos, pero actualmente existen evidencias que indican que la utilización desmesurada de los antibacterianos en la medicina humana y la producción pecuaria es el factor determinante para el desarrollo de dicho mecanismo en los microorganismos.
Description: 1 recurso en línea (páginas 27-38).
metadata.dcterms.bibliographicCitation: FAO/OIE/WHO. Joint FAO/OIE/WHO Expert Workshop on Non-Human Antimicrobial Usage and Antimicrobial Resistance: scientific assessment: Geneva, Diciembre 1-5, 2004.
Cires Pujol M. La resistencia a los antimicrobianos, un problema mundial. Rev Cubana Med Gen Integr. 2002; 18(2): 165-8.
Pantozzi F., Moredo F., Vigo G., Giacoboni G. Resistencia a los antimicrobianos en bacterias indicadoras y zoonóticas aisladas de animales domésticos en Argentina. Rev Argent Microbiol. 2010; 42(1): 49-52.
Errecalde JO. Uso de antimicrobianos en animales de consumo: incidencia del desarrollo de resistencias en salud pública: FAO; 2004.
Gundogan N., Citak S., Yucel N., Devren A. A note on the incidence and antibiotic resistance of Staphylococcus aureus isolated from meat and chicken samples. Meat Sci. 2005; 69(4): 807-10. DOI: http://doi.org/10.1016/j.meatsci.2004.10.011.
Grande BC., Falcón MG., Gándara JS. El uso de los antibacterianos en la alimentación animal: perspectiva actual. Cyta-J Food. 2000; 3(1): 39-47.
Seal BS, Lillehoj HS, Donovan DM, Gay CG. Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Anim Health Res Rev. 2013; 14(01): 78-87. DOI: http://doi.org/10.1017/S1466252313000030.
Huyghebaert G., Ducatelle R., Van Immerseel F. An update on alternatives to antimicrobial growth promoters for broilers. Vet J., 2011; 187 (2): 182-188. DOI: http://doi.org/10.1016/j.tvjl.2010.03.003.
Panda K., Rao SR., Raju M. Natural growth promoters have potential in poltry feeding systems. Animal Feed Science and Technology. 2006; 10(8): 23-25.
Gaskins H., Collier C., Anderson D. Antibiotics as growth promotants: mode of action. Anim Biotechnol. 2002; 13(1): 29-42. DOI: http://doi.org/10.1081/ABIO-120005768.
Dewey CE., Cox BD., Straw BE., Bush EJ., Hurd HS. Associations between off-label feed additives and farm size, veterinary consultant use, and animal age. Prev Vet Med., 1997; 31(1): 133-146. DOI: http://doi.org/10.1016/S0167-5877(96)01077-X.
Vela-Perdomo KL., et al. Evaluación preliminar del bioensayo para la detección de antimicrobianos en músculo bovino. Vitae. 2014; 21(3): 178-190.
Massé DI., Saady NM., Gilbert Y. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview. Animals (Basel). 2014; 4(2): 146-163. DOI: http://doi.org/10.3390/ ani4020146.
Food, Administration D. Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals. FDA. 2011.
Soto D. Evaluation of salmon farming effects on marine systems in the inner seas of sothern Chile: a large‐scale mensurative experiment. J. Appl Ichthyol. 2004; 20(6): 493-501. DOI: http://doi. org/10.1111/j.1439-0426.2004.00602.x.
Kemper N., Färber H., Skutlarek D., Krieter J. Analysis of antibiotic residues in liquid manure and leachate of dairy farms in Northern Germany. Agric. Water Manage. 2008; 95(11): 1288-1292. DOI: http://doi.org/10.1016/j.agwat.2008.05.008.
Prescott JF. Antimicrobial use in food and companion animals. Anim Health Res Rev. 2008; 9(2): 127-133. DOI: http://doi. org/10.1017/S1466252308001473.
Swann M., Baxter K., Field H. Report of the joint committee on the use of antibiotics in animal husbandry and veterinary medicine. Her Majesty’s Stationary Office, London. 1969.
Castanon J. History of the use of antibiotic as growth promoters in European poltry feeds. J. Anim Sci. 2007; 86 (11): 2466-2471.
Kumar K., Gupta S., Baidoo S., Chander Y., Rosen C. Antibiotic uptake by plants from soil fertilized with animal manure. J. Environ Qual. 2005; 34(6): 2082-2085. DOI: http://doi.org/10.2134/ jeq2005.0026.
Boxall A., Blackwell P., Cavallo R., Kay P., Tolls J. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol. Lett., 2002; 131(1): 19-28. DOI: http://doi.org/10.1016/S0378- 4274(02)00063-2.
Pan X., Qiang Z., Ben W., Chen M. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere. 2011; 84 (5): 695-700. DOI: http://doi.org/10.1016/j.chemosphere.2011.03.022.
Chen Y., Zhang H., Luo Y., Song J. Occurrence and assessment of veterinary antibiotics in swine manures: A case study in East China. Chinese Science Bulletin. 2012; 57(6): 606-614. DOI: http://doi. org/10.1007/s11434-011-4830-3.
Motoyama M, Nakagawa S, Tanoe R, Sato Y, Nomiyama K, Shinohara R. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. Chemosphere, 2011; 84(4): 432-8. DOI: http://doi.org/10.1016/j.chemosphere. 2011.03.048.
Aust M-O., Godlinski F., Travis GR., Hao X., McAllister TA., Leinweber P. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environ Pollut. 2008; 156(3): 1243-1251. DOI: http:// doi.org/10.1016/j.envpol.2008.03.011.
Huang C-H., Renew JE., Smeby KL., Pinkston K., Sedlak DL. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. J. Contemp Water Res Educ. 2011; 120(1): 4.
Martínez-Carballo E., González-Barreiro C., Scharf S., Gans O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut. 2007; 148(2): 570-579. DOI: http://doi.org/10.1016/j.envpol.2006.11.035.
Jacobsen AM., Halling-Sørensen B. Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography–tandem mass spectrometry. Anal. Biochem, 2006; 384(5): 1164-1174. DOI: http://doi.org/10.1007/s00216- 005-0261-9.
De Liguoro M., Cibin V., Capolongo F., Halling-Sørensen B., Montesissa C. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere. 2003; 52(1): 203-212. DOI: http://doi.org/10.1016/S0045- 6535(03)00284-4.
Dolliver HA., Gupta SC. Antibiotic losses from unprotected manure stockpiles. J. Environ Qual. 2008; 37(3): 1238-1244. DOI: http:// doi.org/10.2134/jeq2007.0391.
Ince B., Coban H., Turker G., Ertekin E., Ince O. Effect of oxytetracycline on biogas production and active microbial populations during batch anaerobic digestion of cow manure. Bioprocess Biosyst Eng. 2013; 36(5): 541-546. DOI: http://doi.org/10.1007/s00449- 012-0809-y.
Campagnolo ER., Johnson KR., Karpati A., Rubin CS., Kolpin DW., Meyer MT. Antimicrobial residues in animal waste and water resorces proximal to large-scale swine and poltry feeding operations. Sci. Total Environ. 2002; 299(1): 89-95. DOI: http://doi.org/10.1016/ S0048-9697(02)00233-4.
Vázquez-Vázquez C., García-Hernández JL., Salazar-Sosa E., López-Martínez JD., Valdez-Cepeda RD., Orona-Castillo I. Aplicación de estiércol solarizado al suelo y la producción de chile jalapeño (Capsicum annuum L.). Rev. Chapingo Ser. Hortic. 2011; 17(1): 69-74. DOI: http://doi.org/10.5154/r.rchsh.2011.17.040
Burkholder J., Libra B., Weyer P., Heathcote S., Kolpin D., Thorne PS. Impacts of waste from concentrated animal feeding operations on water quality. Environ Health Perspect., 2007; 115(2): 308. http://doi.org/10.1289/ehp.8839.
Hribar C., Schultz M. Understanding concentrated animal feeding operations and their impact on communities. Bowling Green, OH. Nalboh. February. 2010; 18: 2013.
NASS. Cattle on feed. USDA economics, statistics and market information system Cornell University, Ithaca, NY, and USDA, Washington, DC. 2010.
Nennich T., Harrison J., Van Wieringen L., Meyer D., Heinrichs A., Weiss W. Prediction of manure and nutrient excretion from dairy cattle. J. Dairy Sci., 2005; 88(10): 3721-3733. DOI: http://doi. org/10.3168/jds.S0022-0302(05)73058-7.
EPA. Animal Feeding Operations-Laws, Regulations, Policies and Guidance. Usepa. 2010: pp: 15.
Bolton A., Studdert G., Echeverría H. Utilización de estiércol de animales en confinamiento como fuente de recurso para la agricultura. Rev Arg Prod An. 2004; 24(1-2): 53-74.
Pinos-Rodríguez JM., García-López JC., Peña-Avelino LY., Rendón- Huerta JA., González-González C., Tristán-Patiño F. Impactos y regulaciones ambientales del estiércol generado por los sistemas ganaderos de algunos países de América. Agrociencia. 2012; 46(4): 359-370.
Willer H., Kilcher L. The World of Organic Agriculture: Statistics and Emerging Trends 2011: Bonn: International Federation of Organic Agriculture Movements (IFOAM). FiBL. 2011.
Chee-Sanford JC., Aminov RI., Krapac I., Garrigues-Jeanjean N., Mackie RI. Occurrence and diversity of tetracycline resistance genes in lagoons and grondwater underlying two swine production facilities. Appl Environ Microbiol. 2001; 67(4): 1494-1502. DOI: http://doi.org/10.1128/AEM.67.4.1494-1502.2001.
Daughton CG., Jones-Lepp TL. Pharmaceuticals and personal care products in the environment: scientific and regulatory issues. American Chemical Society. J. Am. Chem. Soc. 2001.
Buschmann AH., Cabello F., Yong K., Carvajal J., Varela DA., Henríquez L. Salmon aquaculture and coastal ecosystem health in Chile: analysis of regulations, environmental impacts and bioremediation systems. Ocean & Coastal Management. 2009; 52(5): 243- 249. DOI: http://doi.org/10.1016/j.ocecoaman.2009.03.002.
Chenxi W., Spongberg AL., Witter JD. Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere. 2008; 73(4): 511-518. DOI: http://doi.org/10.1016/j.chemosphere.2008.06.026.
Storteboom HN., Kim S-C., Doesken KC., Carlson KH., Davis JG., Pruden A. Response of antibiotics and resistance genes to high-intensity and low-intensity manure management. J. Environ Qual. 2007; 36(6): 1695-1703. DOI: http://doi.org/10.2134/ jeq2007.0006.
Ingerslev F., Halling-Sørensen B. Biodegradability of metronidazole, olaquindox, and tylosin and formation of tylosin degradation products in aerobic soil–manure slurries. Ecotoxicol Environ Saf. 2001; 48(3): 311-320. DOI: http://doi.org/10.1006/eesa.2000.2026.
Hektoen H., Berge JA., Hormazabal V., Yndestad M. Persistence of antibacterial agents in marine sediments. Aquaculture. 1995; 133(3): 175-184. DOI: http://doi.org/10.1016/0044-8486(94)00310-K.
Wollenberger L., Halling-Sørensen B., Kusk KO. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere. 2000; 40(7): 723-730. DOI: http://doi.org/10.1016/S0045- 6535(99)00443-9.
Vásquez A., Forsgren E., Fries I., Paxton RJ., Flaberg E., Szekely L. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One. 2012; 7(3): e33188. DOI: http://doi. org/10.1371/journal.pone.0033188.
Batchelder A. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems. J. Environ Qual. 1982; 11(4): 675-678. DOI: http://doi.org/10.2134/jeq1982.114675x.
Wichmann F., Udikovic-Kolic N., Andrew S., Handelsman J. Diverse Antibiotic Resistance Genes in Dairy Cow Manure. mBio, 2014; 5(2): 5, e01017-13.
Novais C., Freitas AR., Silveira E., Antunes P., Silva R., Coque TM. Spread of multidrug-resistant Enterococcus to animals and humans: an underestimated role for the pig farm environment. J. Antimicrob Chemother. 2013. DOI: http://doi.org/10.1093/jac/dkt289.
URI: http://repositorio.uptc.edu.co/handle/001/2279
ISSN: 2539-0899
Series/Report no.: Revista Ciencia y Agricultura;Volumen 14, número 2 (Julio-Diciembre 2017)
Appears in Collections:Revista Ciencia y Agricultura

Files in This Item:
File Description SizeFormat 
PPS-761.pdfArchivo principal180.81 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons