Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2366
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMayor Rivera, Angélica María-
dc.contributor.authorAragón Muriel, Alberto-
dc.contributor.authorPolo Cerón, Dorian-
dc.date.accessioned2019-01-31T20:39:28Z-
dc.date.available2019-01-31T20:39:28Z-
dc.date.issued2018-07-01-
dc.identifier.citationMayor Rivera, A. M., Aragón Muriel, A. & Polo Cerón, D. (2018). Síntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrina. Ciencia en Desarrollo, 9(2), 99-117. DOI: https://doi.org/10.19053/01217488.v9.n2.2018.7365. http://repositorio.uptc.edu.co/handle/001/2366spa
dc.identifier.issn2462-7658-
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2366-
dc.description1 recurso en línea (páginas 99-117).spa
dc.description.abstractEn este trabajo se han sintetizado complejos de lantánidos a partir de los cloruros de La(III), Ce(III), Sm (III) e Yb(III) con ligandos cinamato, presentando coordinación bidentada entre el grupo carboxilo del ligando y el metal lantánido. Estos compuestos se utilizaron como huéspedes de la β-ciclodextrina con el fin de obtener nuevos complejos de inclusión mediante el método de co-precipitación, utilizando N,N-dimetilformamida como disolvente. Los productos de inclusión obtenidos fueron caracterizados mediante espectroscopía IR-ATR, Raman, UV-vis, RMN 1H y 13C, DRX, TGA, DSC, análisis elemental y complexometría con EDTA. Se realizaron pruebas de actividad antibacteriana empleando 6 cepas ATTC (S. aureus ATCC 25923, S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. Typhimurium ATCC 14028 y K. pneumoniae ATCC BAA-2146) mediante el método de microdilución con caldo Mueller-Hinton; los resultados de actividad biológica para los complejos lantánidos permitieron evidenciar el efecto sinérgico entre el catión lantánido y el ligando cinamato. Igualmente, para los complejos de inclusión se observó una disminución de la concentración mínima inhibitoria (CMI) respecto a los complejos lantánidos iniciales. Los resultados obtenidos con el ADN de timo de ternera y el ADN plasmídico pBR322 permiten proponer una interacción electrostática entre los complejos evaluados y la estructura molécular del ADN.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.relation.ispartofseriesCiencia en Desarrollo;Volumen 9, número 2 (Julio-Diciembre 2018)-
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/7365/7263spa
dc.titleSíntesis, actividad antibacteriana e interacción del ADN con complejos de inclusión entre compuestos lantánidos y β-ciclodextrinaspa
dc.title.alternativeSynthesis, antibacterial activity and interaction of DNA with lanthanide-β-cyclodextrin inclusion complexesspa
dc.typeArtículo de revistaspa
dcterms.bibliographicCitationG. Wright, “Solving the antibiotics crisis”, ACS Infect. Dis., vol. 1, no. 2, pp. 80-84, Jan. 2015. http://pubs.acs.org/doi/abs/10.1021/ id500052s.spa
dcterms.bibliographicCitationR. Hamidpour, M. Hamidpour, S. Hamidpour, M. Shahlari, “Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer’s disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities”, J. Tradit. Complement. Med., vol. 5, no. 2, pp. 66-70, Apr. 2015. https://doi.org/10.1016/j. jtcme.2014.11.008.spa
dcterms.bibliographicCitationY. Zhang, X. Liu, Y. Wang, P. Jiang, S. Y. Queck, “Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus”, Food Control, vol. 59, pp. 282- 289, Jan. 2016. https://doi.org/10.1016/j. foodcont.2015.05.032.spa
dcterms.bibliographicCitationC. Letizia, J. Cocchiara, A. Lapczynski, J. Lalko, A. Api, “Fragrance material review on cinnamic acid”, Food Chem. Toxicol., vol. 43, no. 6, pp. 925-943, Jun. 2005. https:// doi.org/10.1016/j.fct.2004.09.015.spa
dcterms.bibliographicCitationB. Narasimhan, D. Belsare, D. Pharande, V. Mourya, A. Dhake, “Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations”, Eur. J. Med. Chem., vol. 39, no. 10, pp. 827-834. Oct. 2004. https://doi. org/10.1016/j.ejmech.2004.06.013.spa
dcterms.bibliographicCitationP. Sharma, “Cinnamic acid derivatives: A new chapter of various pharmacological activities”. J. Chem. Pharm. Res., vol. 3, no. 2, pp. 403-423. Jan. 2011. http://www. jocpr.com/abstract/cinnamic-acid-derivatives-a-new-chapter-of-various-pharmacological-activities-712.html.spa
dcterms.bibliographicCitationS. Venkateswarlu, M. Ramachandra, A. Krishnaraju, G. Trimurtulu, G. Subbaraju, “Antioxidant and antimicrobial activity evaluation of polyhydroxycinnamic acid ester derivatives”, Indian J. Chem., vol. 45B, pp. 252-257, Jan. 2006. http://hdl.handle. net/123456789/6188.spa
dcterms.bibliographicCitationA. Chambel, C. Viegas, I. Sá-Correia, “Effect of cinnamic acid on the growth and on plasma membrane 1H-ATPase activity Saccharomyces cerevisiae”, Inter. J. Food Microbiol., vol. 50, no. 3, pp. 173-179, Sep. 1999. https://doi.org/10.1016/ S0168-1605(99)00100-2.spa
dcterms.bibliographicCitationS. Adisakwattana, K. Sookkongwaree, S. Roengsumran, A. Petsom, N. Ngamrojnavanich, W. Chavasiri, D. Deesamer, S. Yibchok, “Structure–activity relationships of trans-cinnamic acid derivatives on a-glucosidase inhibition”, Bioorg. Med. Chem. Lett., vol. 14, no. 11, pp. 2893–2896, Jun. 2004. https://doi.org/10.1016/j.bmcl.2004.03.037.spa
dcterms.bibliographicCitationS. Carvalho, E. Silva, M. Souza, M. Lourenc¸ F. Vicenteb, “Synthesis and antimycobacterial evaluation of new trans-cinnamic acid hydrazide derivatives”, Bioorg. Med. Chem. Lett., vol. 18, no. 2, pp. 538–541, Jan. 2008. https://doi.org/10.1016/j.bmcl.2007.11.091.spa
dcterms.bibliographicCitationF. Bisogno, L. Mascoti, C. Sanchez, F. Garibotto, F. Giannini, M. Kurina-Sanz, R. Enriz, “Structure-antifungal activity relationship of cinnamic acid derivatives”, J. Agr. Food Chem., vol. 55, no. 26, pp. 10635–10640, Nov. 2007. http://pubs.acs. org/doi/abs/10.1021/jf0729098.spa
dcterms.bibliographicCitationN. J. Bello-Vieda, H. F. Pastrana, M. F. Garavito, A. G. Ávila, A. M. Celis, A. Muñoz-Castro, S. Restrepo, J. J. Hurtado, “Antibacterial Activities of Azole Complexes Combined with Silver Nanoparticles”, Molecules, vol. 23, no. 2, pp. 361, 1-17, Feb. 2018. https://doi. org/10.3390/molecules23020361.spa
dcterms.bibliographicCitationK. F. Castillo, N. J. Bello-Vieda, N. G. Nuñez-Dallos, H. F. Pastrana, A. M. Celis, S. Restrepo, J. J. Hurtado, A. G. Ávila, “Metal Complex Derivatives of Azole: a Study on Their Synthesis, Characterization, and Antibacterial and Antifungal Activities”, J. Braz. Chem. Soc., vol. 27, no. 12, pp. 2334-2347, Dec. 2016. http://dx.doi. org/10.5935/0103-5053.20160130.spa
dcterms.bibliographicCitationN. K. Singh, S. B. Singh, D. K. Singh, V. B. Chauhan, “Synthesis, characterization and biological properties of N-nicotinoyl-N’-thiobenzoyl-hydrazine complexes of cobalt(II), nickel(II), copper(II) and zinc(II), Indian J. Chem., vol. 42A, pp. 2767-2771, Nov. 2003. http://nopr.niscair.res. in/bitstream/123456789/20791/1/IJCA%20 42A(11)%202767-2771.pdf.spa
dcterms.bibliographicCitationA. Aragon-Muriel, D. Polo-Cerón, “Synthesis, characterization, thermal behavior, and antifungal activity of La(III) complexes with cinnamates and 4-methoxyphenylacetate”, J. Rare Earths, vol. 31, no. 11, pp. 1106-1113, Nov. 2013. https://doi.org/10.1016/ S1002-0721(12)60412-8.spa
dcterms.bibliographicCitationA. Aragon-Muriel, Y. Upegui, J. A. Muñoz, S. M. Robledo, D. Polo-Ceron, “Synthesis, characterization and biological evaluation of rare earth complexes against tropical diseases Leishmaniasis, Malaria and Trypanosomiasis”, Avances en Química, vol. 11, no. 2, pp. 53-61, Aug. 2016. http://erevistas. saber.ula.ve/index.php/avancesenquímica/ article/view/7863/7806.spa
dcterms.bibliographicCitationE. M. Martin Del Valle, “Cyclodextrins and their uses: a review”. Process Biochem., vol. 39, no. 9, pp. 1033–1046, May 2004. https:// doi.org/10.1016/S0032-9592(03)00258-9.spa
dcterms.bibliographicCitationE. Santos, J. Kamimura, L. Hill, C. Gomes, “Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications”, Food Sci. Technol., vol. 60, no. 1, pp. 583-592, Jan. 2015. https://doi. org/10.1016/j.lwt.2014.08.046.spa
dcterms.bibliographicCitationK. Uekama, F. Hirayama, T. Irie, “Cyclodextrin Drug Carrier Systems”, Chem. Rev., vol. 98, no. 5, pp. 2045-2076, Jul. 1998. http:// pubs.acs.org/doi/abs/10.1021/cr970025pspa
dcterms.bibliographicCitationC. Demicheli, R. Ochoa, J. Da Silva, C. Falcao, B. Rossi-Bergmann, A. De Melo, R. Sinisterra, F. Frézard, “Oral Delivery of Meglumine Antimoniate-β-Cyclodextrin Complex for Treatment of Leishmaniasis”, Antimicrob. Agents Chemother., vol. 48, no. 1, pp. 100-103, Jan. 2004. https://dx.doi. org/10.1128%2FAAC.48.1.100-103.2004.spa
dcterms.bibliographicCitationG. Deacon, M. Forsyth, P. Junk, S. Leary, W. Lee, “Synthesis and characterisation of rare earth complexes supported by para-substituted cinnamate ligands”, Z. Anorg. Allg. Chem., vol. 635, no. 6-7, pp. 833-839, May 2009. http://dx.doi.org/10.1002/zaac. 200801379.spa
dcterms.bibliographicCitationPerformance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacterial Isolated from Animals, CLSI M31-A3. 3 ed., 2008.spa
dcterms.bibliographicCitationG. Deacon, F. Huber, R. Phillips, “Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbón-oxygen stretching frequencies”, Inorg. Chim. Acta., vol. 104, no. 1, pp. 41-45, Oct. 1985. https:// doi.org/10.1016/S0020-1693(00)83783-4.spa
dcterms.bibliographicCitationA. Aragón-Muriel, M. Camprubi, E. Gonzalez, A. Salinas, A. Rodriguez, S. Gomez, D. Polo-Cerón, “Dual investigation of lanthanide complexes with cinnamate and phenylacetate ligands: study of the cytotoxic properties and the catalytic oxidation of styrene”, Polyhedron, vol. 80, pp. 117–128, Sep. 2014. https://doi.org/10.1016/j. poly.2014.02.040.spa
dcterms.bibliographicCitationN. Roik, L. Belyakova, “Infrared spectroscopy, x-ray diffraction and thermal analysis studies of solid b-cyclodextrin - para-aminobenzoic acid inclusion complex”, PCSS, vol. 12, no. 1, pp. 168-173, 2011. http:// www.pu.if.ua/inst/phys_che/start/pcss/ vol12/1201-26.pdfspa
dcterms.bibliographicCitationA. Kokkinou, S. Makedonopoulou, D. Mentzafos, “The cristal structure of the 1:1 complex of β-cyclodextrin with trans-cinnamic acid”, Carbohydr. Res., vol. 328, no. 2, pp. 135-140, Sep. 2000. https://doi.org/10.1016/ S0008-6215(00)00091-4.spa
dcterms.bibliographicCitationH. Schneider, F. Hacket, V. Rüdiger, I. Ikeda, “NMR studies of cyclodextrins and cyclodextrin complexes”, Chem. Rev., vol. 98, no. 5, pp. 1755-1786, Jul. 1998. http:// pubs.acs.org/doi/abs/10.1021/cr970019t.spa
dcterms.bibliographicCitationF. Giordano, C. Novak, J. Moyano, “Thermal analysis of cyclodextrins and their inclusion compounds”, Thermochim. Acta, vol. 380, no. 2, pp. 123-151, Dec. 2001. https://doi. org/10.1016/S0040-6031(01)00665-7.spa
dcterms.bibliographicCitationK. Chandrul, “Role of Macromolecules in Chromatography: Cyclodextrines”, J. Chem. Pharm. Res., vol. 3, no. 6, pp. 822-828, 2011. http://www.jocpr.com/articles/role-of-macromolecules-in-chromatography-cyclodextrines.pdfspa
dcterms.bibliographicCitationT. Pijpers, V. Mathot, B. Goderis, R. Scherrenberg, E. Van der Vegte, “High-Speed Calorimetry for the Study of the Kinetics of (De)vitrification, Crystallization, and Melting of Macromolecules”, Macromolecules, vol. 35, no. 9, pp. 3601-3613, Mar. 2002. http://pubs.acs.org/doi/abs/10.1021/ ma011122u?journalCode=mamobx.spa
dcterms.bibliographicCitationR. Abu-Eittah, M. Khedr, M. Goma, W. Zordok, “The structure of cinnamic acid and cinnamoyl azides, a unique localized p system: the electronic spectra and DFT-treatment”, Int. J. Quantum. Chem., vol. 112, no. 5, pp. 1256-1272, Mar. 2012. http://dx.doi.org/10.1002/qua.23120.spa
dcterms.bibliographicCitationA. Essawy, M. Afifi, H. Moustafa, S. El-Medani, “DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids”, Spectrochim. Acta A., vol. 131, pp. 388-397, Oct. 2014. https://doi.org/10.1016/j. saa.2014.04.134.spa
dcterms.bibliographicCitationT. Abbs, A. Pearl, B. Rosy, “Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid”, J. Rare Earths, vol. 31, no. 10, pp. 1009-1016. Oct. 2013. https://doi.org/10.1016/ S1002-0721(13)60022-8.spa
dcterms.bibliographicCitationJ. Calvo, L. Martínez-Martínez, “Mecanismo de acción de los antimicrobianos”, Enferm. Infecc. Microbiol. Clin., vol. 27, no. 1, pp. 44–52, Jan. 2009. http://dx.doi. org/10.1016/j.eimc.2008.11.001.spa
dcterms.bibliographicCitationA. Deredjian, C. Colinon, S. Brothier, S. Favre-Bonte, B. Cournoyer, S. Nazaret, “Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa”, Res. Microbiol., vol. 162, no. 7, pp. 689-700, Sep. 2011. https://doi. org/10.1016/j.resmic.2011.06.007.spa
dcterms.bibliographicCitationK. Suntharalingam, O. Mendoza, A. Duarte, D. Mann, R. Vilar, “A platinum complex that binds non-covalently to DNA and induces cell death via a different mechanism than cisplatin”, Metallomics., vol. 5, pp. 514-523, Feb. 2013. https://doi.org/10.1039/ C3MT20252F.spa
dcterms.bibliographicCitationY. Sun, F. Dong, D. Wang, Y. Lib, “Crystal Structure, Supramolécular Self-Assembly and Interaction with DNA of a Mixed Ligand Manganese(II) Complex”, J. Braz. Chem. Soc., vol. 22, no. 6, pp. 1089- 1095, Jun. 2011. http://dx.doi.org/10.1590/ S0103-50532011000600013.spa
dcterms.bibliographicCitationN. Sohrabi, “Binding and uv/vis spectral investigation of interaction of ni(ii) piroxicam complex with calf thymus deoxyribonucleic acid (Ct-DNA): a thermodynamic approach”, J. Pharm. Sci. & Res., vol. 7, no. 8, pp. 533-537, Aug. 2015. http://www. jpsr.pharmainfo.in/Documents/Volumes/ vol7Issue08/jpsr07081507.pdfspa
dcterms.bibliographicCitationA. Jamali, A. Tavakoli, J. Nazhad, “Analytical overview of DNA interaction with Morin and its metal complexes”, Eur. Food Res. Technol., vol. 235, no. 3, pp 367–373, Sep. 2012. https://doi.org/10.1007/ s00217-012-1778-8.spa
dcterms.bibliographicCitationA. Sigel, H. Sigel, R. Sigel, Interplay between metal ions and nucleic acids. New York: Springer, 2012.spa
dcterms.bibliographicCitationA. Kresel, J. Lisowski, “Enantioselective cleavage of supercoiled plasmid DNA catalyzed by chiral macrocyclic lanthanide(III) complexes”, J. Inorg. Biochem., vol. 107, no. 1, pp. 1–5, Feb. 2012. https://doi.org/10.1016/j. jinorgbio.2011.10.011spa
dcterms.bibliographicCitationM. Komiyama, N. Takeda, H. Shigekawa, “Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications”, Chem. Commun., vol. 16, pp. 1443–1451, 1999. https://doi.org/10.1039/ A901621J.spa
dcterms.bibliographicCitationS. Tabassum, G. Sharma, F. Arjmand, “New modulated design and synthesis of chiral CuII/SnIV bimetallic potential anticancer drug entity: In vitro DNA binding and pBR322 DNA cleavage activity”, Spectrochim. Acta Part A., vol. 90, pp. 208-217, May 2012. https://doi.org/10.1016/j. saa.2012.01.020.spa
dc.description.notesBibliografía y webgrafía: páginas 114-117.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.description.abstractenglishIn this work, lanthanide complexes were synthesized starting from the corresponding La (III), Ce (III), Sm (III) and Yb (III) chlorides and cinnamate ligands which present bidentate coordination between the carboxyl group of the ligand and the lanthanide metal. These compounds were used as hosts of β-cyclodextrin to obtain new inclusion complexes by a co-precipitation method using N,N-dimethylformamide as solvent. The inclusion products were characterized by IR-ATR spectroscopy, Raman, UV-vis, 1H and 13C NMR,XRD, TGA-DSC, elemental analysis and EDTA complexometry. Antibacterial activity tests were performed using six ATTC strains (S. aureus ATCC 25923, S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. Typhimurium ATCC 14028 and K. pneumoniae ATCC BAA-2146) by the microdilution method with Mueller-Hinton broth. The results of the biological activity for the lanthanide complexes showed the synergistic effect between the lanthanide cation and the cinnamate ligand. For the inclusion complexes, a decrease of the minimum inhibitory concentration (MIC) was observed with respect to the initial lanthanide complexes. The results obtained with the bovine thymus DNA and the plasmid pBR322 DNA allow to propose an electrostatic interaction between the evaluated complexes and the molécular structure of the DNA.spa
dc.identifier.doihttps://doi.org/10.19053/01217488.v9.n2.2018.7365-
dc.rights.creativecommonsAtribución-NoComercialspa
dc.subject.proposalActividad antibacterianaspa
dc.subject.proposalComplejos de inclusiónspa
dc.subject.proposalComplejos lantánidosspa
dc.subject.proposalInteracción con ADNspa
Appears in Collections:Ciencia en Desarrollo

Files in This Item:
File Description SizeFormat 
PPS-975.pdfArchivo principal2.27 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons