Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2371
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeléndez Gélvez, Iván-
dc.contributor.authorQuijano Parra, Alfonso-
dc.contributor.authorYañez Urbina, Luis Fabian-
dc.date.accessioned2019-01-31T20:53:10Z-
dc.date.available2019-01-31T20:53:10Z-
dc.date.issued2018-07-04-
dc.identifier.citationMeléndez Gélvez, I., Quijano Parra, A., & Yáñez Urbina, L. F. (2018). Daño genotóxico inducido por extractos de durazno, Prunus persica cultivados en Cácota Norte de Santander. Ciencia en Desarrollo, 9(2), 47-55. http://repositorio.uptc.edu.co/handle/001/2371spa
dc.identifier.issn2462-7658-
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2371-
dc.description1 recurso en línea (páginas 47-55).spa
dc.description.abstractPeach Production in Colombia is concentrated in the departments of Boyacá, Cundinamarca, Norte de Santander, Santander, Antioquia, Caldas and Nariño, the main producer is Boyacá with 677 ha, especially in the municipality of Sotaquirá and in other municipalities such as Jenesano, Nuevo Colón, Combita and Tuta; the third production department is Norte de Santander with 480 Ha. Currently the production is concentrated mainly in the municipalities of Chitagá, Pamplonita and Cacota. Pesticides are considered one of the main factors of environmental pollution; As it is known they are widely used to improve the production of food in agriculture and for the control of pests and disease vectors, many have been classified as carcinogenic, because they induce damage to the genetic material. In this work the genotoxicity produced by extracts of peach (Prunus pérsica (L.) Batsch) cultivated in Cacota, Norte de Santander was determined. The comet assay was used for the evaluation of gemoxic activity. The results obtained indicate that the peach extracts induce lesions in the DNA of human lymphocytes, which vary according to the dose of the extract. Considering that the peach is an export product and high consumption in our region, the intake of this could become a risk factor for the population.eng
dc.description.abstractLa Producción del durazno en Colombia se concentra en los departamentos de Boyacá, Cundinamarca, Norte de Santander, Santander, Antioquia, Caldas y Nariño, el principal productor es Boyacá con 677 ha, especialmente en el municipio de Sotaquirá y en otros municipios como Jenesano, Nuevo Colón, Cómbita y Tuta; el tercer departamento productor es Norte de Santander con 480 Ha, la mayor producción se encuentra en los municipios de Pamplonita y Chitagá. Los pesticidas son considerados como uno de los principales factores de contaminación del medio ambiente; como es conocido son ampliamente utilizados para mejorar la producción de alimentos en la agricultura y para el control de plagas y vectores de enfermedades; muchos han sido clasificados como cancerígenos, porque inducen daño en el material genético. En este trabajo se determinó la genotoxicidad producida por extractos de durazno (Prunus pérsica (L.) Batsch) cultivado en Cacota, Norte de Santander. El ensayo cometa fue utilizado para la evaluación de la actividad gentóxica. Los resultados obtenidos indican que los extractos de durazno inducen lesiones en el ADN de linfocitos humanos, que varían de acuerdo a la dosis del extracto. Ya que el durazno es un producto de exportación y de alto consumo en nuestra región, la ingesta de este podría convertirse en un factor de riesgo para la población.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/8706/7248spa
dc.titleDaño genotóxico inducido por extractos de durazno, Prunus persica cultivados en Cácota Norte de Santanderspa
dc.title.alternativeGenotoxic damage induced by extracts of peach, Prunus persica grown in Cácota Norte de Santandereng
dc.typeArtículo de revistaspa
dc.description.notesBibliografía: páginas 53-55.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.referencesCarranza C., Miranda D. Zonificación actual de los sistemas de producción de frutales caducifolios en Colombia. Situación actual, sistemas de cultivo y plan de desarrollo. Soc. Col. Cienc. Hort. 2013; 67-86.spa
dc.relation.referencesXiang Guanggang, Li Diqiu, Yuan Jianzhong, Guan Jingmin, Zhai Huifeng, Shi Mingan, Tao Liming. Carbamate insecticide methomyl confers cytotoxicity through DNA damage induction. Food and Chemical toxicology. 2013; 53: 352-358.spa
dc.relation.referencesBolognesi C., Peluso M., Degan P., Rabboni R., Munnia A., Abbondandolo A. Genotoxic effects of the carbamate insecticide, methyomyl. II. In vivo studies with pure compound and the technical formulation, “Lannate 25” Environmental and Molécular Mutagenesis. 1994; 235–242.spa
dc.relation.referencesFalck GC, Hirvonen A., Scarpato R., Saarikoski ST, Migliore L, Norppa H. Micronuclei in blood lymphocytes and genetic polymorphism for GSTM1, GSTT1 and NAT2 in pesticide-exposed greenhouse workers Mutation Research. 1991; 441: 225–237spa
dc.relation.referencesSun XY, Jin YT, Wu B, Wang WQ, Pang XL, Wang J. Study on genotoxicity of aldicarb and methomyl. Huan Jing Ke Xue .2010; 31: 2973–2980.spa
dc.relation.referencesPabuena Duban E., Ortiz Isabel C., López Juan, Orozco Luz J., Quijano Parra Alfonso, Pardo Enrique, Meléndez Iván. Actividad genotóxica inducida por extracto de fresa fumigada con pesticidas en Pamplona, Norte de Santander, Colombia. Universidad, Ciencia y Tecnología. 2015; 19: 76.spa
dc.relation.referencesSimoniello, M.F.; Kleinsorge, E.C.; Scagnetti, J.A.; Grigolato, R.A.; Poletta, G.L. y Carballo, M.A., 2008. DNA damage in workers occupationally exposed to pesticide mixtures. J. Appl. Toxicol. 28, 8: 957-965.spa
dc.relation.referencesHaibing Li, Yuling Li, Jing Cheng. Molécularly Imprinted Silica Nanospheres Embedded CdSe Quantum Dots for Highly Selective and Sensitive Optosensing of Pyrethroids. Central China Normal University, China. 2010; 22: 2451–2457.spa
dc.relation.referencesOudou HC, Alonso RM, Bruun Hansen HC. Voltammetric behaviour of the synthetic pyrethroid lambda-cyhalothrin and its determination in soil and well water. Analytica chemical Acta 2004; 523: 69–74spa
dc.relation.referencesIdris S, Ambali S., Ayo J. Cytotoxicity of chlorpyrifos and cypermethrin: the ameliorative effects of antioxidants. Afr J Biotechnol. 2012; 11 (99): 16461-16467.spa
dc.relation.referencesCollins AR, Dobson VL., Dusinska M., Kennedy G, Stetina R. The comet assay: what can it really tell us.Mutat. 1997; 375 : 183–193.spa
dc.relation.referencesMeléndez I., Pedro E., Quijano A. Actividad genotóxica de aguas antes y después de clorar en la planta de potabilización Empopamplona. Bistua:Revista de la Facultad de Ciencias Básicas.2015.13(2):12-23. DNA.spa
dc.relation.referencesMeléndez Gélvez I., Martínez Montañez ML, Quijano Parra A. Actividad mutagénica y genotóxica en el material particulado fracción respirable MP2,5 en Pamplona, Norte de Santander, Colombia. Iatreia. 2012; 25 (4): 347-356spa
dc.relation.referencesVargas V., Migliavacca S., Melo A., Horn R. Genotoxicity assessment in aquatic environments under the influence of heavy metals and organic contaminants. Mut.2001; 490: 141-158spa
dc.relation.referencesBull S., Fletcher K., Boobis AR, Battershill JM, Evidence for genotoxicity of pesticides in pesticide applicators: a review. Mutagenesis, 2006; 21 (2): 93-103.spa
dc.relation.referencesBertoncini CR, Meneghini R. DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3′-phosphoglycolate termini Nucleic Acids. 1995; 23: 2995–3002.spa
dc.relation.referencesShrivastava R, Upreti RK, Seth PK, Chaturvedi UC. Effects of chromium on the immune system FEMS Immunol. Med. Microbiol. 2002; 34 (1): 1–7.spa
dc.relation.referencesNesnow S., Roop BC, Lambert G., Kadiiska M., Mason RP, Cullen W.R, Mass MJ. DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species. Chemical Research Toxicology. 2002; 15: 1627–1634.spa
dc.relation.referencesBasu A, Ghosh P, Das JK, Banerjee A, Ray K, Giri AK. Micronuclei as biomarkers of carcinogen exposure in populations exposed to arsenic through drinking water in West Bengal, India: a comparative study in three cell types. Cancer Epidemiology Biomarkers and Prevention. 2004; 13: 820–827spa
dc.relation.referencesMahata J., Basu A., Ghoshal S., Sarkar JN, Roy AK, Poddar G., Nandy AK, Banerjee A., Ray K., Natarajan AT, Nilsson R, Giri AK. Chromosomal aberrations and sister chromatid exchanges in individuals exposed to arsenic through drinking water in West Bengal, India. Mutation Research. 2003; 534: 133–143.spa
dc.relation.referencesLing YH, Jiang JD, Holland JF, Perez Soler R. Arsenic trioxide polymerization of microtubules and mitotic arrest before apoptosis in human tumor cell lines Molécular Pharmacology. 2002; 62: 529–538.spa
dc.relation.referencesNesnow S., Roop BC, Lambert G., Kadiiska M., Mason RP, Cullen WR, Mass MJ. DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species. Chemical Research Toxicology. 2002; 15: 1627–1634.spa
dc.relation.referencesAntherieu S., Ledirac N., Luzy AP., Lenormand P., Caron JC, Rahmani R. Endosulfan decreases cell growth and apoptosis in human HaCaT keratinocytes: Partial ROS-dependent ERK1/2 mechanism. J Cell Physiol. 2007; 213: 177-86.spa
dc.relation.referencesChaudhuri K, Selvaraj S, Pal AK. Studies on the genotoxicity of endosulfan in bacterial systems.1999. Mutat Res 439 (1): 63-7.spa
dc.relation.referencesIARC. 1987. Hexachlorocyclohexanes. In Overall Evaluations of Carcinogenicity. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, suppl. 7. Lyon, France: International Agency for Research on Cancer.pp. 220-222.spa
dc.relation.referencesSchulte-Hermann R, Parzefall W. 1981. Failure to discriminate initiation from promotion of liver tumors in a long-term study with the phenobarbital-type inducer alpha-hexachlorocyclohexane and the role of sustained stimulation of hepatic growth and monooxygenases. Cancer Res 41(10): 4140-4146spa
dc.relation.referencesEcobicon, D.J. Toxic effects of pesticides. In: Klaassen et al. (eds). Casarett and Doull’s Toxicology: The basic science of poisons, 4th ed. New York: Maxwell McMillan Pergamon; 1991:573-580spa
dc.relation.references132. Volpe, E., Sambucci, M., Battistini, L., Borsellino, G., 2016. Fas-Fas ligand: checkpoint of T cell functions in multiple sclerosis. Front. Immunol. 7, 382.spa
dc.relation.referencesWei, J., Zhang, L., Ren, L., Zhang, J., Yu, Y.,Wang, J., Duan, J., Peng, C., Sun, Z., Zhou,X., 2017. Endosulfan inhibits proliferation through the Notch signaling Path way in human umbilical vein endothelial cells. Environ. Pollut. 221, 26–36.spa
dc.relation.referencesChen, Z.Y., Liu, C., Lu, Y.H., Yang, L.L., Li, M., He, M.D., et al., 2016. Cadmium exposure enhances bisphenol A-induced genotoxicity through 8-oxoguanine-DNA glycosylase-1 OGG1 inhibition in NIH3T3 fibroblast cells. Cell. Physiol. Biochem. 39, 961–974spa
dc.relation.referencesSebastian, R., Raghavan, S.C., 2016. Induction of DNA damage and erroneous repair can explain genomic instability caused by Endosulfan. Carcinogenesisspa
dc.relation.referencesPalou, R., Palou, G., Quintana, D.G., 2016. A role for the spindle assembly checkpoint in the DNA damage response. Curr. Genetspa
dc.relation.referencesWei, J., Zhang, L., Wang, J., Guo, F., Li, Y., Zhou, X., Sun, Z., 2015. Endosulfan inducing blood hypercoagulability and endothelial cells apoptosis via the death receptor pathway in Wistar rats. Toxicol. Res. 4, 1282–1288spa
dc.rights.creativecommonsAtribución-NoComercialspa
dc.subject.proposalDuraznospa
dc.subject.proposalGenotoxicidadspa
dc.subject.proposalEnsayo cometaspa
dc.subject.proposalPesticidasspa
dc.subject.proposalCácotaspa
dc.subject.proposalNorte de Santanderspa
dc.subject.proposalColombiaspa
dc.relation.ispartofjournalCiencia en Desarrollo;Volumen 9, número 2 (Julio-Diciembre 2018)spa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:Ciencia en Desarrollo

Files in This Item:
File Description SizeFormat 
PPS_962_Daño_genotoxico_inducido.pdfArchivo principal633 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons