Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2441
Title: Desarrollo de una aplicación para el cálculo de las propiedades de la mezcla amoniaco-agua
Other Titles: Development of a computer application for the calculation of the thermodynamic properties of the ammonia-water mixture
Authors: Vera Romero, Iván
Heard Wade, Christopher Lionel
Keywords: Refrigeración por absorción
Refrigeración por compresión
Mezcla amoniaco-agua
Propiedades termodinámicas
Energía libre de Gibbs de exceso
Entalpía
Entropía
Issue Date: 1-Jul-2017
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Vera Romero, I. & Heard Wade, C. L. Desarrollo de una aplicación para el cálculo de las propiedades de la mezcla amoniaco-agua. Revista Ingeniería, Investigación y Desarrollo, 17 (2), 58-72. DOI: https://doi.org/10.19053/1900771X.v17.n2.2017.7185. http://repositorio.uptc.edu.co/handle/001/2441
Abstract: El diseño y la optimización de sistemas energéticos en la actualidad son de gran importancia. Algunos de estos sistemas emplean la mezcla amoniaco-agua como fluido de trabajo, por lo tanto, el cálculo de las propiedades termodinámicas se vuelve indispensable para su evaluación, diseño y optimización. En el presente trabajo se ha desarrollado una aplicación en ExcelTM empleando Visual Basic (VBA) a partir de una formulación basada en la energía de Gibbs de exceso, con la finalidad de simular diversos sistemas, como pueden ser de refrigeración, aire acondicionado, bombas de calor, cogeneración y ciclos de potencia, sin la necesidad de adquirir simuladores comerciales para tal propósito. Para validar dicho programa se han comparado los resultados con los datos arrojados por el software desarrollado por el National Institute of Standars and Technology (NIST) y datos experimentales reportados en literatura.
Description: 1 recurso en línea (páginas 58-72).
metadata.dcterms.bibliographicCitation: A. Rivera, J. Cerezo, R. Rivero, J. Cervantes y R. Best, “Single Stage and Double Absorption heat transformers used to recover energy in a distillation column of butane and pentane”, Int J of Energy Research, vol. 27, pp. 1279-1292, 2003. doi: https:// doi.org/10.1002/er.943
A.I. Kalina, “Combined cycle and waste-heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation”, ASME paper n.º 83-JPGC-GT-3, 1983.
S. Stecco y U. Desideri, “A thermodynamic analysis of the kalina cycles: comparisons, problems and perspectives”. Presentado en Gas Turbine and Aeroengine Congress and Exposition ASME, 1989.
J. Hernández, C. Heard y R. Rivero, “Exergoeconomic comparison of a combined cycle cogeneration system with absorption refrigeration turbine inlet air cooling. Presentado en 16th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental impact of energy systems. Copenhagen, Denmark, ECOS, 2003.
R. Tillner-Roth y G. Friend, “Survey and Assesment of available measurements on thermodynamic properties of the mixture {Water+Ammonia}”, J Phys Chem Ref Data vol. 27, n.º 1, pp. 45-61, 1998. doi: https://doi.org/10.1063/1.556014
E. Thorin, “Thermophysical properties of ammonia- water mixtures for prediction of heat transfer areas in power cycles”, Int J Thermophys vol. 22, n.º 1, pp. 201-214, 2001. doi: https://doi.org/ 10.1023/A:1006745100278
R.A. Macris, B.E. Eakin, R.T. Ellington y J. Huebler, “Physical and thermodynamic properties of ammonia- water mixtures” Research Bulletin Inst. of Gas Technology, n.º 14, 1964.
R.T. Ellington, G. Kinst, R.E. Peck y J.F. Reed, “The absorption cooling process”, Research Bulletin Institute of Gas Technology, 1957.
R. Tillner-Roth y G. Friend, “A Helmholtz free energy formulation of the thermodynamic properties of the mixture {Water+Ammonia}” J Phys Chem Ref Data, vol. 27, n.º 1, pp. 63-96, 1998. doi: https:// doi.org/10.1063/1.556015
S.H. Risvi y R.A. Heidemann, “Vapor-Liquid equilibria in the ammonia-water system”, J Chem Eng Data, vol. 32, 183-191, 1987. doi: https://doi. org/10.1021/je00048a017
A. Vidal, R. Best, R. Rivero y J. Cervantes, “Analysis of a combined power and refrigeration cycle by the exergy method”, Energy, vol. 31, pp. 3401- 3414, 2006. doi: https://doi.org/10.1016/j.energy. 2006.03.001
J. Pátek y J. Klomfar, “Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system”, Int J Refrig, vol. 18, n.º 4, pp. 228-234, 1995. doi: https://doi.org/ 10.1016/0140-7007(95)00006-W
K. Sadhukhan, A.K. Chowdhuryi y B.K. Mandal, “Computer Based Thermodynamic Properties of Ammonia-Water Mixture for the Analysis of Power and Refrigeration Cycles”, International Journal of Thermodynamics, vol. 15, n.º 3, pp. 133-139, 2012. DOI: https://doi.org/10.5541/ijot.375
E. Thorin, “Comparison of correlations for predicting thermodynamic properties of ammonia- water mixtures”, Int J Thermophys, vol. 21, n.º 4, pp. 853-870, 2000. doi: https://doi. org/10.1023/A:1006658107014
E. Thorin, C. Dejfors, and G. Svedberg, “Thermodynamic properties of ammonia-water mixtures for power cycles”, Int J Thermophys, vol. 19, no. 2, pp. 501-510, 1998. https://doi. org/10.1023/A:1022525813769
G.S. Alamdari, “Simple functions for predicting the thermodynamic properties of ammonia-water mixure”, IJE Transactions A: Basics vol. 20 n.º 1, pp. 95-104, 2007.
G.S. Alamdari, “Simple equations for predicting entropy of ammonia-water mixure”. IJE Transactions B: Applications, vol. 20, n.º 1, 97-106, 2007.
A.A. Zatorskii, “Algorithm for calculation of the parameters of the junction points of the cycles of absorption-type water-ammonia refrigeration machines in a digital computer”, Plenum Publishing Corporation, pp. 716-719, 1979.
K.E. Herold, K. Hain y M.J. Moran, “AMMWAT: A computer program for calculating the thermodynamic properties of ammonia and water mixtures using a Gibbs Free Energy formulation”, ASME vol. 4, pp. 65-75, 1988.
Y.M. Park y R.E. Sonntag, “Thermodynamic properties of ammonia-water mixtures: a generalized equation-of-state approach”, ASME Trans, vol. 97, pp. 150-159, 1991.
S.N. Mumah, S.S. Adefila y E.A. Arinze, “Properties generation procedures for first and second law analyses of ammonia-water heat pump system”, Energy Convers Mgmt, vol. 35, pp. 727- 736, 1994. doi:https://doi.org/10.1016/0196- 8904(94)90058-2
A. Nowarski y D.G. Friend, “Application of the Extended Corresponding States Method to the Calculation of the Ammonia-Water Mixture Thermodynamic Surface”, International Journal of Thermophysics, vol. 19, pp. 1133-1142, 1998. doi: https://doi.org/10.1023/A:1022641709904
R.M. Enick, G.P. Donahey y M. Holsinger, “Modeling the High-Pressure Ammonia-Water System with WATAM and the Peng-Robinson Equation of Sstate for Kalina Cycle Studies”, Ind Eng Chem Res, vol. 37, pp. 1644-1650, 1998. doi: https://doi. org/10.1021/ie970638s
L.A. Weber, “Estimating the virial coefficients of the ammonia + water mixture”, Fluid Phase Equilibria, vol. 162, pp. 31-49, 1999. doi: https://doi. org/10.1016/S0378-3812(99)00181-8
F. Xu, y D.Y. Goswami, “Thermodynamic properties of ammonia-water mixtures for power-cycle applications”, Energy, vol. 24, pp. 525-536, 1999. doi: https://doi.org/10.1016/S0360-5442(99)00007-9
R. Sharma, D. Singhal, R. Ghosh y A. Dwivedi, “Potential applications of artificial neural networks to thermodynamics: vapor–Liquid equilibrium predictions”, Computers and Chemical Engineering, vol. 23, pp. 385-390, 1999.doi:https://doi. org/10.1016/S0098-1354(98)00281-6
R. Lugo, J. Guilpart y L. Fournaison, “Calculation method of thermophysical properties of ammonia- water mixtures”, Presentado en Second Workshop on Ice Slurries, Paris France, International Institute of Refrigeration, 2000.
A.A. Vasserman, A.G. Slynko, S.V. Bodyul, Yu.V. Gondarenko y E.S. Bodyul, “A Thermophysical Property Databank for Technically Important Gases and Liquids”, International Journal of Thermodynamics, vol. 22, pp. 477-485, 2001. doi: https:// doi.org/10.1023/A:1010774831521
R. Lugo, L. Fournaison, J.M. Chourot y J. Guilpart, “An excess function method to model the thermophysical properties of one-phase secondary refrigerants”, International Journal of Refrigeration, vol. 25, pp. 916-923, 2002. doi: https://doi. org/10.1016/S0140-7007(01)00105-0
R. Span y W. Wagner, “Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids”, Int J of Thermophysics, vol. 24, pp. 1-39, 2003. doi: https://doi.org/10.1023/A:1022390430888
R. Span y W. Wagner, “Equations of State for Technical Applications. III. Results for Polar Fluids”, Int J of Thermophysics, vol. 24, pp. 111-162, 2003, doi: https://doi.org/10.1023/A:1022362231796
M. Barhoumi, A. Snoussi, E.N. Ben, K. Mejbri y A. Bellagi, “Modélistion des données thermodynamiques du mélange ammoniac/eau”, Int J Refrig, vol. 27, pp. 271-283, 2004. doi: https://doi. org/10.1016/j.ijrefrig.2003.09.005
Kh. Mejbri y A. Bellagi, “Modelling of the thermodynamic properties of the water-ammonia mixture by three different approaches”. Int J Refrig, vol. 29, pp. 211-218, 2006. doi: https://doi.org/10.1016/j. ijrefrig.2005.06.002
A. Sencan, “Artificial intelligent methods for thermodynamic evaluation of ammonia-water refrigeration system”, Energy Conv & Man, vol. 47, pp. 3319-3332, 2006. doi: h
A.H. Farrokh-Niae, H. Moddarress y M. Mohsen- Nia, “A three-parameter cubic equation of state for prediction of thermodynamic properties of fluids”. J Chem Thermodynamics, vol. 40, pp. 84-95, 2008. doi: https://doi.org/10.1016/j.jct.2007.05.012
N.S. Ganesh y T. Srinivas, “Evaluation of thermodynamic properties of ammonia-water mixture up to 100 bar for power application systems”, Journal of Mechanical Engineering Research, vol. 3, no. 1, pp. 25-39, 2011.
S. Kherris, M. Makhlouf, D. Zebbar y O. Sebbane, “Contribution study of the thermodynamics properties of the ammonia-water mixtures”, Thermal Science, vol. 17, n.º 3, pp. 891-902, 2013. doi: https://doi.org/10.2298/TSCI110206083K
F. Li, L. Duanmu, L. Fu y X.L. Zhao, “Research and application of flue gas waste heat recovery in cogeneration based on absorption heat-exchange”, Proce
A. Modi y F. Haglind, “A review of recent research on the use of zeotropic mixtures in power generation systems”, Energy Conversión and Management, vol. 138, pp. 603-626, 2017. doi: 10.1016/j. enconman.2017.02032
A. Rattner y S. Garimella, “Fast, stable computation of thermodynamic properties of ammonia- water mixtures”, International Journal of Refrigeration, 2015. doi: https://doi.org/10.1016/j. ijrefrig.2015.09.009
M. Wang, A. Manera, S. Qiu y G.H. Su, “Ammonia- water mixture property code (AWProC) development, verification and Kalina cycle design for nuclear power plant”, Progress in Nuclear Energy vol. 91, pp. 26-37, 2016. DOI: 10.1016/j.pnucene. 2016.04002
O.M. Ibrahim y S.A. Klein, “Thermodynamic properties of ammonia-water mixtures”, ASHRAE Trans, pp. 1495-1502, 1993.
Y.M. El-Sayed y M. Tribus, “Thermodynamic properties of water ammonia mixtures theoretical implementation for use in power cycles analysis”, Special publication AES New York, ASME, n.º 1, pp. 89-95, 1985.
B. Ziegler y Ch. Trepp, “Equation of state for ammonia- water mixtures”, Int J Refrig, vol. 7, pp. 101-106, 1984. doi: https://doi.org/10.1016/0140- 7007(84)90022-7
S.C Chapra y R.P. Canale, “Métodos numéricos para ingenieros”. Quinta Edición (Español), Mc Grau Hill Interamericana, México, 2007.
P.C. Gillespie, W.V. Wilding y G.M. Wilson, “Vapor- Liquid equilibrium measurements on the ammonia- water system from 313 K to 589 K”. AIChE Symp Ser, vol. 83, n.º 256, pp. 97-127, 1987.
J. Pospisil y Z. Fortelny, “Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system”, EPJ Web of Conference, vol. 25, 01079(1)-01079(8), 2012. DOI:10.1051/eojconf/20122501079.
A. Sencan, S. Gök y E. Dikmen, “Prediction of liquid and Vapor Enthalpies of Ammonia-water Mixture”, Energy Source, Part A, vol. 33, pp. 1463-1473, 2011. doi: https://doi.org/10.1080/15567030903397891
K.H. Kim, K. Kim y H.J. Ko, “Entropy and exergy analysis of a heat recovery vapor generator for ammonia- water mixtures”, Entropy, vol. 16, pp. 2056- 2070, 2014. DOI: 10.3390/e16042056
R.C.E. Campos, P.J.C. Escobar, S.C. Rodríguez, M. Leme, O.J. Venturini, L.E. Silva, C.V. Melián, D. dos S. Marques, D.F.R. Lofrano y V. Gialluca, “Exergetic and economic analysis of Kalina cycle foor low temperatura geotermal source in Brazil”, Presentado en Procedings of ECOS 2012. The 25th International conference on efficiency, cost, optimization, simulation and environmental impact of energy systems. Perugia, Italy, 2012.
V. Srikanth, B.R. Narender y A. Gupta, “Thermodynamic Analysis of vapour absorption refrigeration system using solar energy”, International Journal of Latest Trends in Engineering and Thechnology, vol. 7, n.º 4, pp. 17-26, noviembre 2016. DOI: 10.21172/1.74003
L. Becker y C.J.L. Corrales, “Fundamental EoS Implementation for {Water+ammonia} in Modelica”, Presentado en Proceedings of the 11th International Modelica Conference, September 21-23, pp. 647-652, 2015. doi: https://doi.org/10.3384/ ecp15118647
M.A.I. El-Shaarawi, S.A.M. Said y M.U. Siddiqui, “New Correlation Equations for Ammonia-Water Vapor-Liquid Equilibrium (VLE) Thermodynamic Properties”, ASHRAE, DA-13-025, 2013.
D. Kong, J. Liu, L. Zhang, H. He y Z. Fang, “Thermodynamic and Experimental Analysis of an Ammonia- Water Absorption Chiller”, Energy and Power Engineering, vol. 2, pp. 298-305, 2010. doi: https:// doi.org/10.4236/epe.2010.24042.
L. Luo, H. Gao, Ch. Liu y X. Xu, “Parametric investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat From Nuclear Closed Brayton Cycle”, Science and Technology of Nuclear Installations, 2016. doi: https://doi.org/10.1155/2016/6790576
R. Rivero, G. Montero y R. Pulido, “Terminología para la Aplicación del Método de Exergia”, Revista del IMIQ, vol. 17, pp. 7-11, 1990.
URI: http://repositorio.uptc.edu.co/handle/001/2441
ISBN: 2422-4324
Series/Report no.: Revista Ingeniería, Investigación y Desarrollo;Volumen 17, número 2 (Julio-Diciembre 2017)
Appears in Collections:Ingeniería, Investigación y Desarrollo

Files in This Item:
File Description SizeFormat 
PPS-1028.pdfArchivo principal3.02 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons