Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2484
Title: Modelo estadístico para la distribución de materia en discos protoplanetarios
Authors: Buitrago Carreño, Nidia Yiseth
metadata.dc.contributor.role: Poveda Tejada, Nicanor (Director de tesis)
Keywords: Astrogeología
Astrofísica
Materia interestelar
Polvo cósmico
Maestría en Ciencias-Física - Tesis y disertaciones académicas
Issue Date: 2018
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Buitrago Carreño, N.Y. (2018) .Modelo estadístico para la distribución de materia en discos protoplanetarios. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2484
Abstract: Los sistemas planetarios tienen su origen en el colapso gravitacional de una nube de gas y polvo. Mediante un proceso de acreción se forma una estrella masiva y un disco de planetesimales orbitando la estrella. Mediante consideraciones estadísticas se obtiene un modelo el cual permite describir la distribución de materia del sistema estrella-planetesimales. Se determinan los parámetros del modelo para el Sistema Solar, satélites, exoplanetas y el sistema HL-Tauri. Se demuestra que el radio, excentricidad, energía, momentum angular e inclinación orbital, de los objetos planetarios formados toman valores discretos, dependiendo solamente del valor de la masa de la estrella. A diferencia de otros modelos, la formación de objetos planetarios es más rápida.
Description: 1 recurso en línea (xiii, 71 páginas) : ilustraciones, figuras, tablas.
metadata.dcterms.bibliographicCitation: R. L. Akeson, X. Chen, D. Ciardi, M. Crane, J. Good, M. Harbut, E. Jackson, S. R. Kane, A. C. Laity, S. Leifer, M. Lynn, D. L. McElroy, M. Papin, P. Plavchan, S. V. Ramírez, R. Rey, K. von Braun, M. Wittman, M. Abajian, B. Ali, C. Beichman, A. Beekley, G. B. Berriman, S. Beruko , G. Bryden, B. Chan, S. Groom, C. Lau, A. N. Payne, M. Regelson, M. Saucedo, M. Schmitz, J. Stau er, P. Wyatt, and A. Zhang. The NASA Exoplanet Archive: Data and Tools for Exoplanet Research. PASP, 125:989, August 2013. doi: 10.1086/672273.
ALMA Partnership, C. L. Brogan, L. M. Pérez, T. R. Hunter, W. R. F. Dent, A. S. Hales, R. E. Hills, S. Corder, E. B. Fomalont, C. Vlahakis, Y. Asaki, D. Barkats, A. Hirota, J. A. Hodge, C. M. V. Impellizzeri, R. Kneissl, E. Liuzzo, R. Lucas, N. Marcelino, S. Matsushita, K. Nakanishi, N. Phillips, A. M. S. Richards, I. Toledo, R. Aladro, D. Broguiere, J. R. Cortes, P. C. Cortes, D. Espada, F. Galarza, D. Garcia-Appadoo, L. Guzman-Ramirez, E. M. Humphreys, T. Jung, S. Kameno, R. A. Laing, S. Leon, G. Marconi, A. Mignano, B. Nikolic, L.-A. Nyman, M. Radiszcz, A. Remijan, J. A. Rodón, T. Sawada, S. Takahashi, R. P. J. Tilanus, B. Vila Vilaro, L. C. Watson, T. Wiklind, E. Akiyama, E. Chapillon, I. de Gregorio-Monsalvo, J. Di Francesco, F. Gueth, A. Kawamura, C.-F. Lee, Q. Nguyen Luong, J. Mangum, V. Pietu, P. Sanhueza, K. Saigo, S. Takakuwa, C. Ubach, T. van Kempen, A. Wootten, A. Castro-Carrizo, H. Francke, J. Gallardo, J. Garcia, S. Gonzalez, T. Hill, T. Kaminski, Y. Kurono, H.-Y. Liu, C. Lopez, F. Morales, K. Plarre, G. Schieven, L. Testi, L. Videla, E. Villard, P. Andreani, J. E. Hibbard, and K. Tatematsu. The 2014 ALMA Long Baseline Campaign: First Results from High Angular Resolution Observations toward the HL Tau Region. ApJl, 808:L3, July 2015. doi: 10.1088/2041-8205/ 808/1/L3.
S. M. Andrews, D. J. Wilner, C. Espaillat, A. M. Hughes, C. P. Dullemond, M. K. McClure, C. Qi, and J. M. Brown. Resolved Images of Large Cavities in Protoplanetary Transition Disks. ApJl, 732:42, May 2011. doi: 10.1088/ 0004-637X/732/1/42.
P. J. Armitage. Dynamics of Protoplanetary Disks. ARA&A, 49:195 236, September 2011. doi: 10.1146/annurev-astro-081710-102521.
G. Arreaga-García, S. Oreste-Topa, B. Pérez-Rendón, and L. Olguín-Ruiz. Efectos físicos del envolvente sobre el colapso gravitacional de un núcleo de gas. Lat. Am. J. Phys. Educ., 8(1):183 189, 2014.
M. Banit, M. A. Ruderman, J. Shaham, and J. H. Applegate. Formation of Planets around Pulsars. ApJ, 415:779, October 1993. doi: 10.1086/173201.
R. Barnes and R. Greenberg. Stability Limits in Extrasolar Planetary Systems. ApJ, 647:L163 L166, August 2006. doi: 10.1086/507521.
A. Berger. Milankovitch Theory and climate. Reviews of Geophysics, 26:624 657, November 1988. doi: 10.1029/RG026i004p00624.
A. I. Boothroyd, I.-J. Sackmann, and W. A. Fowler. Our sun. II - Early mass loss of 0.1 solar mass and the case of the missing lithium. ApJ, 377:318 329, August 1991. doi: 10.1086/170361.
A. P. Boss. Formation of Planetary-Mass Objects by Protostellar Collapse and Fragmentation. ApJ, 551:L167 L170, April 2001a. doi: 10.1086/320033.
A. P. Boss. Gas Giant Protoplanet Formation: Disk Instability Models with Thermodynamics and Radiative Transfer. ApJ, 563:367 373, December 2001b. doi: 10.1086/323694.
S. Bruderer. Survival of molecular gas in cavities of transition disks. I. CO. A&A, 559:A46, November 2013. doi: 10.1051/0004-6361/201321171.
S. Bruderer, N. van der Marel, E. F. van Dishoeck, and T. A. van Kempen. Gas structure inside dust cavities of transition disks: Ophiuchus IRS 48 observed by ALMA. A&A, 562:A26, February 2014. doi: 10.1051/0004-6361/201322857
C. Carrasco-González, T. Henning, C. J. Chandler, H. Linz, L. Pérez, L. F. Rodríguez, R. Galván-Madrid, G. Anglada, T. Birnstiel, R. van Boekel, M. Flock, H. Klahr, E. Macias, K. Menten, M. Osorio, L. Testi, J. M. Torrelles, and Z. Zhu. The VLA View of the HL Tau Disk: Disk Mass, Grain Evolution, and Early Planet Formation. ApJl, 821:L16, April 2016. doi: 10.3847/2041-8205/821/1/L16.
A. E. Caswell. A Relation between the Mean Distances of the Planets from the Sun, volume 69. American Association for the Advancement of Science, April 1929. URL http://www.jstor.org/stable/1652791.
D. P. Cox. The Three-Phase Interstellar Medium Revisited. ARA&A, 43:337 385, September 2005. doi: 10.1146/annurev.astro.43.072103.150615.
T. M. Dame, D. Hartmann, and P. Thaddeus. The Milky Way in Molecular Clouds: A New Complete CO Survey. ApJ, 547:792 813, February 2001. doi: 10.1086/ 318388.
C. P. Dullemond, D. Hollenbach, I. Kamp, and P. D'Alessio. Models of the Structure and Evolution of Protoplanetary Disks. Protostars and Planets V, pages 555 572, 2007.
H. Goldstein. Mecýnica clýsica, volume 1. Editorial Reverte S.A., 2a edition, 1994.
L. Hartmann, N. Calvet, E. Gullbring, and P. D'Alessio. Accretion and the Evolution of T Tauri Disks. ApJ, 495:385 400, March 1998. doi: 10.1086/305277.
Y. Kozai. Secular perturbations of asteroids with high inclination and eccentricity. AJ, 67:591, November 1962. doi: 10.1086/108790.
N. Kuno, N. Sato, H. Nakanishi, A. Hirota, T. Tosaki, Y. Shioya, K. Sorai, N. Nakai, K. Nishiyama, and B. Vila-Vilaró. Nobeyama CO Atlas of Nearby Spiral Galaxies: Distribution of Molecular Gas in Barred and Nonbarred Spiral Galaxies. PASJ, 59:117 166, February 2007. doi: 10.1093/pasj/59.1.117.
W. Kwon, L. W. Looney, and L. G. Mundy. Resolving the Circumstellar Disk of HL Tauri at Millimeter Wavelengths. ApJ, 741:3, November 2011. doi: 10.1088/ 0004-637X/741/1/3.
C. H. Lineweaver and M. Norman. The Potato Radius: a Lower Minimum Size for Dwarf Planets. ArXiv e-prints, April 2010.
L. E. Lisiecki. Links between eccentricity forcing and the 100,000-year glacial cycle. Nature Geoscience, 3:349 352, May 2010. doi: 10.1038/ngeo828.
J. J. Lissauer. Planet formation. ARA&A, 31:129 174, 1993. doi: 10.1146/annurev. aa.31.090193.001021.
D. Lynden-Bell and J. E. Pringle. The evolution of viscous discs and the origin of the nebular variables. MNRAS, 168:603 637, September 1974. doi: 10.1093/ mnras/168.3.603.
S. Marino, S. Perez, and S. Casassus. Shadows Cast by a Warp in the HD 142527 Protoplanetary Disk. ApJl, 798:L44, January 2015. doi: 10.1088/2041-8205/798/ 2/L44.
A. B. Men'shchikov, T. Henning, and O. Fischer. Self-consistent Model of the Dusty Torus around HL Tauri. ApJ, 519:257 278, July 1999. doi: 10.1086/307333.
R. Mundt, T. Buehrke, J. Solf, T. P. Ray, and A. C. Raga. Optical jets and out ows in the HL Tauri region. A&A, 232:37 61, June 1990.
M. M. Nieto. Conclusions about the titius bode law of planetary distances. A&A, 8:105, September 1970.
L. Nottale, G. Schumacher, and J. Gay. Scale relativity and quantization of the solar system. A&A, 322:1018 1025, June 1997.
M. R. Perez and C. A. Grady. Observational Overview of Young Intermediate-Mass Objects: Herbig Ae/Be Stars. Space Sci. Rev., 82:407 450, November 1997. doi: 10.1023/A:1005064108523.
C. Pinte, W. R. F. Dent, F. Ménard, A. Hales, T. Hill, P. Cortes, and I. de Gregorio-Monsalvo. Dust and Gas in the Disk of HL Tauri: Surface Density, Dust Settling, and Dust-to-gas Ratio. ApJ, 816:25, January 2016. doi: 10.3847/ 0004-637X/816/1/25.
N. Poveda T., N. Vera-Villamizar., and N. Y. Buitrago C. Planetary systems based on a quantum-like model. ArXiv e-prints, January 2015.
H. Rein and S.-F. Liu. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. A&A, 537:A128, January 2012. doi: 10.1051/0004-6361/ 201118085.
T. S. Rice, A. A. Goodman, E. A. Bergin, C. Beaumont, and T. M. Dame. A Uniform Catalog of Molecular Clouds in the Milky Way. ApJ, 822:52, May 2016. doi: 10.3847/0004-637X/822/1/52.
T. P. Robitaille, J. Rossa, D. J. Bomans, and R. P. van der Marel. The morphology of minor axis gaseous out ows in edge-on Seyfert galaxies. A&A, 464:541 552, March 2007. doi: 10.1051/0004-6361:20065454.
A. I. Sargent and S. V. W. Beckwith. The molecular structure around HL Tauri. ApJ, 382:L31 L35, November 1991. doi: 10.1086/186207.
I. W. Stephens, L. W. Looney, W. Kwon, M. Fernández-López, A. M. Hughes, L. G. Mundy, R. M. Crutcher, Z.-Y. Li, and R. Rao. Spatially resolved magnetic eld structure in the disk of a T Tauri star. Nature, 514:597 599, October 2014. doi: 10.1038/nature13850.
K. M. Strom, S. E. Strom, S. Edwards, S. Cabrit, and M. F. Skrutskie. Circumstellar material associated with solar-type pre-main-sequence stars - A possible constraint on the timescale for planet building. AJ, 97:1451 1470, May 1989. doi: 10.1086/ 115085.
K. Tsiganis, R. Gomes, A. Morbidelli, and H. F. Levison. Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435:459 461, May 2005. doi: 10.1038/nature03539.
N. van der Marel, E. F. van Dishoeck, S. Bruderer, L. Pérez, and A. Isella. Gas density drops inside dust cavities of transitional disks around young stars observed with ALMA. A&A, 579:A106, July 2015. doi: 10.1051/0004-6361/201525658.
N. van der Marel, E. F. van Dishoeck, S. Bruderer, S. M. Andrews, K. M. Pontoppidan, G. J. Herczeg, T. van Kempen, and A. Miotello. Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA. A&A, 585:A58, January 2016. doi: 10.1051/0004-6361/201526988.
J. P. Williams and L. A. Cieza. Protoplanetary Disks and Their Evolution. ARA&A, 49:67 117, September 2011. doi: 10.1146/annurev-astro-081710-102548.
A. Wolszczan and D. A. Frail. A planetary system around the millisecond pulsar PSR1257 + 12. Nature, 355:145 147, January 1992. doi: 10.1038/355145a0.
H.-W. Yen, H. B. Liu, P.-G. Gu, N. Hirano, C.-F. Lee, E. Puspitaningrum, and S. Takakuwa. Gas Gaps in the Protoplanetary Disk around the Young Protostar HL Tau. ApJ, 820:L25, April 2016. doi: 10.3847/2041-8205/820/2/L25.
URI: http://repositorio.uptc.edu.co/handle/001/2484
Appears in Collections:AFG. Trabajos de Grado y Tesis

Files in This Item:
File Description SizeFormat 
TGT_1172.pdfArchivo principal6.78 MBAdobe PDFThumbnail
View/Open
A_NYBC.pdf
  Restricted Access
Autorización publicación1.21 MBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons