Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2496
Title: Estudio del efecto de los parámetros de síntesis sobre las propiedades físicoquímicas y fotocatalíticas de sistemas Pt-F-TiO2
Authors: Cely Macias, Angela Carolina
metadata.dc.contributor.role: Murcia Mesa, Julie Joseane (Director de tesis)
Rojas Sarmiento, Hugo Alfonso (Codirector de tesis)
Keywords: Dióxido de titanio
Compuestos de titanio
Fotocatálisis
Alteración hidrotermal
Ingeniería de materiales
Ciencia de los materiales
Maestría en Química - Tesis y disertaciones académicas
Issue Date: 2018
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Cely Macias, A. C. (2018). Estudio del efecto de los parámetros de síntesis sobre las propiedades físicoquímicas y fotocatalíticas de sistemas Pt-F-TiO2. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2496
Abstract: El dióxido de titanio (TiO2) es uno de los materiales más utilizados en los últimos años, en diferentes campos como la ingeniería de materiales, el medio ambiente y la electrónica. Este material ha llamado la atención de cientos de químicos, físicos, e ingenieros quienes han explorado las propiedades de este óxido como semiconductor y catalizador, este se ha aplicado en pigmentos, soporte en catálisis, fotoconductores, materiales dieléctricos, pinturas, productos del cuidado personal, etc. El dióxido de titanio es el semiconductor más utilizado en procesos fotocatalíticos y a lo largo de los años se han empleado diferentes estrategias orientadas al mejoramiento sus propiedades físicoquímicas y de fotoeficiencia, dentro de las estrategias empleadas se encuentran diferentes métodos de síntesis y tratamientos de modificación superficial; a partir de estos tratamientos es posible modificar el tamaño de cristal, tamaño de partícula, área superficial, cantidad de grupos hidroxilo y band-gap. A partir de estas propiedades es posible obtener TiO2 con alta eficiencia en la degradación de compuestos orgánicos tóxicos y en la eliminación de especies microbianas presentes en diferentes ambientes contaminados. El objetivo principal de esta investigación se centró en el estudio del efecto de los parámetros de síntesis sobre las propiedades físicoquímicas de los materiales obtenidos. Inicialmente, se evaluó la obtención del dióxido de titanio a través de dos metodologías: Hidrotermal y Sol-gel, también se usó como material de referencia el TiO2 comercial; adicionalmente, y a fin de mejorar sus propiedades fotocatalíticas, éstos óxidos se modificaron con un tratamiento de Fluorización y posterior adición de nanopartículas de platino. Con el fin de obtener información de las propiedades físico-químicas de los materiales obtenidos a través de la modificación de los parámetros de síntesis bajo estudio se realizó una completa caracterización morfológica y estructural usando diferentes técnicas como: Difracción de rayos-X (DRX), Adsorción-desorción de N2 (SBET), Espectrometría de fluorescencia de rayos-X (FRX), Espectrofotometría UV-Vis de reflectancia difusa (UV-Vis DRS), Microscopía Electrónica de transmisión (TEM), Espectroscopia fotoelectrónica de rayos-X (XPS) y Espectroscopia infrarroja con transformada de Fourier (FT-IR). La tesis de Maestría en Química fue desarrollada en el grupo de Catálisis de la Universidad Pedagógica y Tecnológica de Colombia (UPTC) y para adelantar algunos de los análisis fisicoquímicos involucrados en el trabajo experimental se contó con el apoyo de diferentes instituciones como el Instituto para la Investigación e Innovación en Ciencia y Tecnología de los Materiales de la UPTC (INCITEMA), Universidad Industrial de Santander (UIS) e Instituto de Ciencia de Materiales de Sevilla - España (ICMS). Todo lo anterior derivó en la obtención de un trabajo de investigación muy completo y de gran aporte en la temática de la Fotocatálisis Heterogénea aplicada al tratamiento de efluentes contaminados derivados de la industria de artesanías. El trabajo desarrollado contó con el financiamiento de la Universidad Pedagógica y Tecnológica de Colombia y del Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Fondo Francisco José de Caldas (COLCIENCIAS), esta institución también financió los estudios de Maestría de la autora del presente trabajo. El documento de Tesis se encuentra presentado en 4 secciones principales, la primera de ellas corresponde al componente conceptual y teórico dentro del que se enmarcó el trabajo de investigación, una segunda sección incluye la descripción del desarrollo experimental, posteriormente se describen los análisis y resultados obtenidos de la caracterización de los materiales fotocatalíticos y por último se presentan los resultados de la efectividad de estos materiales en el tratamiento de anilinas comerciales y efluentes industriales derivados de la industria de artesanías en la población de Nobsa en el departamento de Boyacá. En general, la caracterización realizada permitió observar que los métodos sol-gel e hidrotermal son viables para la obtención de TiO2 activo y efectivo en reacciones de descontaminación ambiental; adicionalmente, las modificaciones realizadas al dióxido de titanio alteran sus propiedades físicoquímicas y le otorgan nuevas propiedades, lo que le permite ser más activo en los procesos de descontaminación ambiental. La modificación del TiO2 por fluorización y/o adición de Pt, permite un aumento de la absorción de este material en la región visible del espectro electromagnético, también aporta nuevos centros activos a la superficie de los materiales, favorece la presencia de una mayor área superficial y evitando la sinterización de las partículas de material durante la calcinación y con ello la rutilización, lo que lleva a la formación preferencial de la fase Anatasa del TiO2. Respecto de la efectividad de los materiales fotocatalíticos sintetizados, se observó en general, que en los fotocatalizadores fluorizados se favorece la formación de la fase cristalina Anatasa, permitiendo una mayor degradación de las anilinas comerciales y una alta tasa de eliminación de microorganismos patógenos presentes en las aguas residuales analizadas. Lo anterior representa un aporte importante en la búsqueda de soluciones frente a las problemáticas ambientales que enfrenta actualmente el departamento y será una alternativa interesante que fomente la investigación aplicada e incentive el vínculo Universidad – Gobierno – Empresa - Comunidad. Cada uno de los resultados obtenidos se discutirán detalladamente a lo largo del presente documento.
Description: 1 recurso en línea (87 páginas) : ilustraciones color, figuras, tablas.
metadata.dcterms.bibliographicCitation: S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal. Today. 147 (2009) 1–59.
K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C Photochem. Rev. 13 (2012) 169–189.
A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515–582.
I. Fechete, Y. Wang, J.C. Védrine, The past, present and future of heterogeneous catalysis, Catal. Today. 189 (2012) 2–27.
D. Robert, S. Malato, Solar photocatalysis: A clean process for water detoxification, Sci. Total Environ. 291 (2002) 85–97.
C. Gitrowski, A.R. Al-Jubory, R.D. Handy, Uptake of different crystal structures of TiO2 nanoparticles by Caco-2 intestinal cells, Toxicol. Lett. 226 (2014) 264–276.
M.J. López-Muñoz, A. Revilla, G. Alcalde, Brookite TiO2-based materials: Synthesis and photocatalytic performance in oxidation of methyl orange and As(III) in aqueous suspensions, Catal. Today. 240 (2015) 138–145.
B. Sun, G. Zhou, Y. Zhang, R. Liu, T. Li, Photocatalytic properties of exposed crystal surface-controlled rutile TiO2nanorod assembled microspheres, Chem. Eng. J. 264 (2015) 125–133.
D.M. Tobaldi, R.C. Pullar, A.F. Gualtieri, M.P. Seabra, J.A. Labrincha, Phase composition, crystal structure and microstructure of silver and tungsten doped TiO2 nanopowders with tuneable photochromic behaviour, Acta Mater. 61 (2013) 5571–5585.
M. Fernández-García, A. Martínez-Arias, J.C. Hanson, J.A. Rodriguez, Nanostructured oxides in chemistry: Characterization and properties, Chem. Rev. 104 (2004) 4063–4104.
T.L. Thompson, J.T. Yates, Surface science studies of the photoactivation of TIO2 New photochemical processes, Chem. Rev. 106 (2006) 4428–4453.
J. Ryu, W. Choi, Substrate-Specific Photocatalytic Activities of TiO2 and Multiactivity Test for Water Treatment Application Substrate-Specific Photocatalytic Activities of TiO 2 and Multiactivity Test for Water Treatment Application, Environ. Sci. Technol. 42 (2008) 294–300.
S. Malato, Propiedades coloidales de partículas de TiO2: Aplicación al tratamiento fotocatalítico solar de aguas., Libr. Editor. CIEMAT. (2004) 1–293.
A. V. Vorontsov, E.N. Savinov, J. Zhensheng, Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation, J. Photochem. Photobiol. A Chem. 125 (1999) 113–117.
R. Abe, K. Sayama, H. Arakawa, Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: Suppression of backward reaction, Chem. Phys. Lett. 371 (2003) 360–364.
R.R. Zapico, P. Marín, F. V. Díez, S. Ordóñez, Influence of operation conditions on the copper-catalysed homogeneous wet oxidation of phenol: Development of a kinetic model, Chem. Eng. J. 270 (2015) 122–132.
A.N. Deva, C. Arun, G. Arthanareeswaran, P. Sivashanmugam, Extraction of peroxidase from waste Brassica oleracea used for the treatment of aqueous phenol in synthetic waste water, J. Environ. Chem. Eng. 2 (2014) 1148–1154.
X. Wang, L. Sø, R. Su, S. Wendt, P. Hald, A. Mamakhel, C. Yang, Y. Huang, B.B. Iversen, F. Besenbacher, The influence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol, J. Catal. 310 (2014) 100–108.
D. Chen, A.K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension, Water Res. 32 (1998) 3223–3234
R.R. Bacsa, J. Kiwi, Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid, Appl. Catal. B Environ. 16 (1998) 19–29.
M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res. 44 (2010) 2997–3027.
J.M. Herrmann, Heterogeneous photocatalysis: State of the art and present applications, Top. Catal. 34 (2005) 49–65.
Y. Chen, F. Chen, J. Zhang, Effect of surface fluorination on the photocatalytic and photo-induced hydrophilic properties of porous TiO2 films, Appl. Surf. Sci. 255 (2009) 6290–6296.
S.S. Srinivasan, J. Wade, E.K. Stefanakos, Y. Goswami, Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2, J. Alloys Compd. 424 (2006) 322–326.
J. Araña, J.M. Doña-Rodríguez, O. González-Díaz, E. Tello Rendón, J.A. Herrera Melián, G. Colón, J.A. Navío, J. Pérez Peña, Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu, J. Mol. Catal. A Chem. 215 (2004) 153–160.
J.J. Murcia, M.C. Hidalgo, J.A. Navío, V. Vaiano, D. Sannino, P. Ciambelli, Cyclohexane photocatalytic oxidation on Pt/ TiO2 catalysts, Catal. Today. 209 (2013) 164–169.
R.I. Bickley, T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, R.J.D. Tilley, A structural investigation of titanium dioxide photocatalysts, J. Solid State Chem. 92 (1991) 178–190.
A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis, 108 (2000) 1–35.
S. Sivakumar, P.K. Pillai, P. Mukundan, K.G.K. Warrier, Sol-gel synthesis of nanosized anatase from titanyl sulfate, Mater. Lett. 57 (2002) 330–335.
S.S. Watson, D. Beydoun, J.A. Scott, R. Amal, The effect of preparation method on the photoactivity of crystalline titanium dioxide particles, Chem. Eng. J. 95 (2003)
O. Arce, Aplicación del dióxido de titanio para mejorar la eficiencia del método SODIS., Universidad Mayor de San Simón, Bolivia,2006.
L. Hu, H. Yuan, L. Zou, F. Chen, X. Hu, Adsorption and visible light-driven photocatalytic degradation of Rhodamine B in aqueous solutions by AgBr/SBA-15, Appl. Surf. Sci. (2015). doi:10.1016/j.apsusc.2015.04.166.
J. Zhu, S. Wang, Z. Bian, S. Xie, C. Cai, J. Wang, H. Yang, H. Li, Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity, CrystEngComm. 12 (2010) 2219.
N. Lakshminarasimhan, E. Bae, W. Choi, Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method: Role of interparticle charge transfer, J. Phys. Chem. C. 111 (2007) 15244–15250.
A. Hagfeldt, M. Grätzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev. 95 (1995) 49–68.
N. Murakami, S. Kawakami, T. Tsubota, T. Ohno, Dependence of photocatalytic activity on particle size of a shape-controlled anatase titanium(IV) oxide nanocrystal, J. Mol. Catal. A Chem. 358 (2012) 106–111.
H. Atout, M.G. Álvarez, D. Chebli, A. Bouguettoucha, D. Tichit, J. Llorca, F. Medina, Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods, Mater. Res. Bull. 95 (2017) 578–587.
M. Saif, S.M.K. Aboul-Fotouh, S.A. El-Molla, M.M. Ibrahim, L.F.M. Ismail, Improvement of the structural, morphology, and optical properties of TiO2 for solar treatment of industrial wastewater, J. Nanoparticle Res. 14 (2012) 1227.
E.I. Seck, J.M. Doña-Rodríguez, E. Pulido Melián, C. Fernández-Rodríguez, O.M. González-Díaz, D. Portillo-Carrizo, J. Pérez-Peña, Comparative study of nanocrystalline titanium dioxide obtained through sol-gel and sol-gel-hydrothermal synthesis, J. Colloid Interface Sci. 400 (2013) 31–40.
H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobiol. C Photochem. Rev. 15 (2013) 1–20.
H. Park, W. Choi, Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors, J. Phys. Chem. B. 108 (2004) 4086–4093.
X. Quan, X. Zhao, S. Chen, H. Zhao, J. Chen, Y. Zhao, Enhancement of p,p′-DDT photodegradation on soil surfaces using TiO2induced by UV-light, Chemosphere. 60 (2005) 266–273.
M.S. Vohra, S. Kim, W. Choi, Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium, J. Photochem. Photobiol. A Chem. 160 (2003) 55–60.
L. SHI, D. WENG, Highly active mixed-phase TiO2 photocatalysts fabricated at low temperatureand the correlation between phase compositionand photocatalytic activity, J. Environ. Sci. 20 (2008) 1263–1267.
A. Jańczyk, E. Krakowska, G. Stochel, W. Macyk, Singlet oxygen photogeneration at surface modified titanium dioxide, J. Am. Chem. Soc. 128 (2006) 15574–15575.
G. Veréb, Z. Ambrus, Z. Pap, Á. Kmetykó, A. Dombi, V. Danciu, A. Cheesman, K. Mogyorósi, Comparative study on UV and visible light sensitive bare and doped titanium dioxide photocatalysts for the decomposition of environmental pollutants in water, Appl. Catal. A Gen. 417–418 (2012) 26–36.
A. Torrents, A.T. Stone, A. Torrents, Catalysis of Picolinate Ester Hydrolysis at the Oxide/Water Interface: Inhibition by Adsorbed Natural Organic Matter, Environ. Sci. Technol. 27 (1993) 2381–2386.
A. Vijayabalan, K. Selvam, R. Velmurugan, M. Swaminathan, Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4, J. Hazard. Mater. 172 (2009) 914–921
J.J. Murcia, M.C. Hidalgo, J.A. Navío, J. Araña, J.M. Doña-Rodríguez, Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition, Appl. Catal. B Environ. 179 (2015) 305–312.
J.J. Murcia, J.R. Guarín, A.C. Cely Macías, H. Rojas, J.A. Cubillos, M.C. Hidalgo, J.A. Navío, Methylene blue degradation over M- TiO2 photocatalysts (M= Au or Pt), Cienc. En Desarro. 8 (2017) 109–117.
C.R. J.A Navio, M. Macias, F.J. Marcheda, Preparation and characterization of M/ TiO2 catalysts (M=Pt, Ru, Rh) usinh metal acetylacetonate complexes, Stud. Surf. Sci. Catal. 72 (1992) 423–433.
S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res. 38 (2004) 3001–3008.
J. Kim, W. Choi, TiO2 modified with both phosphate and platinum and its photocatalytic activities, Appl. Catal. B Environ. 106 (2011) 39–45.
S.K. Lee, A. Mills, Platinum and palladium in semiconductor photocatalytic systems, Platin. Met. Rev. 47 (2003) 61–72.
V. Vaiano, G. Iervolino, D. Sannino, J.J. Murcia, M.C. Hidalgo, P. Ciambelli, J.A. Navío, Photocatalytic removal of patent blue V dye on Au- TiO2 and Pt- TiO2 catalysts, Appl. Catal. B Environ. 188 (2016) 134–146.
M.A. Mueses, F. Machuca-Martinez, G. Li Puma, Effective quantum yield and reaction rate model for evaluation of photocatalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactors, Chem. Eng. J. 215–216 (2013) 937–947.
M.L. Posada Parra, J.A. Pulido Cano, Evaluación de la degradación de un colorante directo utilizado en la industria textil usando la tecnología de oxidación fotocatalítica heterogénea, Universidad de la Salle, 2011.
A. Anastasi, B. Parato, F. Spina, V. Tigini, V. Prigione, G.C. Varese, Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes, N. Biotechnol. 29 (2011) 38–45.
A. Anastasi, V. Prigione, G.C. Varese, Industrial dye degradation and detoxification by basidiomycetes belonging to different eco-physiological groups, J. Hazard. Mater. 177 (2010) 260–267.
A. Anastasi, F. Spina, V. Prigione, V. Tigini, P. Giansanti, G.C. Varese, Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta, Bioresour. Technol. 101 (2010) 3067–3075.
Kirk-Othmer, Encyclopedia of Chemical Technology, 5th ed., New York, 2007.
D. Marcano, Introducción a la Química de los Colorantes, 1er ed., Venezuela, 1990.
Color Index, The society of dyers and colourists, 3th ed., American Chemical Society, New York, 1924.
R. Gup, E. Giziroglu, B. Kirkan, Synthesis and spectroscopic properties of new azo-dyes and azo-metal complexes derived from barbituric acid and aminoquinoline, Dye. Pigment. 73 (2007) 40–46.
R. Djellabi, F.M. Ghorab, S. Nouacer, A. Smara, O. Khireddine, Cr(VI) photocatalytic reduction under sunlight followed by Cr(III) extraction from TiO2 surface, Mater. Lett. 176 (2016) 106–109.
L. Junqi, W. Defang, L. Hui, H. Zuoli, Z. Zhenfeng, Synthesis of fluorinated TiO2 hollow microspheres and their photocatalytic activity under visible light, Appl. Surf. Sci. 257 (2011) 5879–5884
E.R. Bandala, M.A. Peláez, A.J. García-López, M. de J. Salgado, G. Moeller, Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes, Chem. Eng. Process. Process Intensif. 47 (2008) 169–176.
P.A. Soares, R. Souza, J. Soler, T.F.C.V. Silva, S.M.A.G.U. Souza, R.A.R. Boaventura, V.J.P. Vilar, Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes, Sep. Purif. Technol. 172 (2017) 450–462.
S. Rodríguez Couto, J.L. Toca Herrera, Industrial and biotechnological applications of laccases: A review, Biotechnol. Adv. 24 (2006) 500–513.
E.P. Chagas, L.R. Durrant, Decolourization of Azo Dyes by Phanerochaete Chrysosporium and Pleurotus Sajorcaju, Enzyme Microb. Technol. 29 (2001) 473–477
I. Nilsson, A. Möller, B. Mattiasson, M.S.T. Rubindamayugi, U. Welander, Decolorization of synthetic and real textile wastewater by the use of white-rot fungi, Enzyme Microb. Technol. 38 (2006) 94–100.
M. Al-Sheikh, H.Y. Medrasi, K.U. Sadek, R.A. Mekheimer, Synthesis and spectroscopic properties of new azo dyes derived from 3-Ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole, Molecules. 19 (2014) 2993–3003.
D. Rawat, V. Mishra, R.S. Sharma, Detoxification of azo dyes in the context of environmental processes, Chemosphere. 155 (2016) 591–605.
K. Soutsas, V. Karayannis, I. Poulios, A. Riga, K. Ntampegliotis, X. Spiliotis, G. Papapolymerou, Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes, Desalination. 250 (2010) 345–350.
M.A. Lara, M.J. Sayagués, J.A. Navío, M.C. Hidalgo, A facile shape-controlled synthesis of highly photoactive fluorine containing TiO2 nanosheets with high {001} facet exposure, J. Mater. Sci. 53 (2018) 435–446.
K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes, Water Res. 34 (2000) 327–333.
H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Appl. Catal. B Environ. 39 (2002) 75–90.
J.J. Murcia, Control de la Nanoestructura de Sistemas M-TiO2 ( M = Pt y Au ) Preparados por Fotodeposición con Propiedades Fotocatalíticas Optimizadas, Universidad de Sevilla, 2013.
E.M. Carstea, J. Bridgeman, A. Baker, D.M. Reynolds, Fluorescence spectroscopy for wastewater monitoring: A review, Water Res. 95 (2016) 205–219.
P. Kubelka, F. Munk, Ein Beitrag Zur Optik Der Farbanstriche, Zeitschrift Für Tech. Phys. 12 (1931) 593–601.
T.S. P., G.J. P., Measurement of Forbidden Energy Gap of Semiconductors by Diffuse Reflectance Technique, Phys. Status Solidi. 38 (2006) 363–367.
University of leipzing, Unifit 2009, (2009). www.uni-leipzig.de/∼unifit.
L.M. Ahmed, I. Ivanova, F.H. Hussein, D.W. Bahnemann, Role of platinum deposited on TiO2 in photocatalytic methanol oxidation and dehydrogenation reactions, Int. J. Photoenergy. (2014).
A.C. Cely Macías, Fotocatálisis aplicada al tratamiento de residuos de colorantes provenientes de la tinción de fibras y lanas en Boyacá., Universidad Pedagógica y Tecnológica de Colombia, 2016.
APHA, Standard methods for examination of water and wastewater, 22 th edit, Washington, D.C., United States, 2012.
D. Li, H. Haneda, S. Hishita, N. Ohashi, N.K. Labhsetwar, Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde, J. Fluor. Chem. 126 (2005) 69–77.
E.M. Samsudin, S.B. Abd Hamid, J.C. Juan, W.J. Basirun, G. Centi, Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts, Appl. Surf. Sci. 370 (2016) 380–393.
M.C. Hidalgo, M. Maicu, J.A. Navío, G. Colón, Study of the synergic effect of sulphate pre-treatment and platinisation on the highly improved photocatalytic activity of TiO2, Appl. Catal. B Environ. 81 (2008) 49–55.
L. Félix, Preparación y estudio de las propiedades estructurales, opticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos, Ipn. (2009) 106
J.C. Correa Zapata, C.D. Aguirre Hernández, Obtención, Caracterización y actividad fotocatalítica del óxido de titanio dopado con nitrógeno a partir de úrea nitrato de amonio para su utilización en la región del visible del espectro electromagnético, (2014) 109.
J.J. Murcia, M.C. Hidalgo, J.A. Navío, J. Araña, J.M. Doña-Rodríguez, Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2, Appl. Catal. B Environ. 150–151 (2014) 107–115.
M. de Ambiente, Los ministros de la protección social y de ambiente , vivienda resuelve : CAPÍTULO I, (2007).
M.C. Hidalgo, M. Maicu, J.A. Navío, G. Colón, Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition, Catal. Today. 129 (2007) 43–49.
Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol. A Chem. 106 (1997) 51–56.
J.J. Murcia, E.G. Ávila-Martínez, H. Rojas, J.A. Navío, M.C. Hidalgo, Study of the E. coli elimination from urban wastewater over photocatalysts based on metallized TiO2, Appl. Catal. B Environ. 200 (2017) 469–476.
URI: http://repositorio.uptc.edu.co/handle/001/2496
Appears in Collections:AHG. Trabajos de Grado y Tesis

Files in This Item:
File Description SizeFormat 
TGT-1185.pdfArchivo principal3.48 MBAdobe PDFThumbnail
View/Open
A_ACCM.pdf
  Restricted Access
Autorización publicación713.68 kBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons