Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2498
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMorantes Luis, Dana Zuliet-
dc.date.accessioned2019-03-28T14:16:01Z-
dc.date.available2019-03-28T14:16:01Z-
dc.date.issued2017-
dc.identifier.citationMorantes Luis, D. L. (2017). Modificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguas. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2498spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2498-
dc.description1 recurso en línea (64 páginas ) : ilustraciones color, figuras, gráficos, tablas.spa
dc.description.abstractLa celulosa es el biopolímero más abundante de la tierra. Los diferentes materiales celulósicos han sustituido a los polímeros derivados del petróleo, ofreciendo una alternativa natural y sostenible. Entre ellos, los nanocristales de celulosa (CNC), cuya superficie a través de la modificación química permite explorar un amplio espectro de aplicaciones como el tratamiento de aguas. En este trabajo, se modificó CNC con el reactivo de Girard’s T (cloruro de 2-hidrazinil-2-oxoetiltrimetilamonio) y CHPTAC (cloruro de 3-cloro-2-hidroxipropiltrimetilamonio) como injertos catiónicos. Los materiales sintetizados se caracterizaron química y estructuralmente por potencial Z, grado de sustitución por análisis elemental, espectroscopia infrarroja con transformada de Fourier (FTIR), difracción de rayos X (XRD), tamaño hidrodinámico por dispersión dinámica de luz (DLS) y Microscopia de fuerza atómica (AFM). Adicionalmente se realizó el estudio de las propiedades térmicas por termogravimetría (TGA) y calorimetría diferencial de barrido (DSC). Se evaluó la capacidad floculante de CNC-EPTMAC sobre suspensiones de silica (SiO2) a 0,25 % p/p y se determinó la dosis óptima. Este trabajo prueba la capacidad de floculación de CNC-EPTMAC en agua en términos de eliminación de turbidez y disminución de parámetros fisicoquímicos en aguas superficiales.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleModificaciones catiónicas de nanocristales de celulosa aplicadas como floculantes al tratamiento de aguasspa
dc.typeTrabajo de grado - Maestríaspa
dcterms.bibliographicCitationT. Abitbol et al., “ScienceDirect Nanocellulose , a tiny fiber with huge applications,” Curr. Opin. Biotechnol., vol. 39, no. I, pp. 76–88, 2016.spa
dcterms.bibliographicCitationS. Bel, W. Thielemans, A. Magnin, and S. Boufi, “Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement : A comparative study,” Carbohydr. Polym., vol. 143, pp. 310–317, 2016spa
dcterms.bibliographicCitationS. Bel, A. Magnin, C. Pétrier, and S. Boufi, “Starch nanoparticles formation via high power ultrasonication,” Carbohydr. Polym., vol. 92, no. 2, pp. 1625–1632, 2013.spa
dcterms.bibliographicCitationB. Ranby and E. Ribi, “The microstructure of cellulose,” Experientia, 1950.spa
dcterms.bibliographicCitationD. Klemm et al., “Cellulose Nanocrystals : Chemistry , Self-Assembly , and Applications,” Angew. Chemie - Int. Ed., vol. 50, no. 24, pp. 5438–5466, 2009.spa
dcterms.bibliographicCitationT. Abitbol, E. Kloser, and D. G. Gray, “Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis,” pp. 785–794, 2013spa
dcterms.bibliographicCitationC. W. Alfred et al., “NRC Publications Archive Characteristics and Properties of Carboxylated Cellulose Nanocrystals Characteristics and Properties of Carboxylated Cellulose Nanocrystals Prepared from a Novel One-Step Procedure,” 2011spa
dcterms.bibliographicCitationY. Habibi, H. Chanzy, and M. R. Vignon, “TEMPO-mediated surface oxidation of cellulose whiskers,” pp. 679–687, 2006.spa
dcterms.bibliographicCitationE. Lam, K. B. Male, J. H. Chong, A. C. W. Leung, and J. H. T. Luong, “Applications of functionalized and nanoparticle-modified nanocrystalline cellulose,” Trends Biotechnol., vol. 30, no. 5, pp. 283–290, 2012.spa
dcterms.bibliographicCitationJ. Tang, J. Sisler, N. Grishkewich, and K. C. Tam, “Functionalization of cellulose nanocrystals for advanced applications,” J. Colloid Interface Sci., 2017.spa
dcterms.bibliographicCitationI. Kalashnikova, B. Cathala, and I. Capron, “New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals,” pp. 7471–7479, 2011.spa
dcterms.bibliographicCitationF. Cherhal, F. Cousin, and I. Capron, “Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals,” 2015.spa
dcterms.bibliographicCitationA. M. M. Kaushik, “Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis,” Green Chem, vol. 18, pp. 622–637, 2016.spa
dcterms.bibliographicCitationN. Grishkewich, N. Mohammed, J. Tang, and K. C. Tam, “Recent Advances in the Application of Cellulose Nanocrystals,” COCIS, 2017.spa
dcterms.bibliographicCitationM. S. Reid, M. Villalobos, and E. D. Cranston, “The Role of Hydrogen Bonding in Non-Ionic Polymer Adsorption to Cellulose Nanocrystals and Silica Colloids,” COCIS, 2017.spa
dcterms.bibliographicCitationT. Suopajärvi, H. Liimatainen, O. Hormi, and J. Niinimäki, “Coagulation – flocculation treatment of municipal wastewater based on anionized nanocelluloses,” vol. 231, pp. 59–67, 2013.spa
dcterms.bibliographicCitationR. Batmaz, N. Mohammed, R. M. Berry, and K. C. Tam, “Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes,” pp. 1655–1665, 2014spa
dcterms.bibliographicCitationM. K. Oksman, “Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water,” Carbohydr. Polym., 2014.spa
dcterms.bibliographicCitationD. En and C. Qu, “Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos,” tesis Dr., 2015.spa
dcterms.bibliographicCitationB. G. Smith, P. J. Harris, L. D. Melton, and R. H. Newman, “Crystalline Cellulose in Hydrated Primary Cell Walls of Three Monocotyledons and One Dicotyledon,” vol. 39, no. 7, pp. 711–720, 1998.spa
dcterms.bibliographicCitationJ. Kim et al., “Review of Nanocellulose for Sustainable Future Materials,” vol. 2, no. 2, pp. 197–213, 2015.spa
dcterms.bibliographicCitationR. J. Moon, A. Martini, J. Nairn, J. Youngblood, A. Martini, and J. Nairn, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev, 2011spa
dcterms.bibliographicCitationM. Ahmed, S. Azizi, F. Alloin, and A. Dufresne, “Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field,” pp. 612–626, 2005.spa
dcterms.bibliographicCitationK. Fleming, D. G. Gray, and S. Matthews, “Cellulose Crystallites,” pp. 1831–1835, 2001.spa
dcterms.bibliographicCitationY. Song, Y. Sun, X. Zhang, J. Zhou, and L. Zhang, “Homogeneous Quaternization of Cellulose in NaOH / Urea Aqueous Solutions as Gene Carriers,” pp. 2259–2264, 2008.spa
dcterms.bibliographicCitationM. Visanko, H. Liimatainen, J. P. Heiskanen, and O. Hormi, “Amphiphilic Cellulose Nanocrystals from Acid-Free Oxidative Treatment: Physicochemical Characteristics and Use as an Oil − Water Stabilizer,” 2014.spa
dcterms.bibliographicCitationH. Yang and T. G. M. Van De Ven, “Preparation of hairy cationic nanocrystalline cellulose,” Cellulose, vol. 23, no. 3, pp. 1791–1801, 2016.spa
dcterms.bibliographicCitationC. e H. (N and T. G. M. Van De Ven, “Preparation of hairy cationic nanocrystalline cellulose,” Cellulose, vol. 23, no. 3, pp. 1791–1801, 2016.spa
dcterms.bibliographicCitationZ. Khatri, G. Mayakrishnan, Y. Hirata, K. Wei, and I. Kim, “Cationic-cellulose nanofibers : Preparation and dyeability with anionic reactive dyes for apparel application,” Carbohydr. Polym., vol. 91, no. 1, pp. 434–443, 2013.spa
dcterms.bibliographicCitationThe Hebrew University of Jerusalem, “EA - Elemental Analysis of C, H, N, S and O.,” 2009. [Online]. Available: http://departments.agri.huji.ac.il/zabam/EA.html. [Accessed: 01-Jan-2009].spa
dcterms.bibliographicCitationMalvern, “Zetasizer,” Zestasizer nano user Man., vol. MAN0485 Is, no. 230, 2013.spa
dcterms.bibliographicCitationC. Poole and F. Owens, “Introducción a la nanotecnología,” 2007.spa
dcterms.bibliographicCitationG. BARROOW, “QUIMICA FISICA PARA LAS CIENCIAS DE LA VIDA/GORDO N M. BARROW.,” sidalc.net.spa
dcterms.bibliographicCitationF. J. Poole, C. P., & Owens, Introducción a la nanotecnología. 2007.spa
dcterms.bibliographicCitationT. H. U. C. F. N. A. NANOTECHNOLOGY, “Scanning Probe Microscope - Dimension 3100, Nanoscope V,” 2014. .spa
dcterms.bibliographicCitationS. Ruiz, I. Alonso, and D. Quintanilla, “Analisis Instrumental,” 2009.spa
dcterms.bibliographicCitationI. G. Fernández, “Aplicación de materiales nanoestructurados metal-orgánicos (MOFs) en procesos de adsorción y catálisis heterogénea,” 2015.spa
dcterms.bibliographicCitationM. I. T. Aguilar, “ratamiento físico-químico de aguas residuales: coagulación-floculación.No Title,” EDITUM, 2002.spa
dcterms.bibliographicCitationS. Mishra, A. Mukul, G. Sen, and U. Jha, “International Journal of Biological Macromolecules Microwave assisted synthesis of polyacrylamide grafted starch ( St-g-PAM ) and its applicability as flocculant for water treatment,” Int. J. Biol. Macromol., vol. 48, no. 1, pp. 106–111, 2011.spa
dcterms.bibliographicCitationZ. Yang et al., “Synthesis of amphoteric starch-based grafting flocculants for flocculation of both positively and negatively charged colloidal contaminants from water q,” vol. 244, pp. 209–217, 2014.spa
dcterms.bibliographicCitationX. Hao, Q. Chang, L. Duan, and Y. Zhang, “Synergetically Acting new Flocculants on the Basis of Starch-graft-Poly ( acrylamide ) -co-Sodium,” vol. 59, pp. 251–257, 2007.spa
dcterms.bibliographicCitationM. de medio ambiente y desarrollo Sostenible, Resolución 0631. 2015.spa
dcterms.bibliographicCitationT. G. M. Van De Ven and A. Sheikhi, “Hairy cellulose nanocrystalloids: a novel class of nanocellulose,” Nanoscale, vol. 8, no. 33, pp. 15101–15114, 2016.spa
dcterms.bibliographicCitationB. Sun, Q. Hou, Z. Liu, and Y. Ni, “Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive,” Cellulose, 2015.spa
dcterms.bibliographicCitationR. Prathapan, R. Thapa, G. Garnier, and R. F. Tabor, “Colloids and Surfaces A : Physicochemical and Engineering Aspects Modulating the zeta potential of cellulose nanocrystals using salts and surfactants,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 509, pp. 11–18, 2016.spa
dcterms.bibliographicCitationJ. Sirviö, A. Honka, H. Liimatainen, J. Niinimäki, and O. Hormi, “Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent,” vol. 86, pp. 266–270, 2011.spa
dcterms.bibliographicCitationP. Lu and Y. Hsieh, “Preparation and properties of cellulose nanocrystals : Rods , spheres , and network,” Carbohydr. Polym., vol. 82, no. 2, pp. 329–336, 2010.spa
dcterms.bibliographicCitationH. Yang, D. Chen, and T. G. M. Van De Ven, “Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers,” Cellulose, pp. 1743–1752, 2015.spa
dcterms.bibliographicCitationY. Nishiyama, J. Sugiyama, and H. Chanzy, “Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction,” Chem. Soc., 2003.spa
dcterms.bibliographicCitationP. Weimer and J. Hackney, “Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation,” Biotechnol., 1995.spa
dcterms.bibliographicCitationM. Zaman, H. Xiao, F. Chibante, and Y. Ni, “Synthesis and characterization of cationically modified nanocrystalline cellulose,” Carbohydr. Polym., vol. 89, no. 1, pp. 163–170, 2012.spa
dcterms.bibliographicCitationC. R. RODRÍGUEZ and PONTIFICIA, “EVALUACIÓN DE CUATRO DESINFECTANTES SOBRE Listeria monocytogenes AISLADA DE PRODUCTOS CÁRNICOS CRUDOS DE UNA PLANTA DE PROCESADOS EN BOGOTÁ CAROLINA,” Pontif. Univ. JAVERIANA, pp. 29–30, 2007.spa
dcterms.bibliographicCitationA. Kaboorani and B. Riedl, “Surface modification of cellulose nanocrystals ( CNC ) by a cationic surfactant,” Ind. Crop. Prod., vol. 65, pp. 45–55, 2015.spa
dcterms.bibliographicCitationM. Hasani, E. D. Cranston, and D. G. Gray, “Cationic surface functionalization of cellulose nanocrystals,” pp. 2238–2244, 2008.spa
dcterms.bibliographicCitationP. Dhar, D. Tarafder, A. Kumar, and V. Katiyar, “RSC Advances mechanical , barrier and thermal properties of,” RSC Adv., vol. 5, pp. 60426–60440, 2015.spa
dcterms.bibliographicCitationS. Huan, L. Bai, G. Liu, W. Cheng, and G. Han, “RSC Advances polystyrene and cellulose nanocrystals : manufacture and characterization †,” RSC Adv., vol. 5, pp. 50756–50766, 2015spa
dcterms.bibliographicCitationG. Li, Y. Fu, Z. Shao, and F. Zhang, “Preparing Cationic Cellulose Derivative in NaOH / Urea Aqueous Solution and its Performance as Filler Modifier,” vol. 10, no. 4, pp. 7782–7794, 2015.spa
dcterms.bibliographicCitationM. Grunert and W. T. Winter, “Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals,” vol. 10, no. April, pp. 27–30, 2002.spa
dcterms.bibliographicCitationS. Pal, D. Mal, and R. P. Singh, “Cationic starch : an effective flocculating agent,” vol. 59, pp. 417–423, 2005.spa
dcterms.bibliographicCitationM. D. L. P. SOCIAL and V. Y. D. T. MINISTERIO DE AMBIENTE, “Resolución 2115,” 2007.spa
dcterms.bibliographicCitationD. Callister, W. & rethwisch, “Fundamentals of materials science ang engineering an integrated approach,” WILEY, vol. 4th editio, 2012.spa
dc.description.notesBibliografía y webgrafía: páginas 61-64.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.thesis.disciplineFacultad de Ciencias. Escuela de Posgrados. Maestría en Químicaspa
dc.thesis.levelMaestríaspa
dc.thesis.nameMagister en Químicaspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.contributor.roleMuñoz Prieto, Efren de Jesús (Director de Tesis)spa
dc.description.abstractenglishCellulose is the most abundant biopolymer on earth. The different cellulosic materials have been replaced by polymers derived from petroleum, offering a natural and sustainable alternative. Among them, the cellulose nanocrystals (CNC), which allow to explore a wide spectrum of applications such as water treatment. In this work, CNC was modified with the reagent of Girard's T (2-hydrazinyl-2-oxoethyltrimethylammonium chloride) and CHPTAC (3-chloro-2-hydroxypropyltrimethylammonium chloride) as cationic grafts. The synthesized materials were characterized chemically and structurally with Z potential, degree of substitution with elemental analysis, infrared spectroscopy with Fourier transform (FTIR), X-ray diffraction (XRD), hydrodynamic size with dynamic light scattering (DLS) and microscopy of atomic force (AFM). Additionally, thermal properties were studied with thermogravimetry (TGA) and differential scanning calorimetry (DSC). The flocculant capacity of CNC-EPTMAC on suspensions of silica (SiO2) at 0.25% w / w was evaluated and the optimum dose was determined. This work tests the flocculation capacity of CNC-EPTMAC in water in terms of elimination of turbidity and decrease of physicochemical parameters in surface water.spa
dc.rights.creativecommonsAtribución-NoComercialspa
dc.subject.armarcCelulosa-
dc.subject.armarcNanocristales de celulosa-
dc.subject.armarcCelulosa - Química-
dc.subject.armarcAnálisis termogravimétrica-
dc.subject.armarcAnalisis térmico-
dc.subject.armarcTermogravimetría-
dc.subject.armarcFloculación-
dc.subject.armarcPurificación de aguas residuales - Floculación-
dc.subject.armarcMaestría en Química - Tesis y disertaciones académicas-
Appears in Collections:AHG. Trabajos de Grado y Tesis

Files in This Item:
File Description SizeFormat 
TGT-1187.pdfArchivo principal4.64 MBAdobe PDFThumbnail
View/Open
A_DZML.pdf
  Restricted Access
Autorización publicación696.2 kBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons