Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2499
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMartínez Zambrano, José Jobanny (Director de tesis)spa
dc.contributor.advisorRojas Sarmiento, Hugo Alfonso (Codirector de tesis)spa
dc.contributor.authorMuñoz Castiblanco, Deysi Tatiana-
dc.date.accessioned2019-03-28T14:50:19Z-
dc.date.available2019-03-28T14:50:19Z-
dc.date.issued2018-
dc.identifier.citationMuñoz Castiblanco, D. T. (2018). Obtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de caña. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2499spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2499-
dc.description1 recurso en línea (71 páginas) : ilustraciones color, figuras, tablas.spa
dc.description.abstract5-Hydroxymethyl-2-furancarboxylic acid (HMFCA) is important as a monomer in the synthesis of various polyesters and has possible antitumor activity. It is obtained by the selective oxidation of the formyl group from 5-hydroxymethylfurfural (5-HMF). However, obtaining HMFCA by conventional chemical methods has several disadvantages, such as the large amount of sodium hydroxide used and high temperatures, which, at an industrial level, represents a significant amount of pollutants and high production costs. In addition, the use of solid catalysts with high value metals makes the HMFCA synthesis process expensive. In response to this problem, biotechnological methods of synthesis that are less polluting and economically sustainable have been used, such as fermentations, with which it is possible to obtain products with high added value, such as HMFCA, when the conditions for the growth of microorganisms are optimized. In the present investigation, starting from cane bagasse residues, a bacterial strain capable of degrading 5-HMF and selectively converting it into HMFCA was isolated. According to the sequencing of the 16S ribosomal gene, the bacterial strain belongs to the species Serratia marcescens. The oxidation of 5-HMF to HMFCA was carried out in fermentations with whole cells. The follow-up of the 5-HMF transformation reaction was performed by high-resolution liquid chromatography (HPLC) and bacterial growth was determined by UV-Vis spectrophotometry. Two sources of 5-HMF were used, one corresponding to pure 5-HMF (5-HMFp) and the other more economical, obtained from fructose hydrolysates (5-HMFf)., using Nb2O5 as a catalyst. The tolerance level of Serratia marcescens was determined at different concentrations of 5-HMFp and 5-HMFf. It was demonstrated that the bacteria was able to metabolize a concentration of 5-HMFf of 10 mM, at 30 ° C and pH 8, obtaining a yield towards HMFCA of 78% in 12 hours of reaction. Subsequently, the reaction conditions were evaluated: temperature, pH and substrate concentration, in the yield to HMFCA from 5-HMFf with the use of the Box-Behnken design. The results showed yields above 60 % for HMFCA at 30 °C, pH 8, and a concentration of 5-HMF equal to 3 mM. Through the polymerase chain reaction (PCR), the presence of the family pyridine nucleotide disulfide oxidoreductases in S. marcescens was confirmed as a possible gene responsible for the transformation of 5-HMF to HMFCA. Also, the Fed-batch strategy with control of 5-HMFf concentration was used to obtain a higher concentration of the compound of interest in the culture medium, reaching a final HMFCA concentration of 790 mg L-1, using the most economical source of 5-HMF, without genetically modified microorganisms, and in 20 hours of reaction.eng
dc.description.abstractEl ácido 5-hidroximetil-2-furancarboxílico (HMFCA) es importante como monómero en la síntesis de diversos poliésteres y tiene posible actividad antitumoral. Se obtiene por la oxidación selectiva del grupo formilo del 5-hidroximetilfurfural (5-HMF). Sin embargo, la obtención de HMFCA por métodos químicos convencionales presenta varias desventajas, como la gran cantidad de hidróxido de sodio usado y las altas temperaturas, lo cual, a nivel industrial, representa una importante cantidad de contaminantes y altos costos en su producción. Además, la utilización de catalizadores sólidos con metales de alto valor, hace que el proceso de síntesis de HMFCA sea costoso. Como respuesta a esta problemática, se han utilizado métodos biotecnológicos de síntesis menos contaminantes y económicamente sustentables como las fermentaciones, con las cuales es posible obtener productos de alto valor agregado, como el HMFCA, cuando se optimizan las condiciones para el crecimiento de los microorganismos. En la presente investigación, partiendo de residuos de bagazo de caña se aisló una cepa bacteriana capaz de degradar 5-HMF y convertirlo selectivamente en HMFCA. De acuerdo con la secuenciación del gen ribosomal 16S, la cepa bacteriana pertenece a la especie Serratia marcescens. La oxidación de 5-HMF a HMFCA se llevó a cabo en fermentaciones con las células completas. El seguimiento de la transformación de 5-HMF se realizó por cromatografía de líquidos de alta resolución (HPLC) y el crecimiento bacteriano fue determinado por espectrofotometría UV-Vis. Se utilizaron dos fuentes de 5-HMF, una correspondiente a 5-HMF puro (5-HMFp) y la otra más económica, obtenida a partir de hidrolizados de fructosa, utilizando Nb2O5 como catalizador (5-HMFf). Se determinó el nivel de tolerancia de Serratia marcescens a diferentes concentraciones de 5-HMFp y 5-HMFf. Se demostró que la bacteria fue capaz de metabolizar una concentración de 5-HMFf de 10 mM, a 30 °C y pH 8, obteniéndose un rendimiento hacia HMFCA del 78 % en 12 horas de reacción. Posteriormente, se evaluaron las condiciones de reacción: temperatura, pH y concentración de sustrato, en el rendimiento de HMFCA a partir de 5-HMFf con el uso del diseño Box-Behnken. Los resultados mostraron rendimientos por encima del 60% para HMFCA a 30 °C, pH 8, y una concentración de 5-HMF igual a 3 mM. Mediante la reacción en cadena de la polimerasa (PCR), se confirmó la presencia de la familia piridina nucleótido disulfuro oxidorreductasas en S. marcescens, como posible gen responsable de la transformación de 5-HMF a HMFCA. Asimismo, se usó la estrategia Fed-batch con control de la concentración de 5-HMFf, para obtener una mayor concentración del compuesto de interés en el medio de cultivo, llegando a obtener una concentración final de HMFCA de 790 mg L-1, usando la fuente más económica de 5-HMF, sin microorganismos modificados genéticamente, y en 20 horas de reacción.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleObtención de ácido 5-Hidroximetil-2-Furancarboxílico (HMFCA) a partir de 5-Hidroximetilfurfural (5-HMF) con microorganismos aislados de bagazo de cañaspa
dc.typeTrabajo de grado - Maestríaspa
dc.description.notesBibliografía: páginas 67-71.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.contributor.financerCOLCIENCIAS-
dc.relation.referencesM. Almeida, J., Modig, T., Petersson, A., Hahn-Hagerdal, B., Liden, G., & Gorwa-Grauslund, “Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae,” J. Chem. Technol. Biotechnol., vol. 82, no. 4, pp. 340–349, 2007.spa
dc.relation.referencesS. Subbiah, S. P. Simeonov, J. M. S. S. Esperança, L. P. N. Rebelo, and C. A. M. Afonso, “Direct transformation of 5-hydroxymethylfurfural to the building blocks 2,5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction,” Green Chem., vol. 15, no. 10, p. 2849, 2013.spa
dc.relation.referencesY.-Z. Qin, Y.-M. Li, M.-H. Zong, H. Wu, and N. Li, “Enzyme-catalyzed selective oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF and 2,5-diformylfuran using deep eutectic solvents,” Green Chem., vol. 17, no. 7, pp. 3718–3722, 2015.spa
dc.relation.referencesF. Wang and Z. Zhang, “Cs-substituted tungstophosphate-supported ruthenium nanoparticles: An effective catalyst for the aerobic oxidation of 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid,” J. Taiwan Inst. Chem. Eng., vol. 70, pp. 1–6, 2017.spa
dc.relation.referencesM. Munekata and G. Tamura, “Antitumor Activity of 5-Hidroxy-methyl-2-furoic Acid,” Agric. Biol. Chem., vol. 45, no. 9, pp. 40–41, 1981.spa
dc.relation.referencesY. M. Li, X. Y. Zhang, N. Li, P. Xu, W. Y. Lou, and M. H. Zong, “Biocatalytic Reduction of HMF to 2,5-Bis(hydroxymethyl)furan by HMF-Tolerant Whole Cells,” ChemSusChem, vol. 10, no. 2, p. 304, 2017.spa
dc.relation.referencesF. Koopman, N. Wierckx, J. H. de Winde, and H. J. Ruijssenaars, “Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid,” Bioresour. Technol., vol. 101, no. 16, pp. 6291–6296, 2010.spa
dc.relation.referencesR. Trifonova, J. Postma, F. W. A. Verstappen, H. J. Bouwmeester, J. J. M. H. Ketelaars, and J. D. Van Elsas, “Removal of phytotoxic compounds from torrefied grass fibres by plant-beneficial microorganisms,” FEMS Microbiol. Ecol., vol. 66, no. 1, pp. 158–166, 2008.spa
dc.relation.referencesM. J. López, J. Moreno, N. N. Nichols, B. S. Dien, and R. J. Bothast, “Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates,” Appl. Microbiol. Biotechnol., vol. 64, no. 1, pp. 125–131, 2004.spa
dc.relation.referencesJ. Zhang, Z. Zhu, X. Wang, N. Wang, W. Wang, and J. Bao, “Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation,” Biotechnol. Biofuels, vol. 3, no. 1, p. 26, 2010spa
dc.relation.referencesG. S. Hossain et al., “Metabolic engineering of Raoultella ornithinolytica BF60 for production of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural,” Appl. Environ. Microbiol., vol. 83, no. 1, 2017.spa
dc.relation.referencesE. Capuano and V. Fogliano, “Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies,” LWT - Food Sci. Technol., vol. 44, no. 4, pp. 793–810, 2011.spa
dc.relation.referencesN. Wierckx, F. Koopman, H. J. Ruijssenaars, and J. H. De Winde, “Microbial degradation of furanic compounds: Biochemistry, genetics, and impact,” Appl. Microbiol. Biotechnol., vol. 92, no. 6, pp. 1095–1105, 2011.spa
dc.relation.referencesD. Macías Granados, “Catabolismo de furfurales y compuestos aromáticos en ‘Pseudomonas pseudoalcaligenes’ CECT 5344. Aislamiento de nuevas cepas asimiladoras de cianuro y sus complejos metálicos,” Universidad de Extremadura, 2014.spa
dc.relation.referencesP. W. Trudgill, “The metabolism of 2-furoic acid by Pseudomanas F2,” Biochem J, vol. 113, no. 4, pp. 577–587, 1969.spa
dc.relation.referencesK. Koenig and J. R. Andreesen, “Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: Two molybdenum-containing dehydrogenases of novel structural composition,” J. Bacteriol., vol. 172, no. 10, pp. 5999–6009, 1990.spa
dc.relation.referencesF. Koopman, N. Wierckx, J. H. de Winde, and H. J. Ruijssenaars, “Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14.,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 11, pp. 4919–4924, 2010.spa
dc.relation.referencesJ. M. R. Gallo, D. M. Alonso, M. A. Mellmer, and J. A. Dumesic, “Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents,” Green Chem., vol. 15, no. 1, pp. 85–90, 2013.spa
dc.relation.referencesI. A. Vanegas, “Síntesis y reactividad de 5-hidroximetilfurfural (HMF).,” Universidad Nacional Autónoma de México., 2014.spa
dc.relation.referencesC. C. Vanegas Salazar, “Manejo Del Bagazo En La Agroindustria De La Caña Panelera En El Nordeste Antioqueño a Partir De La Gestión Integral De Residuos: Estudio De Caso Municipio De Yolombo.,” Universidad de Manizales, 2016.spa
dc.relation.referencesM. Ventura, M. Aresta, and A. Dibenedetto, “Selective Aerobic Oxidation of 5-(Hydroxymethyl)furfural to 5-Formyl-2-furancarboxylic Acid in Water,” ChemSusChem, vol. 9, no. 10, pp. 1096–1100, 2016.spa
dc.relation.referencesO. Casanova, S. Iborra, and A. Corma, “Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5′(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts,” J. Catal., vol. 275, no. 2, pp. 236–242, 2010.spa
dc.relation.referencesR. Rinaldi, R. Palkovits, and F. Schuth, “Depolymerization of cellulose using solid catalysts in ionic liquids,” Angew. Chemie, Int. Ed., vol. 47, no. 42, pp. 8047–8050, 2008.spa
dc.relation.referencesE. F. Dunn, D. Liu, and E. Y. X. Chen, “Role of N-heterocyclic carbenes in glucose conversion into HMF by Cr catalysts in ionic liquids,” Appl. Catal. A Gen., vol. 460–461, pp. 1–7, 2013.spa
dc.relation.referencesA. Corma Canos, S. Iborra, and A. Velty, “Chemical routes for the transformation of biomass into chemicals,” Chem. Rev., vol. 107, no. 6, pp. 2411–2502, 2007.spa
dc.relation.referencesG. Rothenberg, Catalysis : Concepts and Green Applications. 2015.spa
dc.relation.referencesS. P. Teong, G. Yi, and Y. Zhang, “Hydroxymethylfurfural production from bioresources: past, present and future,” Green Chem., vol. 16, no. 4, p. 2015, 2014.spa
dc.relation.referencesC. Idler, J. Venus, and B. Kamm, Microorganisms In Biorefineries. 2015.spa
dc.relation.referencesW. P. Dijkman, D. E. Groothuis, and M. W. Fraaije, “Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid,” Angew. Chemie - Int. Ed., vol. 53, no. 25, pp. 6515–6518, 2014.spa
dc.relation.referencesW. P. Dijkman and M. W. Fraaije, “Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688,” Appl. Environ. Microbiol., vol. 80, no. 3, pp. 1082–1090, 2014.spa
dc.relation.referencesM. A. Lee J, Lee S, Park S, “Research review paper Control of fed-batch fermentations,” Biotechnol. Adv., p. pp: 29-48, 1999.spa
dc.relation.referencesM. L. Shuler and F. Kargi, Bioprocess Engineering: Basic Concepts, Second Edition. Prentice hall, 2002.spa
dc.relation.referencesE. Hernández, “Cultivo continuo de microorganismos,” Rev. la Fac. Agron., vol. 2, pp. 95–112, 1974.spa
dc.relation.referencesZ. Sun, J. A. Ramsay, M. Guay, and B. A. Ramsay, “Fed-batch production of unsaturated medium-chain-length polyhydroxyalkanoates with controlled composition by Pseudomonas putida KT2440,” Appl. Microbiol. Biotechnol., vol. 82, no. 4, pp. 657–662, 2009.spa
dc.relation.referencesS. Y. Lee, “High cell-density culture of Escherichia coli,” Trends Biotechnol., vol. 14, no. 3, pp. 98–105, 1996.spa
dc.relation.referencesY. Y. Gorbanev, S. K. Klitgaard, J. M. Woodley, C. H. Christensen, and A. Riisager, “Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature,” ChemSusChem, vol. 2, no. 7, pp. 672–675, 2009.spa
dc.relation.referencesE. S. Kang, D. W. Chae, B. Kim, and Y. G. Kim, “Efficient preparation of DHMF and HMFA from biomass-derived hmf via a cannizzaro reaction in ionic liquids,” J. Ind. Eng. Chem., vol. 18, no. 1, pp. 174–177, 2012.spa
dc.relation.referencesP. Verdeguer, N. Merat, and A. Gaset, “Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique,” J. Mol. Catal., vol. 85, no. 3, pp. 327–344, 1993.spa
dc.relation.referencesA. Lolli et al., “Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd-Au nanoparticles,” Appl. Catal. A Gen., vol. 504, pp. 408–419, 2015.spa
dc.relation.referencesS. E. Davis, L. R. Houk, E. C. Tamargo, A. K. Datye, and R. J. Davis, “Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts,” Catal. Today, vol. 160, no. 1, pp. 55–60, 2011.spa
dc.relation.referencesZ. Miao et al., “Superior catalytic performance of Ce1−xBixO2−δ solid solution and Au/Ce1−xBixO2−δ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution,” Catal. Sci. Technol., vol. 5, no. 2, pp. 1314–1322, 2015.spa
dc.relation.referencesT. Pasini et al., “Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles,” Green Chem., vol. 13, no. 8, pp. 2091–2099, 2011.spa
dc.relation.referencesZ. Zhang, B. Liu, K. Lv, J. Sun, and K. Deng, “Aerobic oxidation of biomass derived 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalyzed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex,” Green Chem., vol. 16, no. 5, p. 2762, 2014.spa
dc.relation.referencesN. K. Gupta et al., “Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure,” Green Chem., vol. 13, no. 4, p. 824, 2011.spa
dc.relation.referencesK. Mitsukura, Y. Sato, T. Yoshida, and T. Nagasawa, “Oxidation of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids by Acetobacter and Serratia strains,” Biotechnol. Lett., vol. 26, no. 21, pp. 1643–1648, 2004spa
dc.relation.referencesX.-Y. Zhang, M.-H. Zong, and N. Li, “Whole-cell biocatalytic selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid,” Green Chem., vol. 19, no. 19, pp. 4544–4551, 2017.spa
dc.relation.referencesM. van Deurzen, F. van Rantwijk, and R. Sheldon, “Chloroperoxidase-Catalyzed Oxidation of 5-Hydroxymethylfurfural.,” J. Carbohydr. Chem., no. July 2013, pp. 37–41, 2006.spa
dc.relation.referencesM. J. Taherzadeh, L. Gustafsson, C. Niklasson, and G. Lidén, “Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae,” Appl. Microbiol. Biotechnol., vol. 53, no. 6, pp. 701–708, 2000.spa
dc.relation.referencesN. Terasawa, A. Sugiyama, M. Murata, and S. Homma, “Isolation of a microorganism to oxidize 5-hydroxymethylfurfural,” Food Sci. Technol. Res., vol. 8, no. 1, pp. 28–31, 2002.spa
dc.relation.referencesH. Ran, J. Zhang, Q. Gao, Z. Lin, and J. Bao, “Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1,” Biotechnol. Biofuels, vol. 7, no. 1, p. 51, 2014.spa
dc.relation.referencesC. F. Yang and C. R. Huang, “Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate,” Bioresour. Technol., vol. 214, pp. 311–318, 2016.spa
dc.relation.referencesN. Wierckx, F. Koopman, L. Bandounas, J. H. De Winde, and H. J. Ruijssenaars, “Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysatembt,” Microb. Biotechnol., vol. 3, no. 3, pp. 336–343, May 2010.spa
dc.relation.referencesA. C. Moreno, “Identificación molecular de una especie de Serratia aislada de mussa paradisiaca,” Universidad Veracruzana, 2010.spa
dc.relation.referencesM. T. Rokade and A. S. Pethe, “Isolation , Identification and Optimization Study of Prodigiosin from Serratia marcesces,” Biosci. Discov., vol. 8, no. 3, pp. 388–396, 2017.spa
dc.relation.referencesJ. J. Martínez et al., “Dehydration of Glucose to 5-Hydroxymethylfurfural Using LaOCl/Nb2O5 Catalysts in Hot Compressed Water Conditions,” Catal. Letters, vol. 147, no. 7, pp. 1765–1774, 2017.spa
dc.relation.referencesN. Aslan and Y. Cebeci, “Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals,” Fuel, vol. 86, no. 1–2, pp. 90–97, 2007.spa
dc.relation.referencesJ. Harvill, “MINITAB statistical software, release 7.2 SUN-4 version,” Chemom. Intell. Lab. Syst., vol. 18, no. 1, pp. 111–112, 1993.spa
dc.relation.references“Primer3,” 2012. [Online]. Available: http://bioinfo.ut.ee/primer3-0.4.0/.spa
dc.relation.referencesP. Y. Nikolov and V. A. Yaylayan, “Thermal decomposition of 5-(hydroxymethyl)-2-furaldehyde (HMF) and its further transformations in the presence of glycine,” J. Agric. Food Chem., vol. 59, no. 18, pp. 10104–10113, 2011.spa
dc.relation.referencesN. M. Elkenawy, A. S. Yassin, H. N. Elhifnawy, and M. A. Amin, “Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation,” Biotechnol. Reports, vol. 14, pp. 47–53, 2017.spa
dc.relation.referencesW. T. Su, T. Y. Tsou, and H. L. Liu, “Response surface optimization of microbial prodigiosin production from Serratia marcescens,” J. Taiwan Inst. Chem. Eng., vol. 42, no. 2, pp. 217–222, 2011.spa
dc.relation.referencesS. O. Dozie-Nwachukwu, Y. Danyuo, J. D. Obayemi, O. S. Odusanya, K. Malatesta, and W. O. Soboyejo, “Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery,” Mater. Sci. Eng. C, vol. 71, pp. 268–278, 2017.spa
dc.relation.referencesC. Z. Zang et al., “Identification and enhanced production of prodigiosin isoform pigment from Serratia marcescens N10612,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 4, pp. 1133–1139, 2014.spa
dc.relation.referencesI. N. Ryazantseva, V. S. Saakov, I. N. Andreyeva, T. I. Ogorodnikova, and Y. F. Zuev, “Response of pigmented Serratia marcescens to the illumination,” J. Photochem. Photobiol. B Biol., vol. 106, no. 1, pp. 18–23, 2012.spa
dc.relation.referencesA. Narang and S. S. Pilyugin, “Bacterial gene regulation in diauxic and non-diauxic growth,” J. Theor. Biol., vol. 244, no. 2, pp. 326–348, 2007.spa
dc.relation.referencesF. Martínez Montes and H. Pardo Vázquez, Juan Pablo Riveros Rosas, Bioquímica de Laguna y Piña, Octava Edi. Ciudad de México: Editorial El Manual Moderno, S.A. de C.V., 2018.spa
dc.relation.referencesE. Palmqvist and B. Hahn-Hägerdal, “Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition,” Bioresour. Technol., vol. 74, no. 1, pp. 25–33, 2000.spa
dc.relation.referencesG. Sakir Hossain et al., “Metabolic engineering of Raoultella ornithinolytica BF60 for the production of 2, 5- furandicarboxylic acid from 5-hydroxymethylfurfural Running Title: 2, 5-furandicarboxylic acid production,” Appl. Environ. Microbiol., 2016.spa
dc.relation.referencesA. Khanafari, M. M. Assadi, and F. A. Fakhr, “Review of Prodigiosin , Pigmentation in Serratia marcescens,” J. Biol. Sci., vol. 6, no. 1, pp. 1–13, 2006.spa
dc.relation.referencesH. W. C. De Araújo, K. Fukushima, and G. M. C. Takaki, “Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate,” Molecules, vol. 15, no. 10, pp. 6931–6940, 2010.spa
dc.relation.referencesS. L. C. Ferreira et al., “Box-Behnken design: An alternative for the optimization of analytical methods,” Anal. Chim. Acta, vol. 597, no. 2, pp. 179–186, 2007.spa
dc.relation.referencesC. Chang, P. Cen, and X. Ma, “Levulinic acid production from wheat straw,” Bioresour. Technol., vol. 98, no. 7, pp. 1448–1453, 2007.spa
dc.relation.referencesY. Kwak, A. R. Khan, and J. H. Shin, “Genome sequence of Serratia nematodiphila DSM 21420T, a symbiotic bacterium from entomopathogenic nematode,” J. Biotechnol., vol. 193, pp. 1–2, 2015.spa
dc.relation.referencesP. Li et al., “Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential,” PLoS One, vol. 10, no. 4, pp. 1–22, 2015.spa
dc.relation.referencesA. Iguchi et al., “Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen,” Genome Biol. Evol., vol. 6, no. 8, pp. 2096–2110, 2014.spa
dc.relation.referencesS. S. Pao, I. an T. Paulsen, and M. H. Saier, “Major Facilitator Superfamily,” Microbiol. Mol. Biol. Rev., vol. 62, no. 1, pp. 1–34, 1998.spa
dc.relation.referencesC. M. Grant, F. H. Maciver, and I. W. Dawes, “Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae,” Curr. Genet., vol. 29, pp. 511–515, 1996.spa
dc.relation.referencesC. Wang, S. R. Wesener, H. Zhang, and Y. Q. Cheng, “An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide,” Chem. Biol., vol. 16, no. 6, pp. 585–593, 2009.spa
dc.relation.referencesC. H. Williams, “Mechanism from and structure of thioredoxin reductase Escherichia coli,” FASEB J., vol. 9, pp. 1267–1276, 1995.spa
dc.relation.referencesA. G. Sánchez Fuentes and R. Arredondo Peter, “La dihidrolipoamida deshidrogenasa: estructura, función y patología,” Rev. Educ. Bioquímica, vol. 36, no. 3, pp. 82–88, 2017.spa
dc.relation.referencesD. Kim and J. S. Hahn, “Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-Hydroxymethylfurfural, which function as Thiol-Reactive electrophiles generating oxidative stress,” Appl. Environ. Microbiol., vol. 79, no. 16, pp. 5069–5077, 2013.spa
dc.relation.referencesM. Deponte, “Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes,” Biochim. Biophys. Acta - Gen. Subj., vol. 1830, no. 5, pp. 3217–3266, 2013.spa
dc.relation.referencesB. Favaloro, S. Melino, R. Petruzzelli, C. Di Ilio, and D. Rotilio, “Purification and characterization of a novel glutathione transferase from Ochrobactrum anthropi,” FEMS Microbiol. Lett., vol. 160, no. 1, pp. 81–86, 1998.spa
dc.relation.referencesJ. R. Mahan and J. J. Burke, “Purification and characterization of glutathione reductase from corn Mesophyll chloroplasts,” Physiol. Plant., vol. 71, no. 3, pp. 352–358, 1987.spa
dc.relation.referencesY. Wang, H. Han, B. Cui, Y. Hou, Y. Wang, and Q. Wang, “A glutathione peroxidase from Antarctic psychrotrophic bacterium Pseudoalteromonas sp. ANT506: Cloning and heterologous expression of the gene and characterization of recombinant enzyme,” Bioengineered, vol. 8, no. 6, pp. 742–749, 2017.spa
dc.relation.referencesR. Jaenicke, H. D. Lüdemann, and G. Schmid, “Pressure, Temperature and pH Dependence of the Absorption Spectrum of Reduced Nicotinamide Adenine Dinucleotide,” Zeitschrift fur Naturforsch. - Sect. C J. Biosci., vol. 36, no. 1–2, pp. 84–86, 1981.spa
dc.relation.referencesT. Dalgleish et al., Dehydrogenases Requiring Nicotinamide Coenzymes, vol. 136, no. 1. 2007.spa
dc.relation.referencesM. Ask, V. Mapelli, H. Höck, L. Olsson, and M. Bettiga, “Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials,” Microb. Cell Fact., vol. 12, no. 1, pp. 1–10, 2013.spa
dc.relation.referencesC. F. Yang and C. R. Huang, “Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2,5-furan dicarboxylic acid in algal acid hydrolysate,” J. Biosci. Bioeng., vol. 125, no. 4, pp. 407–412, 2018.spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.armarcIndustria biotecnológica-
dc.subject.armarcMicrobiología industrial-
dc.subject.armarcControl de procesos biotecnológicos-
dc.subject.armarcEnergía biomásica-
dc.subject.armarcMaestría en Química - Tesis y disertaciones académicas-
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Químicaspa
dc.publisher.facultyFacultad de Ciencias, Escuela de Posgrados. Maestría en Químicaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
Appears in Collections:AHG. Trabajos de Grado y Tesis

Files in This Item:
File Description SizeFormat 
TGT-1188.pdfArchivo principal1.14 MBAdobe PDFThumbnail
View/Open
A_DTMC.pdf
  Restricted Access
Autorización publicación677.59 kBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons