Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2506
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCorredor Montaña, Jeisson David-
dc.date.accessioned2019-03-29T16:17:56Z-
dc.date.available2019-03-29T16:17:56Z-
dc.date.issued2018-
dc.identifier.citationCorredor Montaña, J. D. (2018). Estudio teórico-experimental de la síntesis y propiedades físico-químicas de derivados de N-bencil-1-(2-furanil) Metanamina. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2506spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2506-
dc.description1 recurso en línea (100 páginas) : figuras, tablas.spa
dc.description.abstractSe desarrolló el estudio teórico-experimental del sistema de reacción y los productos de cicloadición DA de N-bencil-1-(2-furanil)metanamina (1a), y N-bencil-N-(2-furanilmetilen)acetamida (1b); empleando como dienófilo anhídrido maléico (AnM). La síntesis se llevó a cabo modificando las metodologías experimentales en el marco de la química verde. La caracterización espectroscópica de todas las moléculas se realizó mediante espectroscopia de RMN mono y bidimensional, FTIR, FTRaman, Espectrometría de masas y cálculos computacionales vibracionales al nivel B3LYP/6-31G+(d). El aducto de cicloadición de la amina 1a se obtuvo como una mezcla racémica del isómero exo con estructura cristalina monoclínica. Las moléculas se acomodan formando dímeros centro-simétricos enlazados por puentes de hidrógeno. El estudio computacional preeliminar al nivel B3LYP/6-31G+(d) de estructuras de transición propuestas para éste sistema, permitió identificar algunos factores que pueden determinar el mecanismo de reacción. Las dos rutas evaluadas presentan factores que pueden conducir a la selectividad exo del aducto. Las evidencias experimentales de RMN y FTIR requieren análisis complementarios para dar claridad respecto al intermediario detectado. La amida 1b obtenida por acetilación de la amina 1a, se obtuvo como una mezcla de isómeros E-Z y confórmeros que presenta diferenciación de ambientes en RMN. Su cicloadición DA produjo el isómero Z-exo del aducto, que presenta cicloreversibilidad en solución a temperatura ambiente, regenerando la mezcla isomérica E-Z. También, se reportó la síntesis de las sales orgánicas maleato y acetato de la amina 1a.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleEstudio teórico-experimental de la síntesis y propiedades físico-químicas de derivados de N-bencil-1-(2-furanil) Metanaminaspa
dc.typeTrabajo de grado - Maestríaspa
dcterms.bibliographicCitationJ. A. Joule and K. Mills, Heterocyclic Chemistry, 5th ed. John Wiley y Sons Ltd, 2010.spa
dcterms.bibliographicCitationK. C. Nicolaou, S. A. Snyder, T. Montagnon, and G. Vassilikogiannakis, “The Diels-Alder Reaction in Total Synthesis,” Angew. Chemie, vol. 41, pp. 1668–1698, 2002.spa
dcterms.bibliographicCitationA. Taticchi and F. Fringuelli, The Diels-Alder Reaction Selected practical methods, vol. 3. 2002.spa
dcterms.bibliographicCitationD. Prajapati, D. Borthakur, and J. Sandhu, “Intramolecular Diels-Alder Reaction with Furans: Effect of the Substitution Pattern Reinvestigated,” J. Chem. Soc., vol. 40, pp. 142–143, 1993.spa
dcterms.bibliographicCitationR. Murali, H. S. Surya Prakash Rao, and H. W. Scheeren, “Intra-molecular Diels-Alder reactions of citraconamic acids from furfurylamines and citraconic anhydride: Effects of substitution in the furan ring on regioselectivity,” Tetrahedron, vol. 57, no. 15, pp. 3165–3174, 2001.spa
dcterms.bibliographicCitationV. P. Zaytsev, N. M. Mikhailova, I. K. Airiyan, E. V Galkina, V. D. Golubev, E. V Nikitina, F. I. Zubkov, and A. V Varlamov, “Cycloaddition of Furfurilamines to Maleic Anhidride and its Substituted derivatives,” Chem. Heterocycl. Compd., vol. 48, no. 3, pp. 505–513, 2012.spa
dcterms.bibliographicCitationF. I. Zubkov, E. V Boltukhina, K. F. Turchin, S. Borisov, and A. V Varlamov, “New synthetic approach to substituted isoindolo [2,1-a] quinoline carboxylic acids via intramolecular Diels–Alder reaction of 4-(N-furyl-2)-4-arylaminobutenes-1 with maleic anhydride,” Tetrahedron, vol. 61, pp. 4099–4113, 2005spa
dcterms.bibliographicCitationA. V. Varlamov, E. V. Boltukhina, F. I. Zubkov, N. V. Sidorenko, A. I. Chernyshev, and D. G. Grudinin, “Preparative Synthesis of 7-Carboxy-2-R-isoindol-1-ones,” Chem. Heterocycl. Compd., vol. 40, no. 1, pp. 22–28, 2004.spa
dcterms.bibliographicCitationP. Sarang, A. Yadav, P. Patil, U. Krishna, G. Trivedi, and M. Salunkhe, “Synthesis of Advanced Intermediates of Lennoxamine Analogues,” Synthesis (Stuttg)., vol. 2007, no. 7, pp. 1091–1095, 2007.spa
dcterms.bibliographicCitationD. Lednicer, Organic Chemistry of Drug Synthesis. Volumen 7. New Jersey: John Wiley y Sons Ltd, 2008.spa
dcterms.bibliographicCitationK. Lewis, “Platforms for antibiotic discovery,” Nat. Rev. Drug Discov., vol. 12, no. 5, pp. 371–387, 2013.spa
dcterms.bibliographicCitationA. R. Katritzky, H. He, K. Suzuki, D. A. D. C. J. Am, and C. Soc, “N-Acylbenzotriazoles: Neutral Acylating Reagents for the Preparation of Primary , Secondary , and Tertiary Amides,” J. Org. Chem., vol. 65, no. 24, pp. 8210–8213, 2000spa
dcterms.bibliographicCitationS. Paul, P. Nanda, R. Gupta, and A. Loupy, “Zinc Mediated Friedel-Crafts Acylation in Solvent-Free Conditions under Microwave Irradiation,” Synthesis (Stuttg)., no. 18, pp. 2877–2881, 2003spa
dcterms.bibliographicCitationI. M. Alecu, J. Zheng, Y. Zhao, and D. G. Truhlar, “Computational thermochemistry: Scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries,” J. Chem. Theory Comput., vol. 6, no. 9, pp. 2872–2887, 2010spa
dcterms.bibliographicCitationM. Pretsch, Erno; Buhlmann, Philippe; Badertscher, Structure Determination of Organic Compounds, 4th ed. Springer, 2009spa
dcterms.bibliographicCitationT. Steiner, “The hydrogen bond in the solid state.,” Angew. Chem. Int. Ed., vol. 41, no. 1, pp. 49–76, 2002.spa
dcterms.bibliographicCitationG. M. Florio, T. S. Zwier, E. M. Myshakin, K. D. Jordan, E. L. Sibert, G. M. Florio, and T. S. Zwier, “Theoretical modeling of the OH stretch infrared spectrum of carboxylic acid dimers based on first-principles anharmonic couplings,” J. Chem. Phys., vol. 118, no. 4, pp. 1735–1746, 2003.spa
dcterms.bibliographicCitationW. E. Stewart and T. H. Siddall, “Nuclear magnetic resonance studies of amides,” Chem. Rev., vol. 70, no. 5, pp. 517–551, 1970.spa
dcterms.bibliographicCitationR. J. Abraham, L. Griffiths, and M. Perez, “1H NMR spectra. Part 30: 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group,” Magn. Reson. Chem., vol. 51, no. 3, pp. 143–155, 2013.spa
dcterms.bibliographicCitationJ. M. Fox, O. Dmitrenko, L. Liao, and R. D. Bach, “Computational Studies of Nucleophilic Substitution at Carbonyl Carbon : the SN2 Mechanism versus the Tetrahedral Intermediate in Organic Synthesis,” J. Org. Chem., vol. 69, no. 6, pp. 7317–7328, 2004.spa
dcterms.bibliographicCitationB. Maggio, D. Raffa, M. Valeria, M. Grazia, F. Plescia, S. Cascioferro, G. Cancemi, M. Lauricella, D. Carlisi, and G. Daidone, “Synthesis and antiproliferative activity of new derivatives containing the polycyclic system 5,7:7,13-dimethanopyrazolo[3,4-b]pyrazolo[30,40:2,3]azepino[4,5-f]azocine,” Eur. J. Med. Chem., vol. 72, pp. 1–9, 2014.spa
dcterms.bibliographicCitationS. De Cesco, S. Deslandes, E. Therrien, D. Levan, M. Cueto, R. Schmidt, L. D. Cantin, A. Mittermaier, L. Juillerat-Jeanneret, and N. Moitessier, “Virtual screening and computational optimization for the discovery of covalent prolyl oligopeptidase inhibitors with activity in human cells,” J. Med. Chem., vol. 55, no. 14, pp. 6306–6315, 2012spa
dcterms.bibliographicCitationM. E. Welsch, S. a Snyder, and B. R. Stockwell, “Privileged Scaffolds for Library Design and Drug Discovery,” NIH Public Access, vol. 14, no. 3, pp. 347–361, 2010.spa
dcterms.bibliographicCitationC. Reyes, F. Muñoz, G. Llanos, M. Nuñez, and I. Torrecillas, “Estructuras privilegiadas basadas en productos naturales, alternativa en la búsqueda de nuevos agentes quimioterapeuticos,” Biocancer, vol. 5, pp. 171–182, 2011.spa
dcterms.bibliographicCitationA. Messeguer, “Los Químicos Y El Descubrimiento De Fármacos,” The Spanish ion Channel Initiative, Barcelona, 2010.spa
dcterms.bibliographicCitationF. Peláez, “Paradigmas actuales en las etapas tempranas del proceso de descubrimiento y desarrollo de nuevos fármacos,” An. Quím., vol. 107, no. 1, pp. 36–45, 2011.spa
dcterms.bibliographicCitationK. C. Nicolaou, D. Vourloumis, N. Winssinger, and P. S. Baran, “The Art and Science of Total Synthesis,” Angew. Chemie, vol. 39, pp. 44–122, 2000.spa
dcterms.bibliographicCitationP. Cabildo, P. Cornago, C. León, E. Santos, A. Farfan, M. Perez, and D. Sanz, Procesos orgánicos de bajo impacto ambiental . Química verde, 1st ed. Madrid: Libreria UNED, 2006spa
dcterms.bibliographicCitationE. US EPA, OCSPP,OPPT, “Basics of Green Chemistry,” 2016. [Online]. Available: http://www2.epa.gov/green-chemistry/basics-green-chemistry#bookmarksspa
dcterms.bibliographicCitationD. Claeys, “Combination of Experimental and Computational Chemistry in the Synthesis of New Azaheterocycles,” 2009.spa
dcterms.bibliographicCitationE. G. Lewars, Computational Chemistry. Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2nd ed. Ontario: Springer, 2011.spa
dcterms.bibliographicCitationJ. Foresman and Ae. Frisch, Exploring Chemistry With Electronic Structure Methods, 2nd ed. Gaussian Inc, 1998.spa
dcterms.bibliographicCitationM. I. Flores, “Estudio de la reaccion de Diels-Alder por etapas y multicomponentes promovidas por radiacion infrarroja,” Instituto Politecnico Nacional de Mexico, 2008spa
dcterms.bibliographicCitationP. Sykes, Mecanismos De Reacción En Química Orgánica, 6th ed. Barcelona: Reverté, 1985.spa
dcterms.bibliographicCitationD. Yepes, O. Donoso-tauda, P. Pe, P. Politzer, and P. Jaque, “The reaction force constant as an indicator of synchronicity/nonsynchronicity in [4+2] cycloaddition processes,” Phys. Chem. Chem. Phys., vol. 15, pp. 7311–7320, 2013.spa
dcterms.bibliographicCitationL. R. Domingo, “Why Diels-Alder Reactions Are Non-Concerted Processes,” J. Chile Chem. Soc., vol. 59, no. 3, pp. 2615–2618, 2014.spa
dcterms.bibliographicCitationJ. S. Murray, D. Yepes, P. Jaque, and P. Politzer, “Insights into some Diels–Alder cycloadditions via the electrostatic potential and the reaction force constant,” Comput. Theor. Chem., vol. 1053, pp. 270–280, 2015.spa
dcterms.bibliographicCitationL. R. Domingo, “State of the Art of the Bonding Changes along the Diels-Alder Reaction between Butadiene and Ethylene: Refuting the Pericyclic Mechanism,” Org. Chem. Curr. Res., vol. 2, no. 3, 2013.spa
dcterms.bibliographicCitationD. Yepes, J. S. Murray, P. Pérez, L. R. Domingo, P. Politzer, and P. Jaque, “Complementarity of reaction force and electron localization function analyses of asynchronicity in bond formation in Diels–Alder reactions,” Phys. Chem. Chem. Phys., vol. 16, pp. 6726–6734, 2014spa
dcterms.bibliographicCitationT. A. Eggelte, H. de Koning, and H. O. Huisman, “Diels-Alder reaction of furan with some dienophiles,” Tetrahedron, vol. 29, no. 16, pp. 2491–2493, 1973.spa
dcterms.bibliographicCitationJ. D. Corredor, “Revisión: Cicloadición Diels Alder de furano en agua,” Investig. Joven, vol. 4, no. 1, pp. 23–28, 2017spa
dcterms.bibliographicCitationW. C. Lee, Martin W; Herndon, “Stereochemistry of the Furan-Maleic Anhydride Cycloaddition,” J. Org. Chem. Notes, vol. 43, no. 3, p. 518, 1978.spa
dcterms.bibliographicCitationC. García-Astrain, A. Gandini, D. Coelho, I. Mondragon, A. Retegi, A. Eceiza, M. A. Corcuera, and N. Gabilondo, “Green chemistry for the synthesis of methacrylate-based hydrogels crosslinked through Diels-Alder reaction,” Eur. Polym. J., vol. 49, no. 12, pp. 3998–4007, 2013spa
dcterms.bibliographicCitationA. Sanyal, “Diels-alder cycloaddition-cycloreversion: A powerful combo in materials design,” Macromol. Chem. Phys., vol. 211, no. 13, pp. 1417–1425, 2010.spa
dcterms.bibliographicCitationM. A. Tasdelen, “Diels–Alder ‘click’ reactions: recent applications in polymer and material science,” Polym. Chem., vol. 2, no. 10, p. 2133, 2011spa
dcterms.bibliographicCitationA. Gandini, “The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis,” Prog. Polym. Sci., vol. 38, no. 1, pp. 1–29, 2013.spa
dcterms.bibliographicCitationR. Conyers, J. Mazzone, M. Siegler, and G. Posner, “Regiocontrolled and stereocontrolled syntheses of polysubstituted aminocyclohexanes: mild inverse-electron-demand Diels–Alder cycloadditions,” Tetrahedron Lett., 2016.spa
dcterms.bibliographicCitationL. Brulíková, A. Harrison, and M. Miller, “Stereo and regioselectivity of the hetero-Diels–Alder reaction of nitroso derivatives with conjugated dienes,” Beilstein J. Chem., 2016spa
dcterms.bibliographicCitationC. Chapuis, D. Skuy, and J. de Saint Laumer, “Endo/exo Stereoselectivity in Diels Alder Reactions of α, β Dialkylated Conjugated Enals to Cyclic 1, 3 Dienes: Intermediates in the Synthesis of (−)β Santalol,” Chemistry (Easton)., 2014.spa
dcterms.bibliographicCitationJ. Hooper, N. James, and E. Bozkurt, “Medium-Ring Effects on the Endo/Exo Selectivity of the Organocatalytic Intramolecular Diels–Alder Reaction,” J. Org. Chem., 2015.spa
dcterms.bibliographicCitationM. Davis and J. Pacheco, “Diels-Alder reactions catalyzed by Lewis acid containing solids: renewable production of bio-plastics,” US Pat. 9108979, 2015spa
dcterms.bibliographicCitationJ. Ishihara, S. Nakadachi, and Y. Watanabe, “Lewis Acid Template-Catalyzed Asymmetric Diels–Alder Reaction,” J. Org. Chem., 2015spa
dcterms.bibliographicCitationT. Gatzenmeier, M. van Gemmeren, and Y. Xie, “Asymmetric Lewis acid organocatalysis of the Diels–Alder reaction by a silylated C–H acid,” J. Org. Chem., 2016.spa
dcterms.bibliographicCitationJ. Bah and J. Franzén, “Carbocations as Lewis Acid Catalysts in Diels–Alder and Michael Addition Reactions,” Eur. J. Chem., 2014.spa
dcterms.bibliographicCitationL. He, G. Laurent, P. Retailleau, and B. Folléas, “Highly Enantioselective Aza‐Diels–Alder Reaction of 1‐Azadienes with Enecarbamates Catalyzed by Chiral Phosphoric Acids,” Angew. Chemie, 2013.spa
dcterms.bibliographicCitationM. Lalonde and M. McGowan, “Enantioselective Formal Aza-Diels–Alder Reactions of Enones with Cyclic Imines Catalyzed by Primary Aminothioureas,” J., 2013spa
dcterms.bibliographicCitationX. Jiang and R. Wang, “Recent developments in catalytic asymmetric inverse-electron-demand Diels–Alder reaction,” Chem. Rev., 2013.spa
dcterms.bibliographicCitationK. Speck and T. Magauer, “The chemistry of isoindole natural products,” Beilstein J. Org. Chem., vol. 9, pp. 2048–2078, 2013.spa
dcterms.bibliographicCitationY. Zhou, P. Chen, X. Lv, J. Niu, Y. Wang, M. Lei, and L. Hu, “A facile and efficient method for the synthesis of N-substituted isoindolin-1-one derivatives under Pd(OAc)2/HCOOH system,” Tetrahedron Lett., vol. 58, no. 23, pp. 2232–2235, 2017.spa
dcterms.bibliographicCitationY. Tian, J. Wei, M. Wang, G. Li, and F. Xu, “Hantzsch ester triggered metal-free cascade approach to isoindolinones,” Tetrahedron Lett., vol. 59, no. 19, pp. 1866–1870, 2018.spa
dcterms.bibliographicCitationY. Jiang, K. Xu, and C. Zeng, “Use of Electrochemistry in the Synthesis of Heterocyclic Structures,” Chem. Rev., vol. 118, pp. 4485–4540, 2017.spa
dcterms.bibliographicCitationP. Wu, A. Michael, R. Guilleux, M. Ohsten, and T. E. Nielsen, “Tandem Mannich/Diels–Alder reactions for the synthesis of indole compound libraries,” RCS Adv., vol. 6, pp. 46654–46657, 2016spa
dcterms.bibliographicCitationM. H. El-Wakil, H. M. Ashour, M. N. Saudi, A. M. Hassan, and I. M. Labouta, “Design, synthesis and molecular modeling studies of new series of antitumor 1,2,4-triazines with potential c-Met kinase inhibitory activity,” Bioorg. Chem., vol. 76, pp. 154–165, 2018spa
dcterms.bibliographicCitationR. Dua, S. Shrivastava, S. L. Shrivastava, and S. K. Srivastava, “Green Chemistry and Environmentally Friendly Technologies: A Review,” Middle-East J. Sci. Res., vol. 11, no. 7, pp. 846–855, 2012.spa
dcterms.bibliographicCitationA. Miranda, Rene; Penieres, Jose; Obaya, Quimica Verde Experimental, Primera Ed. Ciudad de Mexico, 2013spa
dcterms.bibliographicCitationM. L. M. Galicia, J. O. Martínez, L. B. Reyes-sánchez, O. Martín, G. A. A. Razo, A. Obaya, and R. Miranda, “¿Qué tan verde es un experimento?,” Educ. Quim., vol. 22, no. 3, pp. 240–248, 2011.spa
dcterms.bibliographicCitationF. Carey and R. Sundberg, Advanced Organic Chemistry. Reactions and Synthesis, 5th ed. Springer, 2007.spa
dcterms.bibliographicCitationB. T. Cho and S. K. Kang, “Direct and indirect reductive amination of aldehydes and ketones with solid acid-activated sodium borohydride under solvent-free conditions,” Tetrahedron, vol. 61, pp. 5725–5734, 2005.spa
dcterms.bibliographicCitationM. B. Smith, “Preparation of Amines,” in Compendium of Organic Synthetic Method, vol. 9, pp. 117–139, 2014.spa
dcterms.bibliographicCitationY. Bekdemir and K. Efil, “Microwave Assisted Solvent-Free Synthesis of Some Imine Derivatives,” Org. Chem. Int., pp. 1–5, 2014.spa
dcterms.bibliographicCitationK. Nagaiah, V. N. Kumar, R. S. Rao, and B. V. S. Reddy, “Efficient Protocol for Reductive Amination of Aldehydes and Ketones with Sodium Borohydride in an Ionic Liquid/H2O System,” Synth. Comun. An Int. J. rapid Comun. Synth. Org. Chem., vol. 36, no. 22, pp. 3345–3352, 2006spa
dcterms.bibliographicCitationZ. Hu, N. Ma, J. Zhang, W. Hu, and H. Wang, “Paladium meditated C Phenyl–H bond activation of 2-furylimines versus tert-2-furylbenzylamines,” Polyhedron, 2014spa
dcterms.bibliographicCitationF. A. Carey, Organic Chemistry, 4th ed. McGraw-Hill, 2000.spa
dcterms.bibliographicCitationH. Lundberg, F. Tinnis, N. Selander, and H. Adolfsson, “Catalitic amide formation from non-activated carboxylic acids and amines,” Chem. Soc. Rev., vol. 43, pp. 2714–2742, 2014.spa
dcterms.bibliographicCitationG. Brahmachari, S. Laskar, and S. Sarkar, “A green approach to chemoselective N-acetylation of amines using catalytic amount of zinc acetate in acetic acid under microwave irradiation,” Indian J. Chem., vol. 49, no. B, pp. 1274–1281, 2010.spa
dcterms.bibliographicCitationG. Brahmachari and S. Laskar, “A very simple and highly efficient procedure for N-formylation of primary and secondary amines at room temperature under solvent-free conditions,” Tetrahedron Lett., vol. 51, no. 17, pp. 2319–2322, 2010.spa
dcterms.bibliographicCitationG. Brahmachari, S. Laskar, and S. Sarkar, “Metal acetate/metal oxide in acetic acid: an efficient reagent for the chemoselective N-acetylation of amines under green conditions,” J. Chem. Res., pp. 288–295, 2010.spa
dcterms.bibliographicCitationM. Hosseini-Sarvari and H. Sharghi, “ZnO as a New Catalyst for N-Formylation of Amines under Solvent-Free Conditions ZnO under solvent-free conditions,” J. Org. Chem. Note, vol. 71, no. 17, pp. 6652–6654, 2006.spa
dcterms.bibliographicCitationM. Hosseini-sarvari, “Greener Solvent-Free Reactions on ZnO,” in Green Chemistry-Environmentally Benign Approaches, vol. 1, pp. 103–120, 2012.spa
dcterms.bibliographicCitationM. Hosseini Sarvari and H. Sharghi, “Zinc oxide (ZnO) as a new, highly efficient, and reusable catalyst for acylation of alcohols, phenols and amines under solvent free conditions,” Tetrahedron, vol. 61, no. 46, pp. 10903–10907, 2005.spa
dcterms.bibliographicCitationS. Narayan, J. Muldoon, M. G. Finn, V. V Fokin, H. C. Kolb, and K. B. Sharpless, “‘On Water’: Unique Reactivity of Organic Compounds in Aqueous Suspension,” Angew. Chemie, vol. 44, pp. 3275–3279, 2005.spa
dcterms.bibliographicCitationA. Chanda and V. V Fokin, “Organic Synthesis ‘On Water,’” Chem. Rev., vol. 109, pp. 725–748, 2009.spa
dcterms.bibliographicCitationC. Li, “Organic Reactions in Aqueous Media with a Focus on Carbon−Carbon Bond Formations: A Decade Update,” Chem. Rev., vol. 105, pp. 3095–3165, 2005.spa
dcterms.bibliographicCitationS. Higson, F. Subrizi, T. D. Sheppard, and H. C. Hailes, “Chemical cascades in water for the synthesis of functionalized aromatics from furfurals,” Green Chem., vol. 18, no. 7, pp. 1855–1858, 2016.spa
dcterms.bibliographicCitationA. Meijer, S. Otto, and J. B. F. N. Engberts, “Effects of the Hydrophobicity of the Reactants on Diels-Alder Reactions in Water,” J. Org. Chem., vol. 63, no. 24, pp. 8989–8994, 1998.spa
dcterms.bibliographicCitationS. Otto and J. B. F. N. Engberts, “Diels–Alder reactions in water,” Pure Appl. Chem., vol. 72, no. 7, pp. 1365–1372, 2000.spa
dcterms.bibliographicCitationM. V. Gil, V. Luque-Agudo, E. Roman, and J. A. Serrano, “ChemInform Abstract: Expeditious ′On-Water′ Cycloaddition Between N-Substituted Maleimides and Furans.,” Synlett, vol. 25, no. 11, pp. 2179–2183, 2014.spa
dcterms.bibliographicCitationJ. Soto-delgado, A. Aizman, R. Contreras, and L. R. Domingo, “On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study,” Molecules, vol. 17, pp. 13687–13703, 2012.spa
dcterms.bibliographicCitationJ. Chandrasekhar, S. Shariffskul, and W. L. Jorgensen, “QM/MM Simulations for Diels-Alder Reactions in Water: Contribution of Enhanced Hydrogen Bonding at the Transition State to the Solvent Effect,” J. Phys. Chem. B, vol. 106, no. 33, pp. 8078–8085, 2002.spa
dcterms.bibliographicCitationA. Gómez, Implementación de Cálculos computacionales en la enseñanza de las propiedades periódicas de los elementos, las moléculas y el enlace químico. Tunja: Universidad Pedagógica y Tecnológica de Colombia, 2013.spa
dcterms.bibliographicCitationJ. W. Ochterski, “Thermochemistry in Gaussian,” Gaussian, vol. 1, p. 19, 2000.spa
dcterms.bibliographicCitationS. Maeda, Y. Harabuchi, Y. Ono, T. Taketsugu, and K. Morokuma, “Intrinsic reaction coordinate: Calculation, bifurcation, and automated search,” Int. J. Quantum Chem., vol. 115, no. 5, pp. 258–269, 2015.spa
dcterms.bibliographicCitationA. M. Sarotti, R. A. Spanevello, and A. G. Suárez, “Assessing the halogen effect in Diels-Alder reactions involving chiral α-halo enones. A combined experimental and DFT computational approach,” Tetrahedron Lett., vol. 52, no. 32, pp. 4145–4148, 2011.spa
dcterms.bibliographicCitationB. S. Jursic, “Suitability of furan, pyrrole and thiophene as dienes for Diels–Alder reactions viewed through their stability and reaction barriers for reactions with acetylene, ethylene and cyclopropene. An AM1 semiempirical and B3LYP hybrid density functional theory s,” J. Mol. Struct. Theochem, vol. 454, no. 2–3, pp. 105–116, 1998.spa
dcterms.bibliographicCitationS. Bouacha, A. K. Nacereddine, and A. Djerourou, “A theoretical study of the mechanism, stereoselectivity and Lewis acid catalyst on the Diels-Alder cycloaddition between furan and activated alkenes,” Tetrahedron Lett., vol. 54, no. 31, pp. 4030–4033, 2013.spa
dcterms.bibliographicCitationR. S. Paton, S. Kim, A. G. Ross, S. J. Danishefsky, and K. N. Houk, “Experimental Diels-Alder reactivities of cycloalkenones and cyclic dienes explained through transition-state distortion energies,” Angew. Chemie - Int. Ed., vol. 50, no. 44, pp. 10366–10368, 2011.spa
dcterms.bibliographicCitationX. S. Xue, B. J. Levandowski, C. Q. He, and K. N. Houk, “Origins of Selectivities in the Stork Diels-Alder Cycloaddition for the Synthesis of (±)-4-Methylenegermine,” Org. Lett., vol. 20, pp. 6108–6111, 2018.spa
dcterms.bibliographicCitationK. Ramírez-Gualito, N. López-Mora, H. A. Jiménez-Vázquez, J. Tamariz, and G. Cuevas, “The role of supramolecular intermediates in the potential energy surface of the Diels-Alder reaction,” J. Mex. Chem. Soc., vol. 57, no. 4, pp. 267–275, 2013.spa
dcterms.bibliographicCitationL. J. Smith, S. M. Taimoory, R. Y. Tam, A. E. G. Baker, N. Binth Mohammad, J. F. Trant, and M. S. Shoichet, “Diels-Alder Click-Cross-Linked Hydrogels with Increased Reactivity Enable 3D Cell Encapsulation,” Biomacromolecules, vol. 19, no. 3, pp. 926–935, 2018spa
dcterms.bibliographicCitationD. D. Claeys, K. Moonen, B. I. Roman, V. N. Nemykin, V. V Zhdankin, M. Waroquier, V. Van Speybroeck, and C. V Stevens, “Synthesis of Tricyclic Phosphonopyrrolidines via IMDAF: Stereoselectivity,” no. d, pp. 7921–7927, 2008.spa
dcterms.bibliographicCitationG. M. Sheldrick, “SHELXS.” Acta Cryst., p. A64, 112–122., 2008.spa
dcterms.bibliographicCitationK. Dr. H. Putz & Dr. K. Brandenburg GbR, “Diamond-Crystal and Molecular Structure Visualization Crystal Impact.” Germany, p. 102, 53227 Bonnspa
dcterms.bibliographicCitationS. Ouarna, H. K’tir, S. Lakrout, H. Ghorab, A. Amira, Z. Aouf, M. Berredjem, and N. E. Aouf, “An eco-friendly and highly efficient route for N-acylation under catalyst-free conditions,” Orient. J. Chem., vol. 31, no. 2, pp. 913–919, 2015.spa
dcterms.bibliographicCitationD. J. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenb, “Gaussian 03.” Gaussian, Inc., Wallingford CT, 2009.spa
dcterms.bibliographicCitationC. F. Lo, K. Karan, and B. R. Davis, “Kinetic Studies of Reaction between Sodium Borohydride and Methanol, Water, and Their Mixtures,” Ind. Eng. Chem., vol. 46, no. 17, pp. 5478–5484, 2007.spa
dcterms.bibliographicCitationM. (Mike) Lancaster and Royal Society of Chemistry (Great Britain), Green chemistry : an introductory text. Royal Society of Chemistry, 2010.spa
dcterms.bibliographicCitationNormang. Gaylor, “Reduction with Complex Metal Hydrides,” ACS B. Rev., p. 5135, 1956.spa
dcterms.bibliographicCitationB. Culbertson, B.; Trivedi, Maleic Anhidryde. New York, 1981.spa
dcterms.bibliographicCitationJ. Koskikallio, “Kinetics of the hydrolisis and formation of dimethylmaleic anhidride in solvent mixtures,” Acta Chem. Scand., vol. 10, pp. 822–830, 1956.spa
dc.description.notesBibliografía y webgrafía: páginas 93-99.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.thesis.disciplineFacultad de Ciencias, Escuela de Posgrados. Maestría en Químicaspa
dc.thesis.levelMaestríaspa
dc.thesis.nameMagister en Químicaspa
dc.type.dcmi-type-vocabularyTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.contributor.roleGómez Castaño, Jovanny Arlés (Director de tesis)spa
dc.description.abstractenglishTheoretical and experimental study of the reaction system and DA cycloaddition products of N-benzyl-1-(furan-2-yl)methanamine (1a), and N-benzyl-N-(furan-2-ylmethyl)acetamide (1b) was developed using maleic anhydride (AnM) as dienophile. Organic synthesis was carried out by adjusting the experimental methodologies within the framework of green chemistry. Spectroscopic characterization of all the molecules was completed through one and two-dimensional NMR, FTIR, FTRaman, Mass Spectrometry and computational vibrational calculations at the B3LYP/6-31G+(d) level. Cycloaddition adduct of amine 1a was obtained as a racemic mixture of exo isomer with monoclinic crystalline structure. The molecules are arranged forming central-symmetric dimers linked by hydrogen bonds. Preliminary computational study at the level B3LYP/6-31G+(d) of transition structures proposed for this system, allowed to identify some factors that can determine the mechanism of reaction. The two evaluated routes present factors can lead exo selectivity of the adduct. Experimental evidence of NMR and FTIR require complementary analyzes to give clarity regarding the intermediary detected. Amide 1b obtained by acetylation of amine 1a, was obtained as a mixture of E-Z isomers and conformers that presents differentiation of shields in NMR. Its cycloaddition produced the Z-exo isomer of the adduct, which presents cycloreversibility in solution at room temperature, regenerating the E-Z isomeric mixture. Also, the synthesis of the organic salts maleate and acetate of amine 1a was reported.spa
dc.rights.creativecommonsAtribución-NoComercialspa
dc.subject.armarcReacción de Diels-Alder-
dc.subject.armarcSíntesis orgánica-
dc.subject.armarcCicloadición-
dc.subject.armarcMaestría en Química - Tesis y disertaciones académicas-
Appears in Collections:AHG. Trabajos de Grado y Tesis

Files in This Item:
File Description SizeFormat 
TGT-1191.pdfArchivo principal8.45 MBAdobe PDFThumbnail
View/Open
A_JDCM.pdf
  Restricted Access
Autorización publicación704.25 kBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons