Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2581
Title: Síntesis de un biofloculante sustituto de mucilagos naturales en el proceso de producción de panela
Authors: Rincón Fuentes, Liliana Marcela
metadata.dc.contributor.role: Moreno, Lucia Marlen (Directora de tesis)
Medina Vargas, Oscar Julio (Director de tesis)
Keywords: Jugo de caña
Mucilagos
Panela - Control de Calidad
Clarificación
Maestría en Química - Tesis y disertaciones académicas
Issue Date: 2018
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Rincón Fuentes, L. M. (2018). Síntesis de un biofloculante sustituto de mucilagos naturales en el proceso de producción de panela. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2581
Abstract: La panela es producida en 30 países, Colombia es el segundo país productor de panela después de la india. En el proceso de producción de panela se genera biomasa residual en la molienda para la extracción de los jugos de caña de azúcar, que generan problemas a los productores quienes lo utilizan como combustible para el calentamiento de las hornillas en el proceso de producción, generando gases tóxicos (CO2). El bagazo en su pared celular contiene celulosa, uno de los polímeros más abundantes de la naturaleza, ofreciendo alternativas en las industrias de alimentos y conservación del medio ambiente. Otro inconveniente para los productores de panela es en el proceso de clarificación, se utilizan mucílagos vegetales propios de cada región como el balso, guácimo y caldillo los cuales se ha visto afectado en por su uso indiscriminado lo que ha llevado a subir su costo y utilizar floculantes alternativos. Se plantea una un floculante catiónico a partir de biomasa residual de bagazo de caña de azúcar, realizando una extracción de celulosa de la biomasa y realizando una modificación química selectiva de la celulosa dialdehído catiónica (CDAC), y comparando la floculación del floculante catiónico con el balso traído del trapiche Buena Vista en el municipio de Santana Boyacá. Se caracterizó la celulosa y CDAC por técnicas como Espectroscopia infrarroja con transformada de Fourier (FT-IR), Raman, Difracción de rayos-X (DRX), se realizó un estudio a las propiedades térmicas por termogravimetría (TGA) y calorimetría diferencial de barrido (DSC) corroborando la extracción exitosa de celulosa con un rendimiento del 50% y la modificación a CDAC, la capacidad clarificante del floculante catiónico es eficiente comparado con el balso nativo de la región de Boyacá.
Description: 1 recurso en línea (55 páginas): ilustraciones color, figuras, tablas.
metadata.dcterms.bibliographicCitation: G. O. CADAVID, Buenas practicas agricolas -BPA- y buenas practicas de manufactura -BPM- en la produccion de caña y panela. 2007.
R. de Colombia, I. N. de Salud, and U. de E. de R. para la I. de los A.- UERIA, “Concepto cientifico poliacrilamida en panela,” 2011.
G. R. Borray, “La Agroindustria Rural De La Panela En Colombia Roles, Problemática Y Nuevos Retos.”
Z. Yang et al., “Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan- graft -polyacrylamide ଝ,” vol. 255, pp. 36–45, 2013.
B. E. E.-F. y M. E. S.- Morales, “Acrilamida en alimentos: sus causas y consecuencias.” p. 13, 2010.
Y. Zhang, J. Jiao, Y. Ren, X. Wu, and Y. Zhang, “Determination of acrylamide in infant cereal-based foods by isotope dilution liquid chromatography coupled with electrospray ionization tandem mass spectrometry,” Anal. Chim. Acta, vol. 551, no. 1, pp. 150–158, 2005.
M. Friedman, “Chemistry, biochemistry, and safety of acrylamide. A review,” Journal of Agricultural and Food Chemistry. 2003.
M. Sanny, S. Jinap, E. J. Bakker, M. A. J. S. van Boekel, and P. A. Luning, “Is lowering reducing sugars concentration in French fries an effective measure to reduce acrylamide concentration in food service establishments?,” Food Chem., vol. 135, no. 3, pp. 2012–2020, 2012.
J. J. V. LASSO, “Determinación y cuantificación por hplc de la acrilamida generada en la producción de panela, su cinética de formación y posible inhibición,” 2014.
V. A. Chavez1, “Problemática del contenido de acrilamida y proceso de empaque de la panela en Boyacá.”
W. H. Organization and i. a. f. r. o. cancer, “international agency for research on cancer iarc monographs on the evaluation of carcinogenic risks to humans,” 1999
Gema Arribas Lorenzo, “Universidad complutense de madrid,” 2013.
D. A. Vattem and K. Shetty, “Acrylamide in food : a model for mechanism of formation and its reduction,” vol. 4, no. 3, pp. 331–338, 2003.
K. Evelin and B. Arteaga, “Biología reproductiva del balso blanco ( Heliocarpus americanus L .),” vol. 18, no. 2, pp. 28–44, 2014.
C. Vásquez, A. M. Gutiérrez, and Álvarez, “Propagación Por Estacas Juveniles Del Balso,” Rev. Fac. Nac. Agron., vol. 59, no. 2, pp. 3479–3498, 2006.
S. Wang, A. Lu, and L. Zhang, “Recent advances in regenerated cellulose materials,” Prog. Polym. Sci., vol. 53, pp. 169–206, 2016.
O. Nechyporchuk, M. N. Belgacem, and J. Bras, “Production of cellulose nanofibrils: A review of recent advances,” Ind. Crops Prod., 2016.
E. H. C. RUEDA, “Obtención y caracterización de nanofibras de celulosa a partir de desechos agroindustriales,” 2009.
R. A. Festucci-buselli, W. C. Otoni, and C. P. Joshi, “Structure , organization , and functions of cellulose synthase complexes in higher plants,” vol. 19, no. 1, pp. 1 –13, 2007.
M. Poletto, V. Pistor, and A. J. Zattera, “Structural Characteristics and Thermal Properties of Native Cellulose,” 2013.
P. D. Klemm and P. H. Schmauder, “275 10,” pp. 275–287.
M. G. Northolt, H. Boerstoel, H. Maatman, R. Huisman, J. Veurink, and H. Elzerman, “Rn-7732-18-5,” vol. 42, 2001.
W. Pires and F. Neto, “Etude morphologique des nanocristaux de cellulose et application nanocomposites,” no. January, 2017.
C. V. Raman, “A new radiation,” Proc. Indian Acad. Sci. - Sect. A, vol. 37, no. 3, pp. 333–341, 1953.
M. Granström, “Cellulose Derivatives : Synthesis , Properties and Applications,” no. May. p. 120, 2009.
E. C. Lengowski, G. Ines, and B. De Muniz, “Avaliação de métodos de obtenção de celulose com diferentes graus de cristalinidade Cellulose acquirement evaluation methods with different degrees of crystallinity,” pp. 185–194, 2013.
F. A. T. J. J. Vargas Lassoa,* Pérezb, Y. V. Talero, Suárezc and L. R. C. Caballerod, “Determinación de acrilamida en el procesamiento de la panela por cromatografía líquida,” vol. 5, no. 2, pp. 99–105, 2014.
F. I. F. D. FROM, A. U. F. C. D. WATER, and J. A. S. SYRUPS, “Industrias alimentarias. floculantes derivados de la acrilamida utilizados en la clarificación del agua potable y de los jugos y jarabes de la caña de azúcar,” 1994.
F. Home, 3 Medical Devices, 4 Databases, and 5, “CFR - Code of Federal Regulations Title 21 The information on this page is current as of April 1 2017 .,” pp. 7–8, 2017.
C. Organismos et al., “COMISIÓN DEL CODEX ALIMENTARIUS,” pp. 1–5, 2015.
L. Fao, “Mejorando la producción de panela en Colombia,” vol. 1, pp. 1–6, 2017.
S. M. de la Rosa, “Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos,” 2015.
S. M. L. Ticiane Taflick, Luana A. Schwendler and S. M. B. N. Rosa, Clara I.D. Bica, “Cellulose nanocrystals from acacia bark–Influence of solvent extraction,” Int. J. Biol. Macromol., 2017.
V. P. C. Morán, J Analía Vazquez, “Extracción de celulosa y obtención de nanocelulosa a partir de fibra sisal - caracterización,” no. 1, pp. 16–17, 2008.
Z. Khatri, G. Mayakrishnan, Y. Hirata, K. Wei, and I. Kim, “Cationic-cellulose nanofibers : Preparation and dyeability with anionic reactive dyes for apparel application,” Carbohydr. Polym., vol. 91, no. 1, pp. 434–443, 2013.
J. Sirviö, A. Honka, H. Liimatainen, J. Niinimäki, and O. Hormi, “Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent,” vol. 86, pp. 266–270, 2011.
H. Tibolla, F. M. Pelissari, and F. C. Menegalli, “Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment,” LWT - Food Sci. Technol., vol. 59, no. 2, pp. 1311–1318, 2014.
J. Sirvio, U. Hyvakko, H. Liimatainen, J. Niinimaki, and O. Hormi, “Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators,” Carbohydr. Polym., vol. 83, no. 3, pp. 1293–1297, 2011.
A. Tejado, M. N. Alam, M. Antal, H. Yang, and T. G. M. van de Ven, “Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers,” Cellulose, vol. 19, no. 3, pp. 831–842, 2012.
R. G. P. Viera, G. R. Filho, R. M. N. de Assunção, C. da Carla, J. G. Vieira, and G. S. de Oliveira, “Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose,” Carbohydr. Polym., vol. 67, no. 2, pp. 182–189, 2007.
D. Ciolacu, F. Ciolacu, and V. I. Popa, “AMORPHOUS CELLULOSE – STRUCTURE AND CHARACTERIZATION,” vol. 45, pp. 13–21, 2011.
A. Moubarik, N. Grimi, and N. Boussetta, “Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene,” Compos. Part B Eng., vol. 52, pp. 233–238, 2013.
W. Wang, T. Liang, H. Bai, W. Dong, and X. Liu, “All cellulose composites based on cellulose diacetate and nanofibrillated cellulose prepared by alkali treatment,” Carbohydr. Polym., vol. 179, no. September 2017, pp. 297–304, 2018.
N. Tyagi and S. Suresh, “Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization,” J. Clean. Prod., vol. 112, pp. 71–80, 2016.
F. Prieto-García, E. Jiménez-Muñoz, O. A. Acevedo-Sandoval, R. Rodríguez- Laguna, R. A. Canales-Flores, and J. Prieto-Méndez, “Obtaining and Optimization of Cellulose Pulp from Leaves of Agave tequilana Weber Var. Blue. Preparation of Handmade Craft Paper,” Waste and Biomass Valorization, vol. 0, no. 0, pp. 1–17, 2018.
H. Yang, D. Chen, and T. G. M. van de Ven, “Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers,” Cellulose, vol. 22, no. 3, pp. 1743–1752, 2015.
L. Du, J. Wang, Y. Zhang, C. Qi, M. P. Wolcott, and Z. Yu, “A co-production of sugars , lignosulfonates , cellulose , and cellulose nanocrystals from ball-milled woods,” Bioresour. Technol., vol. 238, pp. 254–262, 2017.
H. Tibolla, F. M. Pelissari, and F. C. Menegalli, “Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment,” LWT - Food Sci. Technol., vol. 59, no. 2, pp. 1311–1318, 2014.
Y. Matsuzawa, M. Ayabe, J. Nishino, N. Kubota, and M. Motegi, “Evaluation of char fuel ratio in municipal pyrolysis waste,” in Fuel, 2004, vol. 83, no. 11–12, pp. 1675–1687.
A. L. Torres, M. B. Roncero, J. F. Colom, F. I. J. Pastor, A. Blanco, and T. Vidal, “Effect of a novel enzyme on fibre morphology during ECF bleaching of oxygen delignified Eucalyptus kraft pulps,” Bioresour. Technol., vol. 74, no. 2, pp. 135–140, 2000.
O. Nechyporchuk, M. N. Belgacem, and J. Bras, “Production of cellulose nanofibrils : A review of recent advances,” vol. 93, pp. 2–25, 2016.
M. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, “Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose,” Vib. Spectrosc., vol. 36, no. 1, pp. 23–40, 2004.
S. Coseri et al., “Erratum: One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate (RSC Adv. (2015) 5 (85889- 85897)),” RSC Advances, vol. 5, no. 117. p. 96927, 2015.
H. Kono, “Cationic flocculants derived from native cellulose : Preparation , biodegradability , and removal of dyes in aqueous solution,” Resour. Technol., vol. 3, no. 1, pp. 55–63, 2017.
M. Szymańska-Chargot, J. Cybulska, and A. Zdunek, “Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR Spectroscopy,” Sensors, vol. 11, no. 6, pp. 5543–5560, 2011.
J. H. Wiley and R. H. Atalla, “Band assignments in the raman spectra of celluloses,” Carbohydr. Res., vol. 160, no. C, pp. 113–129, 1987.
K. Kavkler and A. Demšar, “Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 78, no. 2, pp. 740–746, 2011.
L. M. Proniewicz, C. Paluszkiewicz, A. Wesełucha-Birczyńska, H. Majcherczyk, A. Barański, and A. Konieczna, “FT-IR and FT-Raman study of hydrothermally degradated cellulose,” in Journal of Molecular Structure, 2001, vol. 596, no. 1–3, pp. 163–169.
K. Schenzel, H. Almlöf, and U. Germgård, “Quantitative analysis of the transformation process of cellulose I → cellulose II using NIR FT Raman spectroscopy and chemometric methods,” Cellulose, vol. 16, no. 3, pp. 407–415, 2009.
R. G. P. Viera, G. R. Filho, R. M. N. de Assunção, C. da Carla, J. G. Vieira, and G. S. de Oliveira, “Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose,” Carbohydr. Polym., 2007.
A. Kaboorani and B. Riedl, “Surface modification of cellulose nanocrystals ( CNC ) by a cationic surfactant,” Ind. Crop. Prod., vol. 65, pp. 45–55, 2015.
D. M. Panaitescu, A. N. Frone, and I. Chiulan, “Nanostructured biocomposites from aliphatic polyesters and bacterial cellulose,” Ind. Crops Prod., 2016.
URI: http://repositorio.uptc.edu.co/handle/001/2581
Appears in Collections:AHG. Trabajos de Grado y Tesis

Files in This Item:
File Description SizeFormat 
TGT_1201.pdfArchivo principal2.12 MBAdobe PDFThumbnail
View/Open
A_LMRF.pdf
  Restricted Access
Autorización publicación649.68 kBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons