Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2583
Title: Estudio de sistemas bifuncionales para la obtención de 5-(Hidroximetil)-2-Furaldehído y Acido 5-(Hidroximetil)Furan-2-Carboxílico
Authors: Aguilera Palacios, Edna Ximena
metadata.dc.contributor.role: Rojas Sarmiento, Hugo Alfonso (Director de tesis)
Martínez Zambrano, José Jobanny (Codirector de tesis)
Keywords: 5-Hydroxymethylfurfural (HMF)
Maestría en Química - Tesis y disertaciones académicas
Issue Date: 2017
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Aguilera Palacios, E, X. (2017). Estudio de sistemas bifuncionales para la obtención de 5-(Hidroximetil)-2-Furaldehído y Ácido 5-(Hidroximetil)Furan-2-Carboxílico. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2583
Abstract: En este trabajo se estudió la deshidratación de fructosa y glucosa a 5-(hidroximetil)-2-furaldehído (HMF) sobre un sistema bifuncional basado en catalizadores de LaOCl/ Nb2O5 y agua comprimida caliente. Los catalizadores fueron preparados por impregnación de LaCl3 sobre Nb2O5 con diferentes cargas. Los sólidos se caracterizaron por espectroscopia de dispersión de energía de rayos-X (EDX), termogravimetría (TGA), fisisorción de N2, adsorción de piridina y de CO2 seguida por espectroscopia de infrarrojo con transformada de Fourier con reflectancia difusa (FT-IR); la fuerza ácida y básica fue determinada por desorción a temperatura programada de NH3 y CO2, respectivamente. El uso de sistemas ácido-base para la producción de HMF principalmente a partir de glucosa requiere sitios básicos débiles y condiciones de acidez moderada que se alcanza con LaOCl/Nb2O5 como fue confirmado por los análisis de acidez y basicidad. La presencia de Nb2O5 en los sólidos aumentó el rendimiento de HMF (>50%) y evitó la formación de productos indeseables en condiciones de agua caliente comprimida. Con el mismo objetivo de producir HMF, se desarrolló un sistema bifuncional que consistió en el diseño de sólidos con características ácido-básicas capaces de transformar la glucosa en HMF en donde se involucra una etapa de isomerización de la glucosa a la fructosa suplida por el efecto de los sitios básicos de óxidos tales como CeO2, La2O3 y SiO2 y una etapa de deshidratación en donde se requiere la participación de sitios ácidos derivados de la funcionalización de los óxidos con grupos sulfónicos –SO3H. Los óxidos fueron funcionalizados con 3-mercaptopropiltrimetoxisilano en relación a la densidad de grupos hidroxilo unidos químicamente a la superficie, para tal fin se determinó la cantidad de grupos hidroxilo mediante análisis de fisisorción, análisis termogravimétrico y espectroscopia infrarroja con transformada de Fourier. Los catalizadores obtenidos fueron caracterizados por fisisorción de N2, adsorción de piridina y CO2 por espectroscopía infrarroja de reflectancia difusa de con transformada de Fourier; análisis de desorción a temperatura programada de NH3 y CO2. Los resultados mostraron que el proceso de funcionalización con grupos -SO3H disminuye el volumen de los poros y por lo tanto su área superficial debido a la interacción de los óxidos con organosilanos. Los análisis de la naturaleza de los sitios ácidos de los sólidos por adsorción de piridina demostraron que en todos los sólidos hay ambos tipos de acidez; Lewis y Brönsted, ésta última atribuida a los grupos sulfónicos ácidos anclados a los óxidos. En cuanto a su actividad catalítica se encontró la mayor conversión de glucosa cuando se empleó La2O3-SO3H como catalizador alcanzando un rendimiento hacia HMF del 58%. Dada la importancia del HMF como molécula plataforma para obtener compuestos de alto valor agregado con aplicaciones farmacéuticas y en la industria de polímeros, se estudió un sistema bifuncional que involucra el empleo de catalizadores de Rh soportado en óxidos reducibles y no reducibles y un medio acuoso alcalino para producir ácido 5-(hidroximetil)furan-2-carboxílico (HMFCA).. Los catalizadores sintetizados fueron caracterizados por EDX, microscopía electrónica de trasmisión (TEM), quimisorción y FT-IR de piridina. Los resultados revelan que la ruta de reacción no siguió la ruta de oxidación típica de HMF sino que siguió la ruta de reacción de Cannizzaro por lo que los principales productos fueron el (furan-2,5-diil) dimetanol (DHMF), la sal del HMFCA y algunos productos de degradación como los ácidos levulínico y fórmico como consecuencia de la degradación de HMF por efecto del medio alcalino. El óxido que mejor actividad mostró fue CeO2, con base en estos resultados se elucidó el posible mecanismo de reacción cuando se empleó Rh/CeO2 como catalizador en presencia de oxígeno molecular. Además se demostró que a menores tamaños de partícula el rendimiento a HMFCA incrementó.
Description: 1 recurso en línea (102 páginas) : ilustraciones color, figuras, tablas.
metadata.dcterms.bibliographicCitation: J.M.R. Gallo, D.M. Alonso, M.A. Mellmer, J.A. Dumesic, Green Chemistry, Green Chem. (2012).
C.A.. Rosatella, Andreia a., Simeonov, Svilen P., Frase, Raquel F. M., Alfonso, A. a. Rosatella, S.P. Simeonov, R.F.M. Frade, C. a. M. Afonso, 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem. 13 (2011) 754.
L. Hu, Y. Sun, L. Lin, Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid, Ind. Eng. Chem. Res. 51 (2012) 1099–1104.
M. Watanabe, Y. Aizawa, T. Iida, T.M. Aida, C. Levy, K. Sue, H. Inomata, Glucose reactions with acid and base catalysts in hot compressed water at 473 K, Carbohydr. Res. 340 (2005) 1925–1930.
M. Ventura, M. Aresta, A. Dibenedetto, Selective Aerobic Oxidation of 5-(Hydroxymethyl)furfural to 5-Formyl-2-furancarboxylic Acid in Water, ChemSusChem. 9 (2016) 1096–1100.
Y.Y. Gorbanev, S.K. Klitgaard, J.M. Woodley, C.H. Christensen, A. Riisager, Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature, ChemSusChem. 2 (2009) 672–675.
F. Wang, Z. Zhang, Cs-substituted tungstophosphate-supported ruthenium nanoparticles: An effective catalyst for the aerobic oxidation of 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid., J. Taiwan Inst. Chem. Eng. 70 (2017) 1–6.
J. Zhang, J. Li, Y. Tang, L. Lin, M. Long, Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass, Carbohydr. Polym. 130 (2014) 420–428.
X. Wan, C. Zhou, J. Chen, W. Deng, Q. Zhang, Y. Yang, Y. Wang, Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2, 5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles, Acs Catal. 4 (2014) 2175–2185
K.R. Vuyyuru, P. Strasser, Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis, Catal. Today. 195 (2012) 144–154.
T.S. Hansen, I. Sádaba, E.J. García-Suárez, A. Riisager, Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions, Appl. Catal. A Gen. 456 (2013) 44–50.
M. Asadullah, K. Fujimoto, K. Tomishige, Catalytic Performance of Rh/CeO2 in the Gasification of Cellulose to Synthesis Gas at Low Temperature, Ind. Eng. Chem. Res. (2001) 5894–5900.
W. Hertl, Surface Chemistry of Zirconia Polymorphs, Langmuir. 5 (1989) 96–100.
G. Connell, J.A. Dumesic, Acidic Properties of Binary Oxide Catalysts, J. Catal. 101 (1986) 103–113.
T.J. Dines, C.H. Rochester, A.M. Ward, Infrared and Raman study of the adsorption of nitrogen oxides on titania-supported vanadia catalysts, J. Chem. Soc. Faraday Trans. 87 (1991) 1617.
M.I. Zaki, G.A.M. Hussein, S.A.A. Mansour, H.A. El-Ammawy, Adsorption and surface reactions of pyridine on pure and doped ceria catalysts as studied by infrared spectroscopy, J. Mol. Catal. 51 (1989) 209–220.
M.I. Zaki, M. a. Hasan, F. a. Al-Sagheer, L. Pasupulety, In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: General considerations for the identification of acid sites on surfaces of finely divided metal oxides, Colloids Surfaces A Physicochem. Eng. Asp. 190 (2001) 261–274. doi:10.1016/S0927-7757(01)00690-2.
M. Oregui Bengoechea, A. Hertzberg, N. Miletić, P.L. Arias, T. Barth, Simultaneous catalytic de-polymerization and hydrodeoxygenation of lignin in water/formic acid media with Rh/Al2O3, J. Anal. Appl. Pyrolysis. 113 (2015) 713–722.
A. a Lemonidou, E.C. Vagia, J. a Lercher, Acetic Acid Reforming over Rh Supported on La2O3/CeO2 –ZrO2 : Catalytic Performance and Reaction Pathway Analysis, ACS Catal. (2013) 1919–1928.
J. Liu, L. Yan, Y. Ding, M. Jiang, W. Dong, X. Song, T. Liu, H. Zhu, Promoting effect of Al on tethered ligand-modified Rh/SiO2 catalysts for ethylene hydroformylation, Appl. Catal. A Gen. 492 (2015) 127–132.
N. Akiya, P.E. Savage, Roles of water for chemical reactions in high-temperature water.pdf, Chem. Rev. 102 (2002) 2725–2750.
W. Niu, D. Wang, G. Yang, J. Sun, M. Wu, Y. Yoneyama, N. Tsubaki, Pt nanoparticles loaded on reduced graphene oxide as an effective catalyst for the direct oxidation of 5-hydroxymethylfurfural (HMF) to produce 2,5-furandicarboxylic acid (FDCA) under mild conditions, Bull. Chem. Soc. Jpn. 87 (2014) 1124–1129.
N.T. Do Prado, T.E. Souza, A.R.T. Machado, P.P. Souza, R.S. Monteiro, L.C.A. Oliveira, Enhanced catalytic activity for fructose conversion on nanostructured niobium oxide after hydrothermal treatment: Effect of morphology and porous structure, J. Mol. Catal. A Chem. 422 (2016) 23–34.
L. Hu, Z. Wu, J. Xu, Y. Sun, L. Lin, S. Liu, Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid, Chem. Eng. J. 244 (2014) 137–144.
B.G. Siqueira, M.A.P. Silva, C. Moraes, Synthesis of HMF from glucose in aqueous medium using niobium and titanium oxides, Brazilian J. Pet. Gas. 7 (2013) 71–82.
M. Ohara, A. Takagaki, S. Nishimura, K. Ebitani, Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts, Appl. Catal. A Gen. 383 (2010) 149–155.
I. Jiménez-Morales, J. Santamaría-González, A. Jiménez-López, P. Maireles-Torres, Glucose dehydration to 5-hydroxymethylfurfural on zirconium containing mesoporous MCM-41 silica catalysts, Fuel. 118 (2014) 265–271.
H. Rasmussen, H.R. Sørensen, A.S. Meyer, Formation of degradation compounds from lignocellulosic biomass in the biorefinery: Sugar reaction mechanisms, Carbohydr. Res. 385 (2014) 45–57.
K. Nakajima, Y. Baba, R. Noma, M. Kitano, J. Kondo, S. Hayashi, M. Hara, Nb2O5· nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites, J. Am. Chem. Soc. 133 (2011) 4224.
J.-M. Jehng, I.E. Wachs, Structural chemistry and raman spectra of niobium oxides, Chem. Mater. 3 (1991) 100–107.
M. Hara, Heterogeneous Lewis acid catalysts workable in water, Bull. Chem. Soc. Jpn. 87 (2014) 931–941.
A. Marsal, E. Rossinyol, F. Bimbela, C. Téllez, J. Coronas, A. Cornet, J.R. Morante, Characterisation of LaOCl sensing materials using CO2-TPD, XRD, TEM and XPS, Sensors Actuators, B Chem. 109 (2005) 38–40.
A.S. Amarasekara, L.D. Williams, C.C. Ebede, Mechanism of the dehydration of D -fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 ° C : an NMR study, Carbohydr. Res. 343 (2008) 3021–3024.
O. V. Manoilova, S.G. Podkolzin, B. Tope, J. Lercher, E.E. Stangland, J.M. Goupil, B.M. Weckhuysen, Surface acidity and basicity of La2O3, LaOCl, and LaCl3 characterized by IR spectroscopy, TPD, and DFT calculations, J. Phys. Chem. B. 108 (2004) 15770–15781.
B. Siyo, M. Schneider, M.M. Pohl, P. Langer, N. Steinfelt, Synthesis, characterization, and application of PVP-PD NP in the aerobic oxidation of 5-hydroxymethylfurfural (HMF), Catal. Letters. 144 (2014) 498–506.
Z. Miao, T. Wu, J. Li, T. Yi, Y. Zhang, X. Yang, Aerobic oxidation of 5-hydroxymethylfurfural (HMF) effectively catalyzed by a Ce0.8Bi0.2O2−δ supported Pt catalyst at room temperature, RSC Adv. 5 (2015) 19823–19829.
X. Han, C. Li, X. Liu, Q. Xia, Y. Wang, Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx–CeO2 composite catalysts, Green Chem. (2017).
Y. Pierson, F. Bobbink, N. Yan, Alcohol Mediated Liquefaction of Lignocellulosic Materials : A Mini Review, Chem. Eng. Process Tech. 1 (2013) 1014–1019.
K. Li, L. Bai, P.N. Amaniampong, X. Jia, J.M. Lee, Y. Yang, One-Pot Transformation of Cellobiose to Formic Acid and Levulinic Acid over Ionic-Liquid-based Polyoxometalate Hybrids, ChemSusChem. 7 (2014) 2670–2677.
H. Abou-Yousef, E.B. Hassan, P. Steele, Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid, J. Fuel Chem. Technol. 41 (2013) 214–222.
M.J. Climent, A. Corma, S. Iborra, Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels, Green Chem. 16 (2013) 516–547.
G. Rothenberg, Catalysis: concepts and green applications, John Wiley Sons, 2015.
R. Rinaldi, R. Palkovits, F. Schüth, Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids ** Zuschriften, Angew. Chemie. 47 (2008) 8167–8170.
A. Corma, S. Iborra, A. Velty, Chemical Routes for the Transformation of Biomass into Chemicals, Chem. Rev. 107 (6) (2007) 2411–2502.
E.F. Dunn, D.D.J. Liu, E.Y. Chen, Role of N-heterocyclic carbenes in glucose conversion into HMF by Cr catalysts in ionic liquids, Appl. Catal. A Gen. 460–461 (2013) 1–7.
Y.Y. Gorbanev, S.K. Klitgaard, J.M. Woodley, C.H. Christensen, A. Riisager, Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethyl- furfural in Water at Ambient Temperature, ChemSusChem. (2009) 672–675.
S.P. Teong, G. Yi, Y. Zhang, Hydroxymethylfurfural production from bioresources: past , present and future, Green Chem. 16 (2014) 2015–2026.
R. Weingarten, A. Rodriguez-Beuerman, F. Cao, J.S. Luterbacher, D.M. Alonso, J.A. Dumesic, G.W. Huber, Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents, ChemCatChem. 6 (2014) 2229–2234.
S. Despax, B. Estrine, N. Hoffmann, J. Le Bras, J. Muzart, Isomerization of D-glucose into D-fructose with a heterogeneous catalyst in organic solvents, Catal. Commun. 39 (2013) 35–38.
J.N.N. Chheda, G.W.W. Huber, J.A.A. Dumesic, Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals, Angew. Chemie Int. Ed. 46 (2007) 7164–7183.
J. Wang, W. Xu, J. Ren, X. Liu, G. Lu, Y. Wang, Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid, Green Chem. 13 (2011) 2678.
R.-J. van Putten, J.C. van der Waal, E. de Jong, C.B. Rasrendra, H.J. Heeres, J.G. de Vries, Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources, Chem. Rev. 113 (2013) 1499–1597.
F. Tao, C. Zhuang, Y. Cui, J. Xu, Dehydration of glucose into 5-hydroxymethylfurfural in SO 3 H-functionalized ionic liquids, Chinese Chem. Lett. 25 (2014) 757–761.
G. Yang, E.A. Pidko, E.J.M. Hensen, Mechanism of Bronsted acid-catalyzed conversion of carbohydrates, J. Catal. 295 (2012) 122–132.
S.H. Bhosale, M.B. Rao, V. V Deshpande, Molecular and Industrial Aspects of Glucose Isomerase, Microbiol. Rev. 60 (1996) 280–300.
Y. Zhang, J. Wang, X. Li, X. Liu, Y. Xia, B. Hu, G. Lu, Y. Wang, Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts, FUEL. 139 (2015) 301–307.
O.O. James, S. Maity, L.A. Usman, K.O. Ajanaku, O.O. Ajani, T.O. Siyanbola, S. Sahu, R. Chaubey, Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural, Energy Environ. Sci. 3 (2010) 1833–1850.
A.A.D. Hesel, The influence of the initial and catalyst concentrations on the dehydration of D-fructose, Carbohydr. Res. 54 (1977) 165–176.
H.M. Kuster, Ben F., Temmink, The influence of pH and weak-acid anions on the dehydration of D-fructose, Carbohydr. Res. 4 (1977) 185–191.
H.E. Van Dam, A.P.G. Kieboom, H. van Bekkum, The Conversion of Fructose and Glucose in Acidic Media: Formation of Hydroxymethylfurfural, Starch ‐ Stärke. 38 (1986) 95–101.
B.F. Kuster, The influence of water concentration on the dehydration of D-fructose, Carbohydr. Res. 54 (1977) 177–183.
M.J. Antal, W.S.L. Mok, G.N. Richards, Mechanism of formation of S ( hydroxymethyl ) -2-furalde- hyde from D-fructose and sucrose, Carbohydr. Res. 199 (1990) 91–109.
F. Yang, Q. Liu, X. Bai, Y. Du, Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst, Bioresour. Technol. 102 (2011) 3424–3429.
F. Surface, B. Zeoliies, S. Acid, Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions, Chem. Rev. 95 (1995) 559–614.
C. Carlini, M. Giuttari, A. Maria, R. Galletti, G. Sbrana, T. Armaroli, G. Busca, Selective saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts, Appl. Catal. A Gen. 183 (1999) 295–302.
D. Stošić, S. Bennici, V. Rakić, A. Auroux, V. Raki, CeO2–Nb2O5 mixed oxide catalysts: Preparation, characterization and catalytic activity in fructose dehydration reaction, Catal. Today. 192 (2012) 160–168.
P. Carniti, A. Gervasini, S. Biella, A. Auroux, Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: Fructose dehydration reaction, Catal. Today. 118 (2006) 373–378.
D. Stošić, S. Bennici, V. Pavlović, V. Rakić, A. Auroux, Tuning the acidity of niobia: Characterization and catalytic activity of Nb2O5-MeO2 (Me = Ti, Zr, Ce) mesoporous mixed oxides, Mater. Chem. Phys. 146 (2014) 337–345.
C. Antonetti, M. Melloni, D. Licursi, S. Fulignati, E. Ribechini, S. Rivas, J.C. Parajó, F. Cavani, A.M. Raspolli Galletti, Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts, Appl. Catal. B Environ. 206 (2017) 364–377.
C. Yue, G. Li, E.A. Pidko, J.J. Wiesfeld, M. Rigutto, E.J.M. Hensen, Dehydration of Glucose to 5-Hydroxymethylfurfural Using Nb-doped Tungstite, ChemSusChem. 17 (2016) 2421–2429.
J. Qi, L.Ü. Xiuyang, Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water *, Chinese J. Chem. Eng. 16 (2008) 890–894.
T.M. Aida, Y. Sato, M. Watanabe, K. Tajima, T. Nonaka, H. Hattori, K. Arai, Dehydration of d-glucose in high temperature water at pressures up to 80 MPa, J. Supercrit. Fluids. 40 (2007) 381–388..
X. Qi, M. Watanabe, T.M. Aida, R.L. Smith, R. L. Smith Jr, Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural, Catal. Commun. 10 (2009) 1771–1775.
A. Chareonlimkun, V. Champreda, A. Shotipruk, N. Laosiripojana, Reactions of C5 and C6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts, Fuel. 89 (2010) 2873–2880.
F.S. Asghari, H. Yoshida, Dehydration of fructose to 5-hydroxymethylfurfural in sub-critical water over heterogeneous zirconium phosphate catalysts, Carbohydr. Res. 341 (2006) 2379–2387.
Z. Fang, R.L. Smith, J.A. Kozinski, T. Minowa, K. Arai, Reaction of d -glucose in water at high temperatures ( 410 °C ) and pressures ( 180 MPa ) for the production of dyes and nano-particles, J. Supercrit. Fluids. 56 (2011) 41–47.
R.L. De Souza, H. Yu, F. Rataboul, N. Essayem, 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System, Challenges. 3 (2012) 212–232.
H. Yan, Y. Yang, D. Tong, X. Xiang, C. Hu, Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42−/ZrO2 and SO42−/ZrO2–Al2O3 solid acid catalysts, Catal. Commun. 10 (2009) 1558–1563..
K. Seri, Y. Inoue, H. Ishida, Catalytic Activity of Lanthanide(III) Ions for the Dehydration of Hexose to 5-Hydroxymethyl-2-furaldehyde in Water, Bull. Chem. Soc. Jpn. 74 (2001) 1145–1150.
S. Hu, Z. Zhang, J. Song, Y. Zhou, B. Han, Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid, Green Chem. 11 (2009) 1746–1749.
J. Tuteja, N. Shun, One-Pot Synthes is of Furans from Various Saccharides Using a Combination of Solid Acid and Base Catalysts, BCSJ Award Artic. 281 (2012) 275–281.
J.B. Binder, R.T. Raines, J.B. Binder, R.T. Raines, R.T. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals, J. Am. Chem. Soc. 131 (2009) 1979–1985.
I. Jiménez-Morales, M. Moreno-Recio, J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural, "Applied Catal. B, Environ. 154–155 (2014) 190–196.
I. Jiménez-morales, M. Moreno-recio, J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid catalyst, Appl. Catal. B Environ. 164 (2015) 70–76.
H. Jiao, X. Zhao, C. Lv, Y. Wang, D. Yang, Z. Li, X. Yao, Nb2O5-γ-Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural, Sci. Rep. 6 (2016) 1–9.
R. Liu, J. Chen, X. Huang, L. Chen, L. Ma, X. Li, Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials, Green Chem. 15 (2013) 2895–2903.
J. Wang, L. Zhu, Y. Wang, H. Cui, Y. Zhang, Y. Zhang, Fructose Dehydration to 5-HMF over Three Sulfonated Carbons: Effect of Different Pore Structures, Chem. Technol. Biotechnol. 92 (2017) 1454–1463.
R.Y. Zheng, N. Liu, W.Y. Liu, J.X. Ma, B. Li, Conversion of Fructose to 5-hydroxymethylfurfural Catalyzed by Coaled Carbon-Based Solid Acid, Adv. Mater. Res. 724 (2013) 226–230.
F. Tao, C. Zhuang, Y. Cui, J. Xu, Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids, Chinese Chem. Lett. (2014) 1–5.
G. Morales, J.A. Melero, M. Paniagua, J. Iglesias, B. Hernández, M. Sanz, Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide, Chinese J. Catal. 35 (2014) 644–655.
E.S. Kang, D.W. Chae, B. Kim, Y.G. Kim, Efficient preparation of dhmf and hmfa from biomass-derived hmf via a cannizzaro reaction in ionic liquids, J. Ind. Eng. Chem. 18 (2012) 174–177.
Z. Zhang, B. Liu, K. Lv, J. Sun, K. Deng, Aerobic oxidation of biomass derived 5- hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalyzed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex, Green Chem. 16 (2014) 2762.
O. Casanova, S. Iborra, A. Corma, Biomass into chemicals: Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts, ChemSusChem. 2 (2009) 1138–1144.
F. Neaţu, R.S. Marin, M. Florea, N. Petrea, O.D. Pavel, V.I. Pârvulescu, Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts, Appl. Catal. B Environ. 180 (2016) 751–757.
P. Verdeguer, N. Merat, A. Gaset, Oxydation catalytique du HMF en acide 2, 5-furane dicarboxylique, J. Mol. Catal. 85 (1993) 327–344.
S.E. Davis, L.R. Houk, E.C. Tamargo, A.K. Datye, R.J. Davis, Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts, Catal. Today. 160 (2011) 55–60.
S. Albonetti, T. Pasini, A. Lolli, M. Blosi, M. Piccinini, N. Dimitratos, J.A. Lopez-Sanchez, D.J. Morgan, A.F. Carley, G.J. Hutchings, F. Cavani, Selective oxidation of 5-hydroxymethyl-2-furfural over TiO 2-supported gold–copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio, Catal. Today. 195 (2012) 120–126.
Z. Miao, Y. Zhang, X. Pan, T. Wu, B. Zhang, J. Li, T. Yi, Z. Zhang, X. Yang, Superior catalytic performance of Ce1−xBixO2−δ solid solution and Au/Ce1−xBixO2−δ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution, Catal. Sci. Technol. 5 (2015) 1314–1322.
T. Pasini, M. Piccinini, M. Blosi, R. Bonelli, S. Albonetti, N. Dimitratos, J.A.J. Lopez-Sanchez, M. Sankar, Q. He, C.C.J. Kiely, G.J.G. Hutchings, F. Cavani, Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles, Green Chem. 13 (2011) 2091–2099.
N.K. Gupta, S. Nishimura, A. Takagaki, K. Ebitani, Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure, Green Chem. 13 (2011) 824.
A. Lolli, S. Albonetti, L. Utili, R. Amadori, F. Ospitali, C. Lucarelli, F. Cavani, Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd-Au nanoparticles, Appl. Catal. A Gen. 504 (2015) 408–419.
L. Delannoy, N. Weiher, N. Tsapatsaris, A.M. Beesley, L. Nchari, S.L.M. Schroeder, C. Louis, Reducibility of supported gold (III) precursors: Influence of the metal oxide support and consequences for CO oxidation activity, Top. Catal. 44 (2007) 263–273.
Y.G. Wang, Y. Yoon, V.A. Glezakou, J. Li, R. Rousseau, The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics, J. Am. Chem. Soc. 135 (2013) 10673–10683.
S. Albonetti, A. Lolli, V. Morandi, A. Migliori, C. Lucarelli, F. Cavani, Conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal–support interaction, Appl. Catal. B Environ. 163 (2015) 520–530.
H. Li, X. Liu, Q. Zhang, S. Li, Y. Liu, H. He, Y. Cao, Deoxygenative coupling of nitroarenes to synthesize aromatic azo compounds with CO using supported gold nanoparticles, (2015).
J.A. Navio, M. Macias, F.J. Marchena, C. Real, Ruiz B., Stud. Suface Sci. Arid Catal. 72 (1992) 423–433.
A. Valente, E. Unidos, N. Fordismo, Capítulo 2, (1993) 56–113.
A. Martinez Orellana, Microanálisis Por Dispersión De Energías De Rayos-X ( Xeds ). Conceptos básicos, Serv. Microsc. Electrónica. SCAI. Univ. Málaga. (2010) 1–11. http://www.uma.es/sme/.
T. Hatakeyama, Thermal Analysis. Fundamentals and applications to polymer science, (1999).
F. González, Técnicas de Análisis Térmico, Univ. Canada West. (2015) 36. http://ocw.uc3m.es/ciencia-e-oin/caracterizacion-de-materiales/material-de-clase-1/Analisis_termico.pdf/view.
Unidad de Microscopía Electrónica de Transmisión Servicios Centrales de Apoyo a la Investigación, (n.d.). http://www.scai.uma.es/servicios/area_microscopia/tem/tem.html.
H.A. Rojas Sarmiento, G. Borda Guerra, J.S. Valencia Ríos, J.J. Martínez Zambrano, P.A. Reyes Núñez, Hidrogenación selectiva de citral en fase líquida sobre catalizadores ir-fe/tio2 reducidos a alta temperatura selective hydrogenation of citral in liquid phase over ir-fe/tio2 reduced at high temperature, Rev. Colomb. Quím. 34 (2005) 127–138..
R.M. Veronika, Practical high-performance liquid chromatography, Fifth edit, Wiley, 2010.
X. Huang, B. Wang, E.A. Grulke, M.J. Beck, Toward tuning the surface functionalization of small ceria nanoparticles, J. Chem. Phys. 140 (2014) 74703
L.T. Zhuravlev, V. V. Potapov, Density of silanol groups on the surface of silica precipitated from a hydrothermal solution, Russ. J. Phys. Chem. 80 (2006) 1119–1128.
T. Iizuka, K. Ogasawara, K. Tanabe, Acidic and Catalytic Properties of Niobium Pentaoxide., Bull. Chem. Soc. Jpn. 56 (1983) 2927–2931.
F. Wang, H.Z. Wu, C.L. Liu, R.Z. Yang, W.S. Dong, Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent, Carbohydr. Res. 368 (2013) 78–83.
T. Murayama, J. Chen, J. Hirata, K. Matsumoto, W. Ueda, Hydrothermal synthesis of octahedra-based layered niobium oxide and its catalytic activity as a solid acid, Catal. Sci. Technol. 4 (2014) 4250–4257.
S. Bennici, V. Raki, CeO2 –Nb2O5 mixed oxide catalysts: Preparation , characterization and catalytic activity in fructose dehydration reaction, Catal. Today. 192 (2012) 160–168.
J. Datka, A.M. Turek, J.M. Jehng, I.E. Wachs, Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation, J. Catal. 135 (1992) 186–199.
M.D.C. Rangel, A.P.D.M. Monteiro, S.G. Marchetti, S.B. Lima, M.D.S. Ramos, Ethylbenzene dehydrogenation in the presence of carbon dioxide over magnesia-supported iron oxides, J. Mol. Catal. A Chem. 387 (2014) 147–155.
J.J. Martínez, E. Nope, H. Rojas, J. Cubillos, Á.G. Sathicq, G.P. Romanelli, Dehydration of xylose to furfural and its valorization via different multicomponent reactions using sulfonated silica with magnetic properties as recyclable catalyst, Catal. Letters. 144 (2014) 1322–1331.
Y.F. Lin, C.Y. Yen, C.C.M. Ma, S.H. Liao, C.H. Lee, Y.H. Hsiao, H.P. Lin, High proton-conducting Nafion??/-SO3H functionalized mesoporous silica composite membranes, J. Power Sources. 171 (2007) 388–395.
S.C. Shen, X. Chen, S. Kawi, S.C. Shen, X. Chen, S. Kawi, CO2 Adsorption over Si-MCM-41 Materials Having Basic Sites Created by Postmodification with La2O3, Langmuir. 20 (2004) 9130–9137.
H. Rojas, G. Borda, P. Reyes, M. Brijaldo, J. Valencia, Liquid-phase hydrogenation of m-dinitrobenzene over platinum catalysts, J. Chil. Chem. Soc. 56 (2011) 793–798.
A. Gayen, K.R. Priolkar, P.R. Sarode, V. Jayaram, M.S. Hegde, G.N. Subbanna, S. Emura, Formation of Ce1-x RhxO2-δ Solid Solution in Combustion-Synthesized Rh/CeO2 Catalyst: XRD, XPS, and EXAFS Investigation, Chem. Mater. 14 (2002) 2120–2128.
URI: http://repositorio.uptc.edu.co/handle/001/2583
Appears in Collections:AHG. Trabajos de Grado y Tesis

Files in This Item:
File Description SizeFormat 
TGT_1203.pdfArchivo principal2.46 MBAdobe PDFThumbnail
View/Open
A_EXAP.pdf
  Restricted Access
Autorización publcación700.9 kBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons