Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2838
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPérez Corría, Kirenia-
dc.contributor.authorBotello León, Aroldo-
dc.contributor.authorMauro Félix, Abril Karina-
dc.contributor.authorRivera Pineda, Franklin-
dc.contributor.authorViana, María Teresa-
dc.contributor.authorCuello Pérez, Maribel-
dc.contributor.authorBotello Rodríguez, Arnaldo-
dc.contributor.authorMartínez Aguilar, Yordan-
dc.date.accessioned2019-09-10T14:45:55Z-
dc.date.available2019-09-10T14:45:55Z-
dc.date.issued2019-05-01-
dc.identifier.citationPérez Corría, K. y otros. (2019). Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed. Revista Ciencia y Agricultura, 16(2), 79-92. DOI: https://doi.org/10.19053/01228420.v16.n2.2019.9130. http://repositorio.uptc.edu.co/handle/001/2838spa
dc.identifier.issn2539-0899-
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2838-
dc.description1 recurso en línea (páginas 79-92)spa
dc.description.abstractTo evaluate the chemical composition of the earthworm (Eisenia foetida) co-dried (EW) with vegetable meals (VM) as animal feed ingredient, the blends were mixed with wheat bran (WB), rice powder (RP), corn meal (CM) and soy cake meal (SCM) in proportions of 85:15; 75:25 and 65:35. The dry matter (DM), crude protein (CP), crude fat (CFA), crude fiber (CF), ashes and nitrogen-free extract (NFE) of the ingredients and final mixtures were determined. All the mixtures resulted with a high content of DM (≥90.00 %). No significant differences among the proportions were revealed (P>0.05). In addition, the higher inclusion of the earthworm in the proportions (85:15) increased (P<0.05) the CP (54.70 %), CFA (7.28 %), and ashes (10.20 %), mainly when mixed with SCM, CM, and RP, respectively. However, the use of vegetable meals proportionally increased the CF (7.31 %), and NFE (52.62 %), mainly with the proportion of 65:35 and with RP and CM, respectively (P<0.05). The results showed that the vegetable meals (WB, RP, CM, and SCM) are useful to co-dry the earthworm to be use for animal feed. It is concluded that the most appropriate proportion (VM:EW) will depend on the animal species, productive stage and market requirement.eng
dc.description.abstractPara evaluar la composición química de la lombriz de tierra (Eisenia foetida) (LT) presecada con harinas vegetales (HV) como alimento animal, las mezclas se secaron individualmente y se elaboraron distintas premezclas con salvado de trigo (ST), polvo de arroz (PA), harina de maíz (HM) y harina de pasta de soya (HPS) en proporciones de 85:15; 75:25 y 65:35. Se determinó la materia seca (MS), proteína cruda (PC), grasa cruda (GC), fibra cruda (FC), cenizas y extracto libre de nitrógeno (ELN) de los ingredientes y de las mezclas finales. Todas las mezclas mostraron un alto contenido de MS (≥90.00 %). No se revelaron diferencias significativas entre las proporciones (P>0.05). La mayor inclusión de la lombriz de tierra en las proporciones (85:15) incrementó (P<0.05) la PC, GC y cenizas, principalmente cuando se mezcló con la harina de soya, harina de maíz y polvo de arroz, respectivamente. Sin embargo, el uso de las harinas vegetales incrementó proporcionalmente la FC (7,31 %) y el ELN (52.62 %), especialmente con la proporción de 65:35 y con PA y HM, respectivamente (P<0.05). Los resultados mostraron que las harinas de vegetales (WB, RP, CM y SCM) son útiles para presecar la lombriz de tierra para uso en la alimentación animal. Se concluye que la proporción más adecuada (VM:EW) dependerá de las especies animales, la etapa productiva y los requisitos del mercado.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ciencia_agricultura/article/view/9130/7627spa
dc.subject.otherHarina de lombriz de tierra-
dc.titleChemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feedspa
dc.title.alternativeComposición química de la lombriz de tierra (Eisenia foetida) presecada con harinas vegetales como alimento animalspa
dc.typeArtículo de revistaspa
dc.description.notesBibliografía y webgrafía: páginas 88-92spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.19053/01228420.v16.n2.2019.9130-
dc.relation.referencesAgrahar, D., & Jha, K. (2010). Effect of Drying of Nutritional and Functional Quality and Electrophoretic Pattern of Soyflour from Sprouted Soybean (Glycine max). Journal of Food Science and Technology, 47(5), 482-487. http://doi.org/10.1007/s13197-010-0082-5.spa
dc.relation.referencesAOAC (2011). Official Methods of Analysis of AOAC International (18th ed.). Maryland, USA: AOAC International.spa
dc.relation.referencesBahadori, Z., Esmaielzadeh, L., Karimi, M. A., Seidavi, A., Olivares, J., Rojas, S., Salem, A. Z., & López, S. (2017). The Effect of Earthworm (Eisenia foetida) Meal with Vermi-Humus on Growth Performance, Hematology, Immunity, Intestinal Microbiota, Carcass Characteristics, and Meat Quality of Broiler Chickens. Livestock Science, 202(8), 74-81. http://doi.org/10.1016/j.livsci.2017.05.010.spa
dc.relation.referencesBahadori, Z., Esmailzadeh, L., & Torshizi, M. A. (2015). The Effect of Earthworm (Eisenia fetida) and Vermin Humus Meal in Diet on Broilers Chicken Efficiency and Carcass Components. Biological Forum, 7(1), 998-1005.spa
dc.relation.referencesBonazzi, C., & Dumoulin, E. (2011). Quality Changes in Food Materials as Influenced by Drying Processes. In E. Tsotsas & A.S. Mujumdar (eds.), Modern Drying Technology. Product Quality and Formulation (pp. 1-20). Berlin, Germany: Wiley VCH. https://doi.org/10.1002/9783527631667.ch1.spa
dc.relation.referencesBotello, A. L., Cisneros, M., Viana, M. T., Valdivié, M., Ariza, E., Téllez, G. E., Solano, G., Rodríguez, Y., Gómez, I., Botello, A. R., Rodríguez, R., & Corría, K. P. (2011). Utilization of Proteinic Sugarcane Meal in the Feeding of Juvenile Red Tilapia. Cuban Journal of Agricultural Science, 45(4), 411-415.spa
dc.relation.referencesBotello, L. A., Viana, M. T., Corría, K. P., Marcos, O. O., Machado, R. T., Morán, M. C., Hurtado, G. K., Cedeño, T. D., López, C. K., López, B. J., Chacón, M. E., Zambrano, C. N., & Ramírez, R. J. (2017). Caracterización nutricional y costos del residual de tilapia (Oreochromis niloticus) presecado con harinas vegetales. Revista Electrónica de Veterinaria, 18(4), 1-8.spa
dc.relation.referencesBoulogne, S., Márquez, E., Zambrano, Y. E., Medina, A. L., & Cayot, P. (2008). Optimización de la operación de secado de la carne de lombriz (Eisenia andrei) para producir harina destinada al consumo animal. Ciencia e Ingeniería, 29(2), 91-96.spa
dc.relation.referencesCăpriţă, R., Căpriţă, A., & Julean, C. (2010). Biochemical Aspects of Non-Starch Polysaccharides. Scientific Papers Animal Science and Biotechnologies, 43(1), 368-374spa
dc.relation.referencesCayot, N., Cayot, P., Maroun, B. E., Laboure, H., Romero, A. B., Pernin, K., & Medina, A. L. (2009). Physico-chemical Characterisation of a Non-Conventional Food Protein Source from Earthworms and Sensory Impact in Arepas. International Journal of Food Science & Technology, 44(11), 2303-2313. https://doi.org/10.1111/j.1365-2621.2009.02074.x.spa
dc.relation.referencesCórdova, M. G., Anaya, A. M., Ovando, J. A., García, J. A., & Silvano, E. J. (2013). Efecto del proceso de secado de la lombriz roja californiana (Eisenia foetida) en sus características nutricionales. Quehacer Científico en Chiapas, 8(2), 44-50spa
dc.relation.referencesCoulis, M., Bernard, L., Gérard, F., Hinsinger, P., Plassard, C., Villeneuve, M., & Blanchart, E. (2014). Endogeic Earthworms Modify Soil Phosphorus, Plant Growth and Interactions in a Legume–Cereal Intercrop. Plant and Soil, 379(1-2), 149-160. https://doi.org/10.1007/s11104-014-2046-4.spa
dc.relation.referencesDuodu, C. P., Boateng, A. D., Edziyie, R. E., Agbo, N. W., Boateng, O. G., Larsen, B. K., & Skov, P. V. (2018). Processing Techniques of Selected Oilseed By-Products of Potential Use in Animal Feed: Effects on Proximate Nutrient Composition, Amino Acid Profile and Antinutrients. Animal Nutrition, 4(4), 442-451. https://doi.org/10.1016/j.aninu.2018.05.007.spa
dc.relation.referencesErbay, Z., & Hepbasli, A. (2014). Application of Conventional and Advanced Exergy Analyses to Evaluate the Performance of a Ground-Source Heat Pump (GSHP) Dryer Used in Food Drying. Energy Conversion and Management, 78(2), 499-507. https://doi.org/10.1016/j.enconman.2013.11.009.spa
dc.relation.referencesFagbenro, O. (1994). Dried Fermented Fish Silage in Diets for Oreochromis niloticus. The Israeli Journal of Aquaculture Bamidgeh, 46(3), 140-147.spa
dc.relation.referencesFalcón, M. D., Barrón, J. M., Romero, A. L., & Domínguez, M. F. (2011). Efecto adverso en la calidad proteica de los alimentos de dietas con alto contenido de fibra dietaria. Revista Chilena de Nutrición, 38(3), 356-367. https://doi.org/10.4067/S0717-75182011000300012spa
dc.relation.referencesFalowo, A. B., Mukumbo, F. E., Idamokoro, E. M., Lorenzo, J. M., Afolayan, A. J., & Muchenje, V. (2018). Multi-Functional Application of Moringa oleifera Lam. in Nutrition and Animal Food Products: A Review. Food Research International, 106(4), 317-334. https://doi.org/10.1016/j.foodres.2017.12.079.spa
dc.relation.referencesGarcía, M. D., Oruña, L., Domínguez, H., & Martínez, V. (2005). Evaluación de la calidad proteica de harina de lombriz (Eisenia foetida) en ratas en crecimiento. Revista Cubana de Ciencia Agrícola, 39(3), 333-338.spa
dc.relation.referencesGoddard, J. S., & Perret, J. S. (2005). Co-Drying Fish Silage for Use in Aquafeeds. Animal Feed Science and Technology, 118(3), 337-342. https://doi.org/10.1016/j.anifeedsci.2004.11.004.spa
dc.relation.referencesGunya, B., Masika, P. J., Hugo, A., & Muchenje, V. (2016). Nutrient Composition and Fatty Acid Profiles of Oven-Dried and Freeze-Dried Earthworm Eisenia foetida. Journal of Food and Nutrition Research, 4(6), 343-348. https://doi.org/10.12691/jfnr-4-6-1.spa
dc.relation.referencesGunya, B., Muchenje, V., & Masika, P. J. (2019). The Potential of Eisenia foetida as a Protein Source on the Growth Performance, Digestive Organs Size, Bone Strength and Carcass Characteristics of Broilers. The Journal of Applied Poultry Research, 0, 1–9. https://doi.org/10.3382/japr/pfy081.spa
dc.relation.referencesGuptaa, M., Shikhab, K. S., & Tewaria, S. K. (2014). Quality Evaluation of Vermicompost at Various Phases of Farm Waste Composting and During Storage. Advances in Bioresearch, 5(1), 56-63. https://doi.org/10.15515/abr.0976-4585.5.56-63.spa
dc.relation.referencesIbáñez, I. A., Herrera, C. A., Velásquez, L. A., & Hebel, P. (1993). Nutritional and Toxicological Evaluation on Rats of Earthworm (Eisenia fetida) Meal as Protein Source for Animal Feed. Animal Feed Science and Technology, 42(1-2), 165-172. https://doi.org/10.1016/0377-8401(93)90031-E.spa
dc.relation.referencesJiménez, M. E., Coca, S. A., González, J. M., & Mateos, G. G. (2016). Inclusion of Insoluble Fiber Sources in Mash or Pellet Diets for Young Broilers. 1. Effects on Growth Performance and Water Intake. Poultry Science, 95(1), 41-52. https://doi.org/10.3382/ps/pev309.spa
dc.relation.referencesKızılkaya, R., & Türkay, F. Ş. (2014). Vermicomposting of Anaerobically Digested Sewage Sludge with Hazelnut Husk and Cow Manure by Earthworm Eisenia foetida. Compost Science & Utilization, 22(2), 68-82. https://doi.org/10.1080/1065657X.2014.895454spa
dc.relation.referencesKuforiji, O. O., Agunbiade, J. A., Awojobi, H. A., & Eniolorunda, O. O. (2016). Feeding Value of Cassava Products Supplemented with Earthworm Meal in Diets of Growing Rabbits. Tropical Agriculture, 93(3), 197-208.spa
dc.relation.referencesLanger, S., Bakhtiyar, Y., & Lakhnotra, R. (2011). Replacement of Fishmeal with Locally Available Ingredients in Diet Composition of Macrobrachium dayanum. African Journal of Agricultural Research, 6(5), 1080-1084.spa
dc.relation.referencesMaková, J., Javoreková, S., Elbl, J., Medo, J., Hricáková, N., & Kováčik, P. (2019). Impact of Vermicompost on Biological Indicators of the Quality of Soil under Maize in a Greenhouse Experiment. Journal of Elementology, 24(1), 319-330. https://doi.org/10.5601/jelem.2017.22.4.1548spa
dc.relation.referencesMartínez, Y., Carrión, Y., Rodríguez, R., Valdivié, M., Olmo, C., Betancur, C., & Liu, G. (2015). Growth Performance, Organ Weights and Some Blood Parameters in Replacement Laying Pullets Fed with Increasing Levels of Wheat Bran. Brazilian Journal of Poultry Science, 17(3), 347-354. http://doi.org/10.1590/1516-635x1703347-354.spa
dc.relation.referencesMartínez, Y., Li, X., Liu, G., Bin, P., Yan, W., Más, D., Valdivié, M., Hu, C. A., Re, W., & Yin, Y. L. (2017). The Role of Methionine on Metabolism, Oxidative Stress and Diseases. Amino Acids, 49(12), 2091-2098. https://doi.org///10.1007/s00726-017-2494-2.spa
dc.relation.referencesMohanta, K. N., Subramanian, S., & Korikanthimath, V. S. (2016). Potential of Earthworm (Eisenia foetida) as Dietary Protein Source for Rohu (Labeo rohita) Advanced Fry. Cogent Food & Agriculture, 2(1), 1138594. https://doi.org/10.1080/23311932.2016.1138594.spa
dc.relation.referencesMorillo, M., Visbal, T., Altuve, D., Ovalles, F., & Medina, A. L. (2013). Valoración de dietas para alevines de Colossoma macropomum utilizando como fuentes proteicas harinas: de lombriz (Eisenia foetida), soya (Glycine max) y caraotas (Phaseolus vulgaris). Revista Chilena de Nutrición, 40(2), 147-154. https://doi.org/10.4067/S0717-75182013000200009spa
dc.relation.referencesNational Research Council -NRC- (1994). Nutrient Requirements of Poultry. (9th ed.). Washington: Academy Press.spa
dc.relation.referencesNcobela, C. N., & Chimonyo, M. (2015). Potential of Using Non-Conventional Animal Protein Sources for Sustainable Intensification of Scavenging Village Chickens: A Review. Animal Feed Science and Technology, 208, 1-11. https://doi.org/10.1016/j.anifeedsci.2015.07.005spa
dc.relation.referencesOlmo, C., Martínez, Y., León, E., Leyva, L., Nuñez, M., Rodríguez, R., Labrada, A., Iser, M., Betancur, C., Merlos M., & Liu, G. (2012). Effect of Mulberry Foliage (Morus alba) Meal on Growth Performance and Edible Portions in Hybrid Chickens. International Journal of Animal and Veterinary Advances, 4(4), 263-268.spa
dc.relation.referencesOvalles, J., Medina, A., Márquez, E., & Rial, L. (2017). Efecto del proceso de secado de la lombriz de tierra (Eisenia andrei) sobre el perfil aminoacídico de la harina determinado por cromatografía. Saber, 29, 486-494. https://doi.org/10.4067/s0717-75182008000300008.spa
dc.relation.referencesØverland, M., Mydland, L. T., & Skrede, A. (2019). Marine Macroalgae as Sources of Protein and Bioactive Compounds in Feed for Monogastric Animals. Journal of the Science of Food and Agriculture, 99(1), 13-24. https://doi.org/10.1002/jsfa.9143spa
dc.relation.referencesRezaeipour, V., Nejad, O. A., & Miri, H. Y. (2014). Growth Performance, Blood Metabolites and Jejunum Morphology of Broiler Chickens Fed Diets Containing Earthworm (Eisenia foetida) Meal as a Source of Protein. International Journal of Advanced Biological and Biomedical Research, 2(8), 2483-2494.spa
dc.relation.referencesRojas, O. J., Vinyeta, E., & Stein, H. H. (2016). Effects of Pelleting, Extrusion, or Extrusion and Pelleting on Energy and Nutrient Digestibility in Diets Containing Different Levels of Fiber and Fed to Growing Pigs. Journal of Animal Science, 94(5), 1951-1960. https://doi.org/10.2527/jas2015-0137.spa
dc.relation.referencesSánchez, Y. P., Betancur, H. C., Botello, A. L., Pérez, K. C., Ruiz, C. C., & Martínez, Y. A. (2019). Ensilability and Chemical Composition of Silages Made with Different Mixtures of Noni (Morinda citrifolia L.). Ciencia y Agricultura, 16(1), 3-16. https://doi.org/10.19053/01228420.v16.n1.2019.8802.spa
dc.relation.referencesSavón, L., Scull, I., & Martínez, M. (2007). Integral Foliage Meal for Poultry Feeding. Chemical Composition, Physical Properties and Phytochemical Screening. Cuban Journal of Agricultural Science, 41(2), 359-361.spa
dc.relation.referencesSharma, K., & Garg, V. K. (2018). Comparative Analysis of Vermicompost Quality Produced from Rice Straw and Paper Waste Employing Earthworm Eisenia fetida (Sav.). Bioresource Technology, 250, 708-715. https://doi.org/10.1016/j.biortech.2017.11.101.spa
dc.relation.referencesSingh, R., Srivastava, P., Singh, P., Upadhyay, S., & Raghubanshi, A. S. (2019). Human Overpopulation and Food Security: Challenges for the Agriculture Sustainability. In Khosrow-Pour. (ed.), Urban Agriculture and Food Systems: Breakthroughs in Research and Practice (pp. 439-467). Pennsylvania, United States: IGI Global. https://doi.org/10.4018/978-1-5225-8063-8.ch022.spa
dc.relation.referencesSmárason, B. Ö., Alriksson, B., & Jóhannsson, R. (2018). Safe and Sustainable Protein Sources from the Forest Industry–The Case of Fish Feed. Trends in Food Science & Technology, 84, 12-14. https://doi.org/10.1016/j.tifs.2018.03.005.spa
dc.relation.referencesSogbesan, A. O., & Ugwumba, A. A. (2008). Nutritional Values of Some Non-Conventional Animal Protein Feedstuffs Used as Fishmeal Supplement in Aquaculture Practices in Nigeria. Turkish Journal of Fisheries and Aquatic Sciences, 8(1), 159-164.spa
dc.relation.referencesSzukl, P., Podkowaka, Z., Bocianowski, J., Krauklis, D., & Wilczewska, W. (2018). Chemical Composition and Nutritional Value of Maize Grains from Cultivars of Different Breeding and Seed Companies. Journal of Research and Applications in Agricultural Engineering, 63(4), 203-208.spa
dc.relation.referencesTiroesele, B., & Moreki, J. C. (2012). Termites and Earthworms as Potential Alternative Sources of Protein for Poultry. International Journal for Agro Veterinary and Medical Sciences, 6, 368-76. https://doi.org/10.5455/ijavms.174.spa
dc.relation.referencesValverde, D. M. (2010). Usos de la morera (Morus alba) en la alimentación del conejo. El rol de la fibra y la proteína en el tracto digestivo. Agronomía Mesoamericana, 21(2), 357-366. https://doi.org/10.15517/am.v21i2.4900.spa
dc.relation.referencesVidotti, R. M., Carneiro, D. J., & Viegas, E. (2002). Growth Rate of Pacu, Piaractus mesopotamicus, Fingerlings Fed Diets Containing Co-Dried Fish Silage as Replacement of Fish Meal. Journal of Applied Aquaculture, 12(4), 77-88. https://doi.org/10.1300/J028v12n04_07.spa
dc.relation.referencesVielma, R. R., Durán, J. F., León, L. A., & Medina, A. (2003). Valor nutritivo de la harina de lombriz (Eisenia foetida) como fuente de aminoácidos y su estimación cuantitativa mediante cromatografía en fase reversa (HPLC) y derivatización precolumna con o-ftalaldehído (OPA). Ars Pharmaceutica, 44(1), 43-58.spa
dc.relation.referencesYang, F., Wang, L., Wang, G., Du, P., & Zhang, Y. (2015). Organic Matter and Nitrogen Distribution, and Functional Groups of Filter at Earthworm Packing Bed in Vermifiltration. Polish Journal of Environmental Studies, 24(1), 375-380.spa
dc.relation.referencesZhenjun, S., Xianchun, L., Lihui, S., & Chunyang, S. (1997). Earthworm as a Potential Protein Resource. Ecology of Food and Nutrition, 36(2-4), 221-236. https://doi.org/10.1080/03670244.1997.9991517.spa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadasspa
dc.subject.armarcLombriz de tierra - Nutrición-
dc.subject.armarcLombricultura - Aspectos nutricionales-
dc.subject.armarcAgrosaviaspa
dc.subject.proposalCorn mealspa
dc.subject.proposalEarthwormspa
dc.subject.proposalProtein sourcespa
dc.subject.proposalRice powderspa
dc.subject.proposalSoy cake mealspa
dc.subject.proposalWheat branspa
dc.relation.ispartofjournalRevista Ciencia y Agricultura;Volumen 16, número 2 (Mayo-Agosto 2019)spa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:Revista Ciencia y Agricultura

Files in This Item:
File Description SizeFormat 
PPS_1445_Chemical_composition_earthworn.pdfArchivo principal460.42 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons