Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2880
Title: Efecto del nitrógeno y el potasio sobre el intercambio gaseoso y la distribución de biomasa en albahaca (Ocimum basillicum L.)
Other Titles: Effect of nitrogen and potassium on gaseous exchange and biomass distribution in basil (Ocimum basillicum L.)
Authors: Combatt Cabellero, Enrique Miguel
Pérez Polo, Dairo Javier
Jarma Orozco, Alfredo de Jesús
Keywords: Albahaca: Ocimum basillicum L.
Albahaca - Aspectos fisiológicos
Nutrición mineral
Plantas medicinales
Variables fisiológicas
Masa seca
Issue Date: 1-Jan-2018
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Combatt Cabellero, E. M., Pérez Polo, D. J. & Jarma Orozco, A. J. (2018). Efecto del nitrógeno y el potasio sobre el intercambio gaseoso y la distribución de biomasa en albahaca (Ocimum basillicum L.), 12(1), 192-201. DOI: https://doi.org/10.17584/rcch.2018v12i1.7871. http://repositorio.uptc.edu.co/handle/001/2880
Abstract: La albahaca es considerada una planta promisoria de reciente explotación en Colombia, pero entre las limitaciones para su expansión, se encuentra la implementación de un plan de nutrición con la aplicación de nitrógeno y potasio, que permita el incremento y sostenibilidad de la producción. El objetivo del trabajo fue determinar el efecto de la fertilización con nitrógeno y potasio sobre variables de intercambio gaseoso, ganancia de biomasa e índice de cosecha (IC) de la albahaca (Ocimum basillicum L.) cv. Nufar F1. La investigación fue realizada en condiciones de umbráculo en la Facultad de Ciencias Agrícolas de la Universidad de Córdoba, Colombia. Se utilizó una matriz Box-Berard aumentada 3 (2k+2k+2k+1+1), para la obtención de combinaciones de nitrógeno y potasio. Las respuestas de intercambio gaseoso evaluadas fueron: tasa de fotosíntesis, conductancia estomática y concentración interna de CO2. En cuanto a biomasa, se evaluó masa seca de raíz, tallo, hoja e índice de cosecha. Los resultados más relevantes indicaron que las máximas tasas de fotosíntesis (17,3 μmol CO2 m-2 s-1) fue observada aplicando 190 kg ha-1 N y 12,5 kg ha-1 K, en tanto que la conductancia estomática fue mayor (65,13 mmol CO2 m-2 s-1), con la misma dosis de N pero con dosis de K de 237,5 kg ha-1. Los valores más altos de masa seca de raíces, tallos y hojas fueron encontradas con las máximas dosis de N (190 kg ha-1), aunque para el potasio las combinaciones que incrementaron la mayor acumulación de biomasa en raíces, tallos y hojas fueron 180,69; 237,5 y 12,5 kg ha-1, respectivamente.
Description: 1 recurso en línea (páginas 192-201).
metadata.dcterms.bibliographicCitation: Agronet. 2013. Base de datos de estadísticas agrícolas: área, producción, rendimiento y participación. En: http:// www.agronet.gov.co; consulta: enero de 2016.
Azcón-Bieto, J. y M. Talón. 2008. Fundamentos de fisiología vegetal. 2a ed. Editorial Mc Graw Hill Interamericana, Madrid, España.
Barker, A. y D. Pilbeam (eds.). 2007. Handbook of plant nutrition. CRC Taylor & Francis Group, Boca Raton, FL, USA.
Biesiada, A. y A. Kuś. 2010. The effect of nitrogen fertilization and irrigation on yielding and nutritional status of sweet basil (Ocimum basillicum L.). Acta Sci. Pol. Hortorum Cultus 9, 3-12.
Bonilla, C. y M. Guerrero. 2010. Albahaca (Ocimum basillicum L.), producción y manejo poscosecha. Corredor Tecnológico Agroindustrial, Cámara de Comercio de Bogotá; Universidad Nacional de Colombia, Bogotá, Colombia.
Box, G. 1954. The exploration and exploitation of the response surfaces: some general considerations and examples. Biometrics 10(1), 16-60. Doi: 10.2307/3001663
Búfalo, J., C. Cantrell., T. Astatkiec, V. Zheljazkov, A. Gawde y C. Fernandes. 2015. Organic versus conventional fertilization effects on sweet basil (Ocimum basillicum L.) growth in a greenhouse system. Ind. Crops Prod. 74, 249-254. Doi: 10.1016/j.indcrop.2015.04.032
Cenóz, P. y A. Burgos. 2005. Influencia de la fertilización nitrogenada en el rendimiento de la albahaca (Ocimum basillicum L.). Hortic. Argent. 24, 56-57.
Ding, Y., W. Luo y G. Xu. 2006. Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Ann. Appl. Biol. 149, 111-123. Doi: 10.1111/j.1744-7348.2006.00080.x
Ferreira, S., L. Bulegon., R. Yassue y M. Echer. 2016. Efeito da adubação nitrogenada e da sazonalidade na produtividade de Ocimum basillicum L. Rev. Bras. Plantas Med. 18(1), 67-73. Doi: 10.1590/1983-084X/15_035
Frabboni, L., G. da Simone y V. Russo. 2011. The influence of different nitrogen treatments on the growth and yield of basil (Ocimum basillicum L.). J. Chem. Chem. Eng. 5, 799-803.
Golcz, A., B. Politycka y K. Seidler-Łożykowska. 2006. The effect of nitrogen fertilization and stage of plant development on the mass and quality of sweet basil leaves (Ocimum basillicum L.). Herba Pol. 52, 22-30.
Hu, W., W. Zhao, J. Yang, D. Oosterhuis, D. Loka y Z. Zhou. 2016. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiol. Biochem. 101, 113- 123. Doi: 10.1016/j.plaphy.2016.01.019
Jaćimović, G., J. Crnobarac., J.T. Ninić., B. Marinković, J. Ninić-Todorović y J. Štetić. 2010. The yield and morphological properties of calendula and basil in relation to nitrogen fertilization. Godina. 34, 69-79.
Jákli, B., E. Tavakola, M. Tränknera, M. Senbayrama y K. Dittert. 2017. Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency. J Plant Physiol. 209, 20-30. Doi: 10.1016/j.jplph.2016.11.010
Koba, K., P.W. Poutouli., C. Raynaud., J.P. Chaumont y K. Sada. 2009. Chemical composition and antimicrobial properties of different basil essentials oils chemotypes from Togo. Bangladesh J. Pharmacol. 4, 1-8.
Malik, A.A., S. Suryapani y J. Ahmad. 2011. Chemical vs organic cultivation of medicinal and aromatic plants: the choice is clear. Int. J. Med. Arom. Plants 1, 5-13.
Marschner, H. 2002. Mineral nutrition of higher plants. Academic Press, New York, NY, USA.
Matsumoto, S., G. Araujo y A. Viana. 2013. Growth of sweet basil depending on nitrogen and potassium doses. Hortic. Bras. 31(3), 489-493. Doi: 10.1590/ S0102-05362013000300024
Mejía, M. 2010. Conceptos sobre fisiología de absorción y funciones de los minerales en la nutrición de las plantas. Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Palmira, Colombia.
Nguyen, P.M.N., E.M. Kwee y E.D. Niemeyer. 2010. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basillicum L.). Food Chem. 123, 1235-1241. Doi: 10.1016/j. foodchem.2010.05.092
Nurzyńska-Wierdak, R., E. Rożek., K. Dzida y B. Borowski. 2012. Growth response to nitrogen and potassium fertilization of common basil (Ocimum basillicum L.) plants. Acta Sci. Pol. Hortorum Cultus 11(2), 275-288.
Pacheco, A. y A. Jürgen. 2005. Plantas aromáticas como cultivo intercalado, experiencias y efectos alelopáticos sobre el café (Coffea arabica L.). pp. 207-216. En: Memorias I Congreso Internacional de Plantas Medicinales en Villahermosa. Tabasco, México.
Palencia, S.G., T. Mercado-Fernández, y E. Combatt-Caballero. 2006. Estudio agroclimático del departamento de Córdoba, Universidad de Córdoba, Montería, Colombia.
Patil, N.M. 2010. Biofertilizer effect on growth, protein and carbohydrate content in Stevia rebaudiana var. Bertoni. Rec. Res. Sci. Tecnol. 2(10), 42-44.
Pereyra, M. 2002. Asimilación del nitrógeno en plantas. En: http://exa.unne.edu.ar/biologia/fisiologia.vegetal/ Asimilacion%20del%20nitrogeno.pdf; consulta: marzo de 2017.
Pessarakli, M. (ed.) 2001. Handbook of plant and crop physiology. 2nd ed. CRC Press, Boca Raton, FL, USA. Doi: 10.1201/9780203908426
R Development Core Team. 2015. R: A language and environment for statistical computing Version. 3.2.2.. R Foundation for Statistical Computing, Vienna, Austria.
Rincón, L., A. Pérez, C. Pellicer, J. Sáenz y A. Abadía. 2002. Influencia de la fertilización nitrogenada en la absorción de nitrógeno y acumulación de nitratos en la le
Robertson, G.P. y P.M. Vitousek. 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Ann. Rev. Environ. Resour. 34, 97-125. Doi: 10.1146/annurev. environ.032108.105046
Sharafzadeh, S. y O. Alizadeh. 2011. Nutrient supply and fertilization of basil. Adv. Environ. Biol. 5, 956- 960.
Sifola, M.I. y G. Barbieri. 2006. Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Sci. Hort. 108, 408-413. Doi: 10.1016/j.scienta.2006.02.002
Taiz, L. y E. Zeiger, 2006. Plant physiology. 4th ed. Sinauer Associates, Sunderland, MA, USA.
Wahab, A.S.A. y L. Hornok. 1982. Effect of NPK fertilization on Ocimum basillicum yield and essential oil content. Kert. Egyet. Közlem. 45, 65-73.
Wang, N., H. Hua., A. Egrinya Eneji., Z. Li., L. Duan y X. Tian. 2012. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). J. Photochem. Photobiol. B. 110, 1-8. Doi: 10.1016/j.jphotobiol.2012.02.002
Zheljazkov, V., C. Cantrell, B. Tekwani y S. Khan. 2008. Content, composition, and bioactivity of the essential oils of three basil genotypes as a function of harvesting. J. Agric. Food Chem. 56(2), 380-385. Doi: 10.1021/jf0725629
URI: http://repositorio.uptc.edu.co/handle/001/2880
ISSN: 2422-3719
Series/Report no.: Revista Colombiana de Ciencias Hortícolas;Volumen 12, número 1 (Enero-Abril 2018)
Appears in Collections:Revista Colombiana de Ciencias Hortícolas

Files in This Item:
File Description SizeFormat 
PPS_1499.pdfArchivo principal502.8 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons