Please use this identifier to cite or link to this item: http://repositorio.uptc.edu.co/handle/001/2918
Title: Detección de plantas asintomáticas de Solanum lycopersicum L. infectadas con Fusarium oxysporum usando espectroscopia de reflectancia VIS
Other Titles: Detection of asymptomatic Solanum lycopersicum L. plants infected with Fusarium oxysporum using reflectance VIS spectroscopy
Authors: Marín Ortiz, Juan Carlos
Hoyos Carvajal, Lilliana María
Botero Fernández, Verónica
Keywords: Fusarium oxysporum
Plantas - Resistencia a enfermedades y plagas
Reflectancia espectral -- Mediciones
Reflectancia
Agrosavia
Enfermedades
Espectroscopia VIS/NIR
Métodos de detección
Análisis multivariado
Issue Date: 1-May-2018
Publisher: Universidad Pedagógica y Tecnológica de Colombia
Citation: Marín Ortiz, J. C., Hoyos Carvajal, L. M. & Botero Fernández, V. (2018). Detección de plantas asintomáticas de Solanum lycopersicum L. infectadas con Fusarium oxysporum usando espectroscopia de reflectancia VIS. Revista Colombiana de Ciencias Hortícolas, 12(2), 436-446. DOI: http://doi.org/10.17584/rcch.2018v12i2.7293. http://repositorio.uptc.edu.co/handle/001/2918
Abstract: Las plantas asintomáticas son reservorios de patógenos, ya que pueden permanecer infectadas la mayor parte de su ciclo de desarrollo, convirtiéndose en fuente de contaminación para el resto del cultivo. El objetivo de este estudio fue evaluar un método de detección y discriminación de dos cepas de Fusarium oxysporum en tomate usando espectroscopia. La enfermedad en las plantas de tomate inoculadas con la cepa aislada de gulupa (F05) fue mayor a la observada en la cepa aislada de tomate (F07), presentando valores de 60,0% (11 días) y 81,8% (22 días); la cepa F07 presentó incidencias de 30,0 y 64,3% en ambas mediciones. La planta infectada con la cepa F05 fue mejor discriminada en el periodo de incubación de la enfermedad en ambos periodos de tiempo en los Análisis de Componentes Principales (PCA) y Análisis Discriminantes Lineales (LDA) realizados con los controles en comparación con la cepa F07. Estos resultados sugieren que la espectroscopia de reflectancia VIS es un método sensible y confiable que puede ser adecuado para el diagnóstico temprano de enfermedades en plantas.
Description: 1 recurso en línea (páginas 436-446).
metadata.dcterms.bibliographicCitation: Abu-Khalaf, N. y M. Salman. 2014. Visible/Near infrared (VIS/NIR) spectroscopy and multivariate data analysis (MVDA) for identification and quantification of olive leaf spot (OLS) disease. Palest. Tech. Univ. Res. J. 2(1), 1-8.
Baayen, R., P.K. O’Donnell, P.J. Bonants, E. Cigelnik, L. Kroon, E.J. Roebroeck y C. Waalwijk. 2000. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90, 891-900. Doi: 10.1094/ PHYTO.2000.90.8.891
Chaerle, L. y D. Van der Straeten. 2000. Imaging techniques and the early detection of plant stress. Trends Plant Sci. 5, 495-501. Doi: 10.1016/S1360-1385(00)01781-7
Couture, J.J., S.P. Serbin y P. Townsend. 2013. Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage. New Phytol. 198(1), 311-9. Doi: 10.1111/nph.12159
Feller, C., H. Bleiholder, L. Buhr, H. Hack, M. Hess, R. Klose, U. Meier, R. Stauss, T. van den Boom y E. Weber. 1995. Phänologische Entwicklungsstadien von Gemüsepflanzen: Fruchtgemüse und Hülsenfrüchte. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 356, 217-232.
Ferri, C., R. Formaggio y M. Schiavinato. 2004. Narrow band spectral indexes for chlorophyll determination in soybean canopies [Glycine max (L.) Merril]. Braz. J. Plant Physiol. 16(3), 131-136. Doi: 10.1590/ S1677-04202004000300002
Fourty, T., F. Baret, S. Jacquemoud, G. Schmuck y J. Verdebout. 1996. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems. Remote Sens. Environ. 56, 104-117. Doi: 10.1016/0034-4257(95)00234-0
Franke, J. y G. Menz. 2007. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agric. 8(3), 161-172. Doi: 10.1007/s11119-007-9036-y
Garcés, E., A. Orozco y A.C. Zapata. 1999. Fitopatología en flores. Acta Biol Colomb. 4(2), 5-26.
Garcés, E., G.R. Bautista y H. Valencia. 2001. Fusarium oxysporum el hongo que nos falta conocer. Acta Biol. Colomb. 6(1), 7-25.
Gitelson, A., A. Viña, V. Ciganda, D. Rundquist y T.J. Arkebauer. 2005. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32. Doi: 10.1029/2005GL022688
Isaksson, T. y T. Naes. 1988. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy. Appl. Spectrosc. 42(7), 1273- 1284. Doi: 10.1366/0003702884429869
Jones, J. y P. Crill. 1974. Susceptibility of “resistant” tomato cultivars to fusarium wilt. Phytopathology 64, 1507- 1510. Doi: 10.1094/Phyto-64-1507
Kolander, T., M.J.C. Bienapfl, J.E. Kurle y D.K. Malvick. 2012. Symptomatic and asymptomatic host range of Fusarium virguliforme, the causal agent of soybean sudden death syndrome. Plant Dis. 96(8), 1148-1153. Doi: 10.1094/PDIS-08-11-0685-RE
Lafontaine, P. y N. Benhamou. 2010. Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f.sp. radicis-lycopersici. Biocontrol Sci. Technol. 6(1), 111-124. Doi: 10.1080/09583159650039575
Leslie, J.F. y B.A. Summerell. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA. Doi: 10.1002/9780470278376
Lorenzini, G., L. Guidi, C. Nali. C. Ciompi y G.F. Soldatini. 1997. Photosynthetic response of tomato plants to vascular wilt diseases. Plant Sci. 124(2), 143-152. Doi: 10.1016/S0168-9452(97)04600-1
Mahlein, A.K., U. Steiner, C. Hillnhütter, H. Dehne y E.C. Oerke. 2012. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8(3), PMC3274483. Doi: 10.1186/1746-4811-8-3
Morid, B., S. Hajmansoor y N. Kakvan. 2012. Screening of resistance genes to fusarium root rot and fusarium wilt diseases in tomato (Lycopersicon esculentum) cultivars using RAPD and CAPs markers. Eur. J. Exp. Biol. 2(4), 931-939.
Naidua, R.A., E.M. Perryb, F.J. Pierceb y T. Mekuriaa. 2008. The potential of spectral reflectance technique for the detection of grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comput. Electron. Agr. 66, 38-45. Doi: 10.1016/j. compag.2008.11.007
Olivain, C., S. Trouvelot, M.N. Binet, C. Cordier, A. Pugin y C. Alabouvette. 2003. Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum. Appl. Environ. Microbiol. 69(9), 5453- 5462. Doi: 10.1128/AEM.69.9.5453-5462.2003
Ortiz, E. y L. Hoyos-Carvajal. 2016. Standard methods for inoculations of F. oxysporum and F. solani in Passiflora. Afr. J. Agric. Res. 11(17), 1569-1575. Doi: 10.5897/ AJAR2015.10448
Ramachandra, R. y G.R. Ravishankarb. 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv. 20, 101-153. Doi: 10.1016/ S0734-9750(02)00007-1
Rivard, C. y F. Louws. 2011. Tomato grafting for disease resistance and increased productivity. Agricultural Innovations. Sustainable Agriculture Research and Education (SARE) program. Fact Sheets 12AGI2011. En: http://www.sare.org/factsheet/12AGI2011 consulta: febrero de 2018.
Sankaran, S., A. Mishra, J. Mari y R. Ehsani. 2011. Visible- near infrared spectroscopy for detection of Huanglongbing in citrus orchards. Comput. Electron. Agr. 77, 127-134. Doi: 10.1016/j.compag.2011.03.004
Spinelli, F., M. Noferini y G. Costa. 2006. Near infrared spectroscopy (NIRs): Perspective of fire blight detection in asymptomatic plant material. Acta Hortic. 704, 87-90. Doi. 10.17660/ActaHortic.2006.704.9
Szuvandzsiev, P., L. Helyes, A. Lugasi, C. Szántó, P. Baranowski y Z. Pék. 2014. Estimation of antioxidant components of tomato using VIS-NIR reflectance data by handheld portable spectrometer. Int. Agroph. 28(4), 521-527. Doi: 10.2478/intag-2014-0042
Ustina, S.L., A.A. Gitelsonb, S. Jacquemoudc, M. Schaepmand, G. Asnere, J.A. Gamonf y P. Zarco-Tejadag. 2009. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 113(1), 67-77. Doi: 10.1016/j. rse.2008.10.019
Zhang, M., Z. Qin, X. Liu y S.L. Ustin. 2003. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int. J. Appl. Earth Observ. Geoinf. 4, 295-310. Doi: 10.1016/S0303-2434(03)00008-4
URI: http://repositorio.uptc.edu.co/handle/001/2918
ISSN: 2422-3719
Series/Report no.: Revista Colombiana de Ciencias Hortícolas;Volumen 12, número 2 (Mayo-Agosto 2018)
Appears in Collections:Revista Colombiana de Ciencias Hortícolas

Files in This Item:
File Description SizeFormat 
PPS_1520.pdfArchivo principal872.73 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons