Show simple item record

dc.contributor.advisorPineda Triana, Yaneth
dc.contributor.advisorPeña Rodríguez, Gabriel
dc.contributor.authorLara González, Luis Angel
dc.date.accessioned2021-08-19T22:32:27Z
dc.date.available2021-08-19T22:32:27Z
dc.date.issued2019
dc.identifier.citationLara González, L. A. (2019). Diseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetita. (Tesis doctoral). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/3692spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/3692
dc.description.abstractSpa: El trabajo de investigación presenta los resultados obtenidos al evaluar las propiedades estructurales, mecánicas, térmicas, eléctricas y magnéticas de un material compuesto a base de resina de poliéster termoestable y polvos de magnetita, en función de la concentración, tamaño y alineación de las partículas de polvo utilizadas como relleno funcional en el refuerzo.spa
dc.format.extent1 recurso en línea (214 páginas) : ilustraciones, figuras, tablas.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleDiseño y caracterización de un material compuesto a base resina de poliéster y polvos de magnetitaspa
dc.typeTrabajo de grado - Doctoradospa
dcterms.audienceInvestigadoresspa
dcterms.audienceDocentesspa
dcterms.audienceEstudiantesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.referencesO. Philippova, A. Barabanova, V. Molchanov, and A. Khokhlov, “Magnetic polymer beads: Recent trends and developments in synthetic design and applications,” Eur. Polym. J., vol. 47, no. 4, pp. 542–559, Apr. 2011.spa
dc.relation.referencesA. M. Schmidt, “Thermoresponsive magnetic colloids,” Colloid Polym. Sci., vol. 285, no. 9, pp. 953–966, 2007.spa
dc.relation.referencesA. L. Moore and L. Shi, “Emerging challenges and materials for thermal management of electronics,” Mater. Today, vol. 17, no. 4, pp. 163–174, 2014.spa
dc.relation.referencesD. C. F. Chan, D. B. Kirpotin, and P. A. Bunn, “Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer,” J. Magn. Magn. Mater., vol. 122, no. 1, pp. 374–378, 1993spa
dc.relation.referencesG. Glöckl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, and W. Weitschies, “The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia,” J. Phys. Condens. Matter, vol. 18, no. 38, p. S2935, 2006.spa
dc.relation.referencesD. Chicot et al., “Mechanical properties of magnetite (Fe3O4), hematite (α-Fe2O3) and goethite (α-FeO·OH) by instrumented indentation and molecular dynamics analysis,” Mater. Chem. Phys., vol. 129, no. 3, pp. 862–870, Oct. 2011.spa
dc.relation.referencesB. Weidenfeller, M. Höfer, and F. Schilling, “Thermal and electrical properties of magnetite filled polymers,” Compos. Part A Appl. Sci. Manuf., vol. 33, no. 8, pp. 1041–1053, Aug. 2002.spa
dc.relation.referencesX. Liu et al., “Preparation and characterization of superparamagnetic functional polymeric microparticles,” China Particuology, vol. 1, no. 2, pp. 76–79, Jun. 2003spa
dc.relation.referencesX. . Li, S. Takahashi, K. Watanabe, Y. Kikuchi, and M. Koishi, “Fabrication and characteristics of Fe3O4-polymer composite particles by hybridization,” Powder Technol., vol. 133, no. 1–3, pp. 156–163, Jul. 2003.spa
dc.relation.referencesG. C. Papaefthymiou, “Nanoparticle magnetism,” Nano Today, vol. 4, pp. 438–447, 2009.spa
dc.relation.referencesR. Mincheva et al., “Synthesis of polymer-stabilized magnetic nanoparticles and fabrication of nanocomposite fibers thereof using electrospinning,” Eur. Polym. J., vol. 44, no. 3, pp. 615–627, Mar. 2008.spa
dc.relation.referencesA. S. for T. and M. C. D. on E. and E. I. Materials, Standard test methods for DC resistance or conductance of insulating materials. ASTM International, 2007.spa
dc.relation.referencesQuantum Design, “Vibrating Sample Magnetometer ( VSM ) Option User ’s Manual,” no. 1096, p. 122, 2011.spa
dc.relation.referencesM. Gustavsson, E. Karawacki, and S. E. Gustafsson, “Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors,” Rev. Sci. Instrum., vol. 65, no. 12, pp. 3856–3859, 1994.spa
dc.relation.referencesB. D. Cullity, Answers to problems: Elements of X-ray diffraction. Addison-Wesley Publishing Company, 1978.spa
dc.relation.referencesR. C. C. Surichaqui, “FACULTAD DE CIENCIAS ESCUELA PROFESIONAL DE INGENIERÍA FÍSICA.” UNIVERSIDAD NACIONAL DE INGENIERÍA, 2013.spa
dc.relation.referencesT. E. Mitchell, “High Voltage Electron Microscopy for Microstructural Analysis,” in Microstructural Analysis, Springer, 1973, pp. 125–152.spa
dc.relation.referencesS. D. Thoppul, J. Finegan, and R. F. Gibson, “Mechanics of mechanically fastened joints in polymer–matrix composite structures – A review,” Compos. Sci. Technol., vol. 69, no. 3–4, pp. 301–329, Mar. 2009.spa
dc.relation.referencesM. A. Oladunjoye and O. A. Sanuade, “Thermal diffusivity, thermal effusivity and specific heat of soils in Olorunsogo Powerplant, southwestern Nigeria,” Int. J. Res. Rev. Appl. Sci., vol. 13, no. 2, pp. 502–521, 2012.spa
dc.relation.referencesX. Ma, S. Omer, W. Zhang, and S. B. Riffat, “Thermal conductivity measurement of two microencapsulated phase change slurries,” Int. J. Low Carbon Technol., vol. 3, no. 4, pp. 245–253, 2008.spa
dc.relation.referencesS. E. Gustafsson, “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials,” Rev. Sci. Instrum., vol. 62, no. 3, pp. 797–804, 1991.spa
dc.relation.referencesM. Kallio, The elastic and damping properties of magnetorheological elastomers. 2005.spa
dc.relation.referencesH. Nagai et al., “Thermal conductivity measurement of molten silicon by a hot-disk method in short-duration microgravity environments,” Jpn. J. Appl. Phys., vol. 39, no. 3R, p. 1405, 2000.spa
dc.relation.referencesF. Enrique and S. Tacumá, “Producción y caracterización de materiales compuestos con matrices de resina epoxi reforzados con ripio de llanta y magnetita en diferentes proporciones Producción y caracterización de materiales compuestos con matrices de resina epoxi reforzados con ripi,” 2018.spa
dc.relation.referencesD. M. Aljure García, “Análisis estructural y electrónico de la perovskita doble compleja de LaBiFe2O6.” Universidad Nacional de Colombia-Sede Bogotá.spa
dc.relation.referencesC. R. S. Tool, “VersaLab Free Disign Quantum,” Trans. ASME J. Appl. Mech., no. October, pp. 1–47, 2006.spa
dc.relation.referencesW. A. Wooster, Crystal structure, vol. 236, no. 5345. 1972.spa
dc.relation.referencesH. R. Rollinson, “Ilmenite-magnetite geothermometry in trondhjemites from the Scourian complex of NW Scotland,” Mineral. Mag., vol. 43, no. 325, pp. 165–170, 1979.spa
dc.relation.referencesM. Tadić, N. Čitaković, M. Panjan, Z. Stojanović, D. Marković, and V. Spasojević, “Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles,” J. Alloys Compd., vol. 509, no. 28, pp. 7639–7644, 2011.spa
dc.relation.referencesA. Mücke and A. R. Cabral, “Redox and nonredox reactions of magnetite and hematite in rocks,” Chemie der Erde-Geochemistry, vol. 65, no. 3, pp. 271–278, 2005.spa
dc.relation.referencesT. Otake, D. J. Wesolowski, L. M. Anovitz, L. F. Allard, and H. Ohmoto, “Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions,” Earth Planet. Sci. Lett., vol. 257, no. 1–2, pp. 60–70, 2007.spa
dc.relation.referencesA. Sami, E. David, and M. Fréchette, “Procedure for evaluating the crystallinity from X-ray diffraction scans of high and low density polyethylene/SiO2 composites,” Annu. Rep. - Conf. Electr. Insul. Dielectr. Phenomena, CEIDP, pp. 2–5, 2010spa
dc.relation.referencesC. Ruddy, E. Ahearne, and G. Byrne, “A review of magnetorheological elastomers: properties and applications,” … Sci. Res. http//www. ucd. ie …, 2012.spa
dc.relation.referencesN. S. Murthy and H. Minor, “Analysis of poorly crystallized polymers using resolution enhanced X-ray diffraction scans,” Polymer (Guildf)., vol. 36, no. 13, pp. 2499–2504, 1995.spa
dc.relation.referencesC. Aguilar, “Análisis del tamaño de cristalita en aleaciones Cu-Mo procesadas por aleado mecánico ANALISIS DEL TAMAÑO DE CRISTALITA EN ALEACIONES Cu-,” no. January 2009, 2016.spa
dc.relation.referencesP. E. Gharagozloo and K. E. Goodson, “Aggregate fractal dimensions and thermal conduction in nanofluids,” J. Appl. Phys., vol. 108, no. 7, p. 74309, 2010.spa
dc.relation.referencesL. Téllez, A. Orlando, and G. Posada, “Caracterización magnética de material compuesto con matriz de resina epoxi y llanta en desuso reforzado con magnetita en diferentes proporciones Production and characterization of magnetite in different proportions,” vol. 22, no. 44, 2019.spa
dc.relation.referencesK. Supattarasakda, K. Petcharoen, T. Permpool, A. Sirivat, and W. Lerdwijitjarud, “Control of hematite nanoparticle size and shape by the chemical precipitation method,” Powder Technol., vol. 249, pp. 353–359, 2013.spa
dc.relation.referencesA. International, ASTM D638-14, Standard Test Method for Tensile Properties of Plastics. ASTM International, 2015.spa
dc.relation.referencesA. I. A. D695-15, “Standard test method for compressive properties of rigid plastics.” Pennsylvania United States, 2015.spa
dc.relation.referencesM. A. Munawar et al., “Investigation of functional, physical, mechanical and thermal properties of TiO 2 embedded polyester hybrid composites: A design of experiment (DoE) study,” Prog. Nat. Sci. Mater. Int., vol. 28, no. 3, pp. 266–274, 2018.spa
dc.relation.referencesB. Torres, A. García-Escorial, J. Ibáñez, and M. Lieblich, “Propiedades mecánicas de materiales compuestos de matriz de aluminio reforzados con intermetálicos,” Rev. Metal., vol. 37, no. 2, pp. 225–229, 2010.spa
dc.relation.referencesV. K. Patel and N. Rawat, “Physico-mechanical properties of sustainable SagwanTeak Wood Flour/Polyester Composites with/without gum rosin,” Sustain. Mater. Technol., vol. 13, no. March, pp. 1–8, 2017.spa
dc.relation.referencesZ. Varga, G. Filipcsei, and M. Zrínyi, “Magnetic field sensitive functional elastomers with tuneable elastic modulus,” Polymer (Guildf)., vol. 47, no. 1, pp. 227–233, Jan. 2006.spa
dc.relation.referencesP. Baldión et al., “Estudio comparativo de las propiedades mecanicas de diferentes tipos de resina compuesta,” no. March, pp. 1–5, 2017.spa
dc.relation.referencesG. Farzi, M. Lezgy-nazargah, A. Imani, M. Eidi, and M. Darabi, “Mechanical , thermal and microstructural properties of epoxy-OAT composites,” Constr. Build. Mater., vol. 197, pp. 12–20, 2019.spa
dc.relation.referencesR. Baptista, A. Mendão, M. Guedes, and R. Marat-Mendes, “An experimental study on mechanical properties of epoxy-matrix composites containing graphite filler,” Procedia Struct. Integr., vol. 1, pp. 74–81, 2016.spa
dc.relation.referencesH. Tabatabai, M. Janbaz, and A. Nabizadeh, “Mechanical and thermo-gravimetric properties of unsaturated polyester resin blended with FGD gypsum,” Constr. Build. Mater., vol. 163, pp. 438–445, 2018.spa
dc.relation.referencesB. Abu-Jdayil, A. H. I. Mourad, and A. Hussain, “Investigation on the mechanical behavior of polyester-scrap tire composites,” Constr. Build. Mater., vol. 127, pp. 896– 903, 2016.spa
dc.relation.referencesJ. Khedari, B. Suttisonk, N. Pratinthong, and J. Hirunlabh, “New lightweight composite construction materials with low thermal conductivity,” Cem. Concr. Compos., vol. 23, no. 1, pp. 65–70, 2001.spa
dc.relation.referencesJ. C. Morel, A. Mesbah, M. Oggero, and P. Walker, “Building houses with local materials: means to drastically reduce the environmental impact of construction,” Build. Environ., vol. 36, no. 10, pp. 1119–1126, 2001.spa
dc.relation.referencesY. M. De Moraes et al., “Mechanical behavior of mallow fabric reinforced polyester matrix composites,” J. Mater. Res. Technol., vol. 7, no. 4, pp. 515–519, 2018.spa
dc.relation.referencesA.-H. I. Mourad, N. Bekheet, A. El-Butch, L. Abdel-Latif, and D. Nafee, “Effect of die drawing process on the mechanical behaviour of polypropylene,” in Key Engineering Materials, 2004, vol. 261, pp. 1677–1682.spa
dc.relation.referencesY. H. Chen, “Thermal properties of nanocrystalline goethite, magnetite, and maghemite,” J. Alloys Compd., vol. 553, pp. 194–198, 2013.spa
dc.relation.referencesM. Y. Razzaq, M. Anhalt, L. Frormann, and B. Weidenfeller, “Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers,” Mater. Sci. Eng. A, vol. 444, no. 1–2, pp. 227–235, Jan. 2007.spa
dc.relation.referencesM. Aliahmad and N. Nasiri Moghaddam, “Synthesis of maghemite (γ-Fe 2 O 3 ) nanoparticles by thermal-decomposition of magnetite (Fe 3 O 4 ) nanoparticles,” Mater. Sci. Pol., vol. 31, no. 2, pp. 264–268, 2013.spa
dc.relation.referencesM. V. F. Ferreira et al., “Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers,” J. Mater. Res. Technol., vol. 6, no. 4, pp. 396–400, 2017spa
dc.relation.referencesC. A. Boynard and J. R. M. D’Almeida, “Morphological characterization and mechanical behavior of sponge gourd (Luffa cylindrica)-polyester composite materials,” Polym. - Plast. Technol. Eng., vol. 39, no. 3, pp. 489–499, 2000.spa
dc.relation.referencesI. Piñeres, N. Torres, J. Trochéz, H. Núñez, and E. Ortiz, “Análisis térmico complementario y simultáneo dsc-tga en CSH2PO4,” vol. 1, no. 1, pp. 117–119, 2009.spa
dc.relation.referencesD. Padalia, U. C. Johri, and M. G. H. Zaidi, “Study of cerium doped magnetite (Fe3O4:Ce)/PMMA nanocomposites,” Phys. B Condens. Matter, vol. 407, no. 5, pp. 838–843, Mar. 2012spa
dc.relation.referencesS. N. Monteiro, V. Calado, R. J. S. Rodriguez, and F. M. Margem, “Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers–an Overview,” J. Mater. Res. Technol., vol. 1, no. 2, pp. 117– 126, 2012.spa
dc.relation.referencesL. M. Maldonado and G. P. Rodríguez, “Efecto de la concentración de residuos cerámicos odontológicos en las propiedades termofisicas de materiales compuestos a base de resinas de poliester,” Ing. Investig. y Desarro. I2+ D, vol. 14, no. 2, pp. 2–5, 2014.spa
dc.relation.referencesM. F. Viante, T. M. P. Zanela, A. Stoski, E. C. Muniz, and C. A. P. Almeida, “Magnetic microspheres composite from poly(ethylene terephthalate) (PET) waste: Synthesis and characterization,” J. Clean. Prod., vol. 198, pp. 979–986, 2018.spa
dc.relation.referencesZ. Hashin and S. Shtrikman, “A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials,” J. Appl. Phys., vol. 33, no. 10, pp. 3125–3130, 1962.spa
dc.relation.referencesG. Peña-Rodríguez et al., “Efecto de la concentración de magnetita en la estructura, propiedades eléctricas y magnéticas de un material compuesto a base de resina de poliéster,” TecnoLógicas, vol. 21, no. 41, pp. 13–27, 2018.spa
dc.relation.referencesB. Weidenfeller, M. Anhalt, and W. Riehemann, “Variation of magnetic properties of composites filled with soft magnetic FeCoV particles by particle alignment in a magnetic field,” J. Magn. Magn. Mater., vol. 320, no. 14, pp. e362–e365, Jul. 2008.spa
dc.relation.referencesA. G. Pedroso, D. S. Rosa, and T. D. Z. Atvars, “Manufacture of sheets using postconsumer unsaturated polyester resin/glass fibre composites,” Prog. Rubber Plast. Recycl. Technol., vol. 18, no. 2, pp. 111–125, 2002.spa
dc.relation.referencesM. M. Selvi, P. Manimuthu, K. S. Kumar, and C. Venkateswaran, “Magnetodielectric properties of CoFe2O4-BaTiO 3 core-shell nanocomposite,” J. Magn. Magn. Mater., vol. 369, pp. 155–161, 2014.spa
dc.relation.referencesB. Zhou et al., “Thermal conductivity of aligned CNT/polymer composites using mesoscopic simulation,” Compos. Part A Appl. Sci. Manuf., vol. 90, pp. 410–416, 2016.spa
dc.relation.referencesR. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun., vol. 182, no. 4–6, pp. 273–279, 2000.spa
dc.relation.referencesP. S. Neelakanta, Handbook of electromagnetic materials: monolithic and composite versions and their applications. CRC press, 1995spa
dc.relation.referencesI. Kong, S. Hj Ahmad, M. Hj Abdullah, D. Hui, A. Nazlim Yusoff, and D. Puryanti, “Magnetic and microwave absorbing properties of magnetitethermoplastic natural rubber nanocomposites,” J. Magn. Magn. Mater., vol. 322, no. 21, pp. 3401–3409, 2010.spa
dc.relation.referencesP. Štefcová and M. Schatz, “Magnetic Silicone Rubbers,” Rubber Chem. Technol., vol. 56, no. 2, pp. 322–326, 1983.spa
dc.relation.referencesT. J. Fiske, H. S. Gokturk, and D. M. Kalyon, “Percolation in magnetic composites,” J. Mater. Sci., vol. 32, no. 20, pp. 5551–5560, 1997.spa
dc.relation.referencesJ. Prado et al., “EFECTO DE LA TEMPERATURA DE DEPOSICIÓN SOBRE LA ESTRUCTURA Y RESPUESTA MAGNÉTICA DE PELÍCULAS DELGADAS DE FERRITAS DE NiZn.,” Rev. Colomb. Física, vol. 39, no. 2, 2007.spa
dc.relation.referencesL. A. Ramajo, A. A. Cristóbal, P. M. Botta, J. M. P. López, M. M. Reboredo, and M. S. Castro, “Dielectric and magnetic response of Fe3O4/epoxy composites,” Compos. Part A Appl. Sci. Manuf., vol. 40, no. 4, pp. 388–393, 2009.spa
dc.relation.referencesL. Á. Lara G., “Effect of the acid degradation on the properties of polyester reinforced with glass fibers,” Ing. Investig. y Desarro., vol. 10, no. 1, pp. 64–70, 2010.spa
dc.relation.referencesQuiz José, “Magnetismo y Superconductividad en el material Ru-1222,” 2012.spa
dc.relation.referencesZ. Zhang et al., “Elastic and anelastic anomalies associated with the antiferromagnetic ordering transition in wüstite, FexO,” J. Phys. Condens. Matter, vol. 24, no. 21, p. 215404, 2012.spa
dc.relation.referencesY. Lin, X. Liu, H. Yang, F. Wang, C. Liu, and X. Wang, “Laminated SrTiO 3 -Ni 0.8 Zn 0.2 Fe 2 O 4 magneto-dielectric composites for high frequency applications,” J. Alloys Compd., vol. 688, pp. 571–576, Dec. 2016.spa
dc.relation.referencesE. José et al., “FIGURAS DE LISSAJOUS,” 2013.spa
dc.relation.referencesH. Yang, L. Bai, Y. Lin, F. Wang, and T. Wang, “Magneto-dielectric laminated Ba(Fe0.5Nb0.5)O3-Bi0.2Y2.8Fe5O12 composites with high dielectric constant and high permeability,” Ceramics International, vol. 43, no. 3. Elsevier Ltd, pp. 2903– 2909, 15-Feb-2017.spa
dc.relation.referencesY. Peng et al., “BiFeO3 tailored low loss M-type hexaferrite composites having equivalent permeability and permittivity for very high frequency applications,” J. Alloys Compd., vol. 630, pp. 48–53, 2015.spa
dc.relation.referencesM. L. S. Teo, L. B. Kong, Z. W. Li, G. Q. Lin, and Y. B. Gan, “Development of magneto-dielectric materials based on Li-ferrite ceramics: I. Densification behavior and microstructure development,” J. Alloys Compd., vol. 459, no. 1–2, pp. 557–566, 2008.spa
dc.relation.referencesH. Heuermann, “Calibration of a network analyzer without a thru connection for nonlinear and multiport measurements,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2505–2510, 2008.spa
dc.relation.referencesR. Khorshidi and A. Hassani, “Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite,” Mater. Des., vol. 52, pp. 999–1010, 2013.spa
dc.relation.referencesZ. Y. Shnean, “Mechanical and Physical Properties of High Density Polyethylene Filled With Carbon Black and Titanium Dioxide,” Diyala J. Eng. Sci., vol. 5, no. 1, pp. 147–159, 2011.spa
dc.relation.referencesR. Chen, J. Cheng, and Y. Wei, “Preparation and magnetic properties of Fe3O4 microparticles with adjustable size and morphology,” J. Alloys Compd., vol. 520, pp. 266–271, Apr. 2012.spa
dc.relation.referencesL. Peponi, I. Navarro-Baena, and J. M. Kenny, “7 - Shape memory polymers: properties, synthesis and applications,” M. R. Aguilar and J. S. B. T.-S. P. and their A. Román, Eds. Woodhead Publishing, 2014, pp. 204–236.spa
dc.relation.referencesM. S. Boon and M. Mariatti, “Optimization of magnetic and dielectric properties of surface-treated magnetite-filled epoxy composites by factorial design,” J. Magn. Magn. Mater., vol. 355, pp. 319–324, Apr. 2014.spa
dc.relation.referencesG. Schubert and P. Harrison, “Schubert , G ., and Harrison , P . ( 2015 ) Large-strain behaviour of Magneto- Rheological Elastomers.,” Polym. Test., vol. 42, no. February, pp. 122–134, 2015.spa
dc.relation.referencesJ. Xu, B. Gao, H. Du, and F. Kang, “A statistical model for effective thermal conductivity of composite materials,” Int. J. Therm. Sci., vol. 104, pp. 348–356, 2016.spa
dc.relation.referencesJ. Z. Xu, B. Z. Gao, and F. Y. Kang, “A reconstruction of Maxwell model for effective thermal conductivity of composite materials,” Appl. Therm. Eng., vol. 102, pp. 972– 979, 2016.spa
dc.relation.referencesA. O. Garzón Posada, F. Fajardo, D. Landínez, J. Roa, and G. Peña, “Synthesis, Electrical, Structural and Morphological Characterization of a Composite Material Based on Powdered Magnetite and High Density,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 37, no. September, pp. 57–61, 2017.spa
dc.relation.referencesI. D. M. Lagos and F. J. R. Ubarnes, “Effect of the concentration of magnetite on the structure, electrical and magnetic properties of a polyester resin-based composite,” TecnoLógicas, vol. 19, no. 36, pp. 63–76, 2018.spa
dc.relation.referencesPlasti Quimicas, “Resinas de Poliéster y Viniléster,” p. 12, 2007.spa
dc.relation.referencesE. Poliser and A. P-, “POLISER P-115 A,” pp. 1–2, 2014.spa
dc.relation.referencesA. Gil, “Resinas de poliéster,” p. 14, 2012.spa
dc.relation.referencesE. P. Wohlfarth and K. H. J. Buschow, Ferromagnetic materials: a handbook on the properties of magnetically ordered substances, vol. 2. Elsevier, 1980.spa
dc.relation.referencesJ. Chatterjee, Y. Haik, and C.-J. Chen, “Size dependent magnetic properties of iron oxide nanoparticles,” J. Magn. Magn. Mater., vol. 257, pp. 113–118, 2003.spa
dc.relation.referencesM. R. Jolly, J. D. Carlson, and B. C. Muñoz, “A model of the behaviour of magnetorheological materials,” Smart Mater. Struct., vol. 5, pp. 607–614, 1999spa
dc.relation.referencesZ. Varga, G. Filipcsei, and M. Zrínyi, “Smart composites with controlled anisotropy,” Polymer (Guildf)., vol. 46, no. 18, pp. 7779–7787, Aug. 2005spa
dc.relation.referencesJ. Ugelstad, T. Ellingsen, A. Berge, and O. B. Helgee, “Magnetic polymer particles and process for the preparation thereof.” Google Patents, 1987.spa
dc.relation.referencesE. Besoain, Mineralogía de arcillas de suelos, no. 60. Bib. Orton IICA/CATIE, 1985.spa
dc.relation.referencesL. G. García Pérez, “Magnetita en el cuerpo humano: consecuencias potenciales y caracterización básica de la Magnetita biogénica nanométrica,” 2013.spa
dc.relation.referencesA. O. Garzón Posada, “Síntesis y caracterización de un material compuesto a base de polietileno de alta densidad y magnetita pulverizada.” Universidad Nacional de Colombia, 2015.spa
dc.relation.referencesD. Thapa, V. R. Palkar, M. B. Kurup, and S. K. Malik, “Properties of magnetite nanoparticles synthesized through a novel chemical route,” Mater. Lett., vol. 58, no. 21, pp. 2692–2694, 2004.spa
dc.relation.referencesR. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons, 2003.spa
dc.relation.referencesW. D. Callister, Materials science and engineering-an introduction. John wiley & sons, 2007.spa
dc.relation.referencesC. Gómez, “Propiedades magnéticas de las arenas recientes de Portmán, Murcia.” Proyecto de titulación previo a la obtención del Título de Máster en Geofísica y Meteorología). Universidad Complutense de Madrid, Madrid, España, 2013.spa
dc.relation.referencesL. Carporzen, S. A. Gilder, and R. J. Hart, “Origin and implications of two Verwey transitions in the basement rocks of the Vredefort meteorite crater, South Africa,” Earth Planet. Sci. Lett., vol. 251, no. 3–4, pp. 305–317, 2006.spa
dc.relation.referencesE. J. W. Verwey and P. W. Haayman, “Electronic conductivity and transition point of magnetite (‘Fe3O4’),” Physica, vol. 8, no. 9, pp. 979–987, 1941.spa
dc.relation.referencesM. Jackson, B. Moskowitz, and J. Bowles, “The magnetite Verwey transition,” IRM Q, vol. 20, pp. 1–11, 2011.spa
dc.relation.referencesJ. P. Wright, A. M. T. Bell, and J. P. Attfield, “Variable temperature powder neutron diffraction study of the Verwey transition in magnetite Fe3O4,” Solid State Sci., vol. 2, no. 8, pp. 747–753, 2000.spa
dc.relation.referencesJ. D. Carlson and M. R. Jolly, “MR fluid, foam and elastomer devices,” Mechatronics, vol. 10, pp. 555–569, 2000.spa
dc.relation.referencesZ. Rigbi and L. Jilken, “The response of an elastomer filled with soft ferrite to mechanical and magnetic influences,” J. Magn. Magn. Mater., vol. 37, no. 3, pp. 267– 276, 1983.spa
dc.relation.referencesJ. Rabinow, “The magnetic fluid clutch,” Am. Inst. Electr. Eng. Trans., vol. 67, no. 2, pp. 1308–1315, 1948.spa
dc.relation.referencesL. Chen, X. L. Gong, and W. H. Li, “Effect of carbon black on the mechanical performances of magnetorheological elastomers,” Polym. Test., vol. 27, pp. 340–345, 2008.spa
dc.relation.referencesJ. Chatterjee, Y. Haik, and C.-J. Chen, “Size dependent magnetic properties of iron oxide nanoparticles,” J. Magn. Magn. Mater., vol. 257, no. 1, pp. 113–118, 2003.spa
dc.relation.referencesG. Schubert and P. Harrison, “Large-strain behaviour of Magneto-Rheological Elastomers tested under uniaxial compression and tension, and pure shear deformations,” Polym. Test., vol. 42, pp. 122–134, Apr. 2015.spa
dc.relation.referencesT. Mitsumata, K. Ikeda, J. P. Gong, Y. Osada, D. Szabó, and M. Zrı́nyi, “Magnetism and compressive modulus of magnetic fluid containing gels,” J. Appl. Phys., vol. 85, no. 12, p. 8451, 1999.spa
dc.relation.referencesS. Abramchuk et al., “Novel highly elastic magnetic materials for dampers and seals: part II. Material behavior in a magnetic field,” Polym. Adv. Technol., vol. 18, no. 7, pp. 513–518, 2007.spa
dc.relation.referencesM. G. Rosato and D. V Rosato, Plastics design handbook. Springer Science & Business Media, 2013.spa
dc.relation.referencesW. F. Smith, A. Larena, J. M. Gil, and F. J. M. Gil, Fundamentos de la Ciencia e Ingeniería de Materiales. McGraw-Hill New York, 1998.spa
dc.relation.referencesJ. Balcells, Interferencias electromagnéticas en sistemas electrónicos. Marcombo, 1992.spa
dc.relation.referencesK. W. Wagner, “Explanation of the dielectric fatigue phenomenon on the basis of Maxwell’s concept,” Ark. fur Electrotech., vol. 2, pp. 371–387, 1914.spa
dc.relation.referencesZ. Hashin and S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” J. Appl. Phys., vol. 33, no. 10, pp. 3125–3131, 1962.spa
dc.relation.referencesV. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys., vol. 416, no. 7, pp. 636–664, 1935.spa
dc.relation.referencesF. R. Schilling and G. M. Partzsch, “Quantifying partial melt fraction in the crust beneath the central Andes and the Tibetan Plateau,” Phys. Chem. Earth, Part A Solid Earth Geod., vol. 26, no. 4, pp. 239–246, 2001.spa
dc.relation.referencesA. R. J. Hussain, A. A. Alahyari, S. A. Eastman, C. Thibaud-Erkey, S. Johnston, and M. J. Sobkowicz, “Review of polymers for heat exchanger applications: Factors concerning thermal conductivity,” Appl. Therm. Eng., vol. 113, pp. 1118–1127, 2017spa
dc.relation.referencesC. P. Wong and R. S. Bollampally, “Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging,” J. Appl. Polym. Sci., vol. 74, no. 14, pp. 3396–3403, 1999.spa
dc.relation.referencesT. Ji, Y. Feng, M. Qin, and W. Feng, “Thermal conducting properties of aligned carbon nanotubes and their polymer composites,” Compos. Part A Appl. Sci. Manuf., vol. 91, pp. 351–369, 2016.spa
dc.relation.referencesA. R. J. Hussain, A. A. Alahyari, S. A. Eastman, C. Thibaud-Erkey, S. Johnston, and M. J. Sobkowicz, “Review of polymers for heat exchanger applications: Factors concerning thermal conductivity,” Appl. Therm. Eng., vol. 113, pp. 1118–1127, 2017.spa
dc.relation.referencesC. P. Wong and R. S. Bollampally, “Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging,” J. Appl. Polym. Sci., vol. 74, no. 14, pp. 3396–3403, 1999.spa
dc.relation.referencesT. Ji, Y. Feng, M. Qin, and W. Feng, “Thermal conducting properties of aligned carbon nanotubes and their polymer composites,” Compos. Part A Appl. Sci. Manuf., vol. 91, pp. 351–369, 2016.spa
dc.relation.referencesS. Mishra and N. G. Shimpi, “Comparison of nano CaCO 3 and flyash filled with styrene butadiene rubber on mechanical and thermal properties,” 2005.spa
dc.relation.referencesC. DeArmitt, Applied Plastics Engineering Handbook. Elsevier, 2011.spa
dc.relation.referencesX. C. Tong, Advanced materials for thermal management of electronic packaging, vol. 30. Springer Science & Business Media, 2011.spa
dc.relation.referencesZ. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,” Prog. Polym. Sci., vol. 36, no. 7, pp. 914–944, 2011.spa
dc.relation.referencesX. Huang, P. Jiang, and T. Tanaka, “A review of dielectric polymer composites with high thermal conductivity,” IEEE Electr. Insul. Mag., vol. 27, no. 4, 2011.spa
dc.relation.referencesM. Hu, D. Yu, and J. Wei, “Thermal conductivity determination of small polymer samples by differential scanning calorimetry,” Polym. Test., vol. 26, no. 3, pp. 333– 337, 2007.spa
dc.relation.referencesH. Chen et al., “Thermal conductivity of polymer-based composites: Fundamentals and applications,” Prog. Polym. Sci., vol. 59, pp. 41–85, 2016.spa
dc.relation.referencesN. Kucukdogan, L. Aydin, and M. Sutcu, “Theoretical and empirical thermal conductivity models of red mud filled polymer composites,” Thermochim. Acta, vol. 665, no. August 2017, pp. 76–84, 2018.spa
dc.relation.referencesI. H. Tavman, “Thermal and mechanical properties of aluminum powder‐filled high‐ density polyethylene composites,” J. Appl. Polym. Sci., vol. 62, no. 12, pp. 2161–2167, 1996.spa
dc.relation.referencesD. M. Bigg, “Thermal conductivity of heterophase polymer compositions,” in Thermal and electrical conductivity of polymer materials, Springer, 1995, pp. 1–30.spa
dc.relation.referencesJ. C. M. Garnett, “Colours in metal glasses, in metallic films and in metallic solutions.—II,” Proc. R. Soc. Lond. A, vol. 76, no. 511, pp. 370–373, 1905.spa
dc.relation.referencesA. Mohaddespour, H. Abolghasemi, M. T. Mostaedi, and S. Habibzadeh, “A new model for estimation of the thermal conductivity of polymer/clay nanocomposites,” J. Appl. Polym. Sci., vol. 118, no. 2, pp. 1042–1050, 2010.spa
dc.relation.referencesL. Qian, X. Pang, J. Zhou, J. Yang, S. Lin, and D. Hui, “Theoretical model and finite element simulation on the effective thermal conductivity of particulate composite materials,” Compos. Part B Eng., vol. 116, pp. 291–297, 2017.spa
dc.relation.referencesM. Shen, Y. Cui, J. He, and Y. Zhang, “Thermal conductivity model of filled polymer composites,” Int. J. Miner. Metall. Mater., vol. 18, no. 5, p. 623, 2011.spa
dc.relation.referencesR. Landauer, “The electrical resistance of binary metallic mixtures,” J. Appl. Phys., vol. 23, no. 7, pp. 779–784, 1952.spa
dc.relation.referencesK. Pietrak and T. S. Winiewski, “A review of models for effective thermal conductivity of composite materials,” J. J. Power Technol., vol. 95, no. 1, pp. 14–24, 2015.spa
dc.relation.referencesR. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous twocomponent systems,” Ind. Eng. Chem. Fundam., vol. 1, no. 3, pp. 187–191, 1962.spa
dc.relation.referencesJ. C. Maxwell, A treatise on electricity and magnetism, vol. 1. Clarendon press, 1881.spa
dc.relation.referencesS. C. Cheng and R. I. Vachon, “The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures,” Int. J. Heat Mass Transf., vol. 12, no. 3, pp. 249–264, 1969.spa
dc.relation.referencesB. Weidenfeller, M. Höfer, and F. R. Schilling, “Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene,” Compos. Part A Appl. Sci. Manuf., vol. 35, no. 4, pp. 423–429, 2004.spa
dc.relation.referencesT. B. Lewis and L. E. Nielsen, “Dynamic mechanical properties of particulate-filled composites,” J. Appl. Polym. Sci., vol. 14, no. 6, pp. 1449–1471, 1970.spa
dc.relation.referencesE. H. Kerner, “The elastic and thermo-elastic properties of composite media,” Proc. Phys. Soc. Sect. B, vol. 69, no. 8, p. 808, 1956.spa
dc.relation.referencesW. Patterson and A. Force, “The Halipin-Tsai Equsations: A Review,” vol. 16, no. 5, 1976.spa
dc.relation.referencesL. E. Nielsen, “Thermal conductivity of particulate‐filled polymers,” J. Appl. Polym. Sci., vol. 17, no. 12, pp. 3819–3820, 1973.spa
dc.relation.referencesY. Agari, A. Ueda, and S. Nagai, “Thermal conductivity of a polymer composite,” J. Appl. Polym. Sci., vol. 49, no. 9, pp. 1625–1634, 1993.spa
dc.relation.referencesM. A. Pérez and M. Sánchez, “Fundamentos de la mecánica de los materiales compuestos,” Apl. Av. los Mater. compuestos en la obra Civ. y la Edif., pp. 19–50, 2014.spa
dc.relation.referencesS. Timoshenko, G. H. MacCullough, and others, “Elements of strength of materials,” 1949.spa
dc.relation.referencesL. E. Nielsen, “The thermal and electrical conductivity of two-phase systems,” Ind. Eng. Chem. Fundam., vol. 13, no. 1, pp. 17–20, 1974.spa
dc.relation.referencesE. Bedolla, J. Lemus, C. a León, and a Contreras, “SÍNTESIS Y CARACTERIZACIÓN DE UN MATERIAL COMPUESTO DE MATRIZ METÁLICA Mg-AZ91E / AlN,” 2010.spa
dc.relation.referencesD. Mongomery, “Diseño y análisis de experimentos,” Limusa Wiley, Segunda Edición, México, 2002.spa
dc.relation.referencesG. Schubert and P. Harrison, “Large-strain behaviour of Magneto-Rheological Elastomers tested under uniaxial compression and tension, and pure shear deformations,” Polym. Test., vol. 42, pp. 122–134, 2015.spa
dc.relation.referencesM. Anhalt and B. Weidenfeller, “Magnetic properties of hybrid-soft magnetic composites,” Mater. Sci. Eng. B, vol. 162, no. 1, pp. 64–67, May 2009.spa
dc.relation.referencesASTM D638, “D638: Standard Test Method for Tensile Properties of Plastics,” West Conshohocken ASTM Int., 2010.spa
dc.relation.referencesD. ASTM, “5930-01. Standard test method for thermal conductivity of plastics by means of a transient line-source technique,” in American Society for Testing and Materials, 2002.spa
dc.rights.creativecommonsLicencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.armarcResiduos industriales
dc.subject.armarcProductos de residuos
dc.subject.armarcMagnetita
dc.subject.armarcCiencia de los materiales
dc.subject.armarcGomas y resinas
dc.subject.armarcRevestimientos protectores
dc.subject.armarcDoctorado en Ingeniería y Ciencia de los Materiales - Tesis y disertaciones académicas
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Ingeniería y Ciencia de los Materialesspa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.placeTunjaspa
dc.publisher.programDoctorado en Ingeniería y Ciencia de los Materialesspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TDspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombia
Except where otherwise noted, this item's license is described as Copyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombia