Estudio de sistemas bifuncionales para la obtención de 5-(Hidroximetil)-2-Furaldehído y Acido 5-(Hidroximetil)Furan-2-Carboxílico

dc.contributor.advisorRojas Sarmiento, Hugo Alfonsospa
dc.contributor.advisorMartínez Zambrano, José Jobannyspa
dc.contributor.authorAguilera Palacios, Edna Ximena
dc.date.accessioned2019-05-10T21:42:05Z
dc.date.available2019-05-10T21:42:05Z
dc.date.issued2017
dc.description1 recurso en línea (102 páginas) : ilustraciones color, figuras, tablas.spa
dc.description.abstractIn this work the dehydration of fructose and glucose to 5-(hydroxymethyl)-2-furaldehyde (HMF) was studied on a bifunctional system based on LaOCl/Nb2O5 catalysts and hot compressed water. The catalysts were prepared by impregnation of LaCl3 over Nb2O5 with different loads. The solids were characterized by X-ray energy dispersion spectroscopy (EDX), thermogravimetry (TGA), N2 physisorption, pyridine and CO2 adsorption followed by Fourier transform infrared spectroscopy with diffuse reflectance (FT-IR); the acid and basic force was determined by NH3 and CO2 desorption at programmed temperature, respectively. The use of acid-base systems for the production of HMF mainly from glucose requires weak basic sites and conditions of moderate acidity which is reached with LaOCl/Nb2O5 as was confirmed by the acidity and basicity analyzes. The presence of Nb2O5 in the solids increased the yield to HMF (> 50%) and prevented the formation of undesirable products under compressed hot water conditions. With the same objective to produce HMF, a bifunctional system was developed; this is based on the design of solids with acid-basic characteristics to convert glucose to the HMF in which a step of isomerization of the glucose to the fructose supplied by the effect of the basic sites of oxides such as CeO2, La2O3 and SiO2 and a dehydration step in which the participation of acid sites derived from the functionalization of oxides with sulfonic groups -SO3H is required. The oxides were functionalized with 3-mercaptopropyltrimethoxysilane in relation to the density of hydroxyl groups chemically bound to the surface, for that purpose the amount of hydroxyl groups was determined by analysis of physisorption, thermogravimetric analysis and infrared spectroscopy by Fourier transform. The catalysts obtained were characterized by N2 physisorption, pyridine and CO2 adsorption by diffuse reflectance infrared spectroscopy with Fourier transform; desorption analysis at programmed temperature of NH3 and CO2. The results showed that the functionalization process with groups -SO3H decreases the volume of the pores and therefore their surface area due to the interaction of the oxides with organosilanes. Analyzes of the nature of the acidic sites of the solids by adsorption of pyridine showed that in all the solids there are both types of acidity; Lewis and Brönsted, the latter attributed to the acid sulfonic groups anchored to the oxides. As for its catalytic activity, the highest conversion of glucose was found when La2O3-SO3H was used as the catalyst, achieving an HMF yield of 58%. Given the importance of HMF as a platform molecule to obtain high added value compounds with pharmaceutical and polymer applications, a bifunctional system involving the use of Rh catalysts supported in reducible and non-reducible oxides and an aqueous alkaline medium to produce 5-(hydroxymethyl)furan-2-carboxylic acid (HMFCA). Synthesized catalysts were characterized by EDX, transmission electron microscopy (TEM), chemisorption and FT-IR pyridine. The results revealed that the reaction pathway did not follow the typical HMF oxidation path but followed the Cannizzaro reaction path so the main products were (furan-2,5-diyl) dimethanol (DHMF), salt of the HMFCA and some degradation products such as levulinic and formic acids as a consequence of the degradation of HMF by the effect of the alkaline medium. The oxide with the best activity was CeO2, based on these results the possible reaction mechanism was elucidated when Rh/CeO2 was used as catalyst in the presence of molecular oxygen. In addition it was shown that at lower particle sizes HMFCA yield increased.eng
dc.description.abstractEn este trabajo se estudió la deshidratación de fructosa y glucosa a 5-(hidroximetil)-2-furaldehído (HMF) sobre un sistema bifuncional basado en catalizadores de LaOCl/ Nb2O5 y agua comprimida caliente. Los catalizadores fueron preparados por impregnación de LaCl3 sobre Nb2O5 con diferentes cargas. Los sólidos se caracterizaron por espectroscopia de dispersión de energía de rayos-X (EDX), termogravimetría (TGA), fisisorción de N2, adsorción de piridina y de CO2 seguida por espectroscopia de infrarrojo con transformada de Fourier con reflectancia difusa (FT-IR); la fuerza ácida y básica fue determinada por desorción a temperatura programada de NH3 y CO2, respectivamente. El uso de sistemas ácido-base para la producción de HMF principalmente a partir de glucosa requiere sitios básicos débiles y condiciones de acidez moderada que se alcanza con LaOCl/Nb2O5 como fue confirmado por los análisis de acidez y basicidad. La presencia de Nb2O5 en los sólidos aumentó el rendimiento de HMF (>50%) y evitó la formación de productos indeseables en condiciones de agua caliente comprimida. Con el mismo objetivo de producir HMF, se desarrolló un sistema bifuncional que consistió en el diseño de sólidos con características ácido-básicas capaces de transformar la glucosa en HMF en donde se involucra una etapa de isomerización de la glucosa a la fructosa suplida por el efecto de los sitios básicos de óxidos tales como CeO2, La2O3 y SiO2 y una etapa de deshidratación en donde se requiere la participación de sitios ácidos derivados de la funcionalización de los óxidos con grupos sulfónicos –SO3H. Los óxidos fueron funcionalizados con 3-mercaptopropiltrimetoxisilano en relación a la densidad de grupos hidroxilo unidos químicamente a la superficie, para tal fin se determinó la cantidad de grupos hidroxilo mediante análisis de fisisorción, análisis termogravimétrico y espectroscopia infrarroja con transformada de Fourier. Los catalizadores obtenidos fueron caracterizados por fisisorción de N2, adsorción de piridina y CO2 por espectroscopía infrarroja de reflectancia difusa de con transformada de Fourier; análisis de desorción a temperatura programada de NH3 y CO2. Los resultados mostraron que el proceso de funcionalización con grupos -SO3H disminuye el volumen de los poros y por lo tanto su área superficial debido a la interacción de los óxidos con organosilanos. Los análisis de la naturaleza de los sitios ácidos de los sólidos por adsorción de piridina demostraron que en todos los sólidos hay ambos tipos de acidez; Lewis y Brönsted, ésta última atribuida a los grupos sulfónicos ácidos anclados a los óxidos. En cuanto a su actividad catalítica se encontró la mayor conversión de glucosa cuando se empleó La2O3-SO3H como catalizador alcanzando un rendimiento hacia HMF del 58%. Dada la importancia del HMF como molécula plataforma para obtener compuestos de alto valor agregado con aplicaciones farmacéuticas y en la industria de polímeros, se estudió un sistema bifuncional que involucra el empleo de catalizadores de Rh soportado en óxidos reducibles y no reducibles y un medio acuoso alcalino para producir ácido 5-(hidroximetil)furan-2-carboxílico (HMFCA).. Los catalizadores sintetizados fueron caracterizados por EDX, microscopía electrónica de trasmisión (TEM), quimisorción y FT-IR de piridina. Los resultados revelan que la ruta de reacción no siguió la ruta de oxidación típica de HMF sino que siguió la ruta de reacción de Cannizzaro por lo que los principales productos fueron el (furan-2,5-diil) dimetanol (DHMF), la sal del HMFCA y algunos productos de degradación como los ácidos levulínico y fórmico como consecuencia de la degradación de HMF por efecto del medio alcalino. El óxido que mejor actividad mostró fue CeO2, con base en estos resultados se elucidó el posible mecanismo de reacción cuando se empleó Rh/CeO2 como catalizador en presencia de oxígeno molecular. Además se demostró que a menores tamaños de partícula el rendimiento a HMFCA incrementó.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Químicaspa
dc.description.notesBibliografía y webgrafía: páginas 89-98.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationAguilera Palacios, E, X. (2017). Estudio de sistemas bifuncionales para la obtención de 5-(Hidroximetil)-2-Furaldehído y Ácido 5-(Hidroximetil)Furan-2-Carboxílico. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2583spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2583
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.publisher.facultyFacultad de Ciencias. Escuela de Posgrados. Maestría en Químicaspa
dc.relation.referencesJ.M.R. Gallo, D.M. Alonso, M.A. Mellmer, J.A. Dumesic, Green Chemistry, Green Chem. (2012).spa
dc.relation.referencesC.A.. Rosatella, Andreia a., Simeonov, Svilen P., Frase, Raquel F. M., Alfonso, A. a. Rosatella, S.P. Simeonov, R.F.M. Frade, C. a. M. Afonso, 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem. 13 (2011) 754.spa
dc.relation.referencesL. Hu, Y. Sun, L. Lin, Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid, Ind. Eng. Chem. Res. 51 (2012) 1099–1104.spa
dc.relation.referencesM. Watanabe, Y. Aizawa, T. Iida, T.M. Aida, C. Levy, K. Sue, H. Inomata, Glucose reactions with acid and base catalysts in hot compressed water at 473 K, Carbohydr. Res. 340 (2005) 1925–1930.spa
dc.relation.referencesM. Ventura, M. Aresta, A. Dibenedetto, Selective Aerobic Oxidation of 5-(Hydroxymethyl)furfural to 5-Formyl-2-furancarboxylic Acid in Water, ChemSusChem. 9 (2016) 1096–1100.spa
dc.relation.referencesY.Y. Gorbanev, S.K. Klitgaard, J.M. Woodley, C.H. Christensen, A. Riisager, Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature, ChemSusChem. 2 (2009) 672–675.spa
dc.relation.referencesF. Wang, Z. Zhang, Cs-substituted tungstophosphate-supported ruthenium nanoparticles: An effective catalyst for the aerobic oxidation of 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid., J. Taiwan Inst. Chem. Eng. 70 (2017) 1–6.spa
dc.relation.referencesJ. Zhang, J. Li, Y. Tang, L. Lin, M. Long, Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass, Carbohydr. Polym. 130 (2014) 420–428.spa
dc.relation.referencesX. Wan, C. Zhou, J. Chen, W. Deng, Q. Zhang, Y. Yang, Y. Wang, Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2, 5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles, Acs Catal. 4 (2014) 2175–2185spa
dc.relation.referencesK.R. Vuyyuru, P. Strasser, Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis, Catal. Today. 195 (2012) 144–154.spa
dc.relation.referencesT.S. Hansen, I. Sádaba, E.J. García-Suárez, A. Riisager, Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions, Appl. Catal. A Gen. 456 (2013) 44–50.spa
dc.relation.referencesM. Asadullah, K. Fujimoto, K. Tomishige, Catalytic Performance of Rh/CeO2 in the Gasification of Cellulose to Synthesis Gas at Low Temperature, Ind. Eng. Chem. Res. (2001) 5894–5900.spa
dc.relation.referencesW. Hertl, Surface Chemistry of Zirconia Polymorphs, Langmuir. 5 (1989) 96–100.spa
dc.relation.referencesG. Connell, J.A. Dumesic, Acidic Properties of Binary Oxide Catalysts, J. Catal. 101 (1986) 103–113.spa
dc.relation.referencesT.J. Dines, C.H. Rochester, A.M. Ward, Infrared and Raman study of the adsorption of nitrogen oxides on titania-supported vanadia catalysts, J. Chem. Soc. Faraday Trans. 87 (1991) 1617.spa
dc.relation.referencesM.I. Zaki, G.A.M. Hussein, S.A.A. Mansour, H.A. El-Ammawy, Adsorption and surface reactions of pyridine on pure and doped ceria catalysts as studied by infrared spectroscopy, J. Mol. Catal. 51 (1989) 209–220.spa
dc.relation.referencesM.I. Zaki, M. a. Hasan, F. a. Al-Sagheer, L. Pasupulety, In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: General considerations for the identification of acid sites on surfaces of finely divided metal oxides, Colloids Surfaces A Physicochem. Eng. Asp. 190 (2001) 261–274. doi:10.1016/S0927-7757(01)00690-2.spa
dc.relation.referencesM. Oregui Bengoechea, A. Hertzberg, N. Miletić, P.L. Arias, T. Barth, Simultaneous catalytic de-polymerization and hydrodeoxygenation of lignin in water/formic acid media with Rh/Al2O3, J. Anal. Appl. Pyrolysis. 113 (2015) 713–722.spa
dc.relation.referencesA. a Lemonidou, E.C. Vagia, J. a Lercher, Acetic Acid Reforming over Rh Supported on La2O3/CeO2 –ZrO2 : Catalytic Performance and Reaction Pathway Analysis, ACS Catal. (2013) 1919–1928.spa
dc.relation.referencesJ. Liu, L. Yan, Y. Ding, M. Jiang, W. Dong, X. Song, T. Liu, H. Zhu, Promoting effect of Al on tethered ligand-modified Rh/SiO2 catalysts for ethylene hydroformylation, Appl. Catal. A Gen. 492 (2015) 127–132.spa
dc.relation.referencesN. Akiya, P.E. Savage, Roles of water for chemical reactions in high-temperature water.pdf, Chem. Rev. 102 (2002) 2725–2750.spa
dc.relation.referencesW. Niu, D. Wang, G. Yang, J. Sun, M. Wu, Y. Yoneyama, N. Tsubaki, Pt nanoparticles loaded on reduced graphene oxide as an effective catalyst for the direct oxidation of 5-hydroxymethylfurfural (HMF) to produce 2,5-furandicarboxylic acid (FDCA) under mild conditions, Bull. Chem. Soc. Jpn. 87 (2014) 1124–1129.spa
dc.relation.referencesN.T. Do Prado, T.E. Souza, A.R.T. Machado, P.P. Souza, R.S. Monteiro, L.C.A. Oliveira, Enhanced catalytic activity for fructose conversion on nanostructured niobium oxide after hydrothermal treatment: Effect of morphology and porous structure, J. Mol. Catal. A Chem. 422 (2016) 23–34.spa
dc.relation.referencesL. Hu, Z. Wu, J. Xu, Y. Sun, L. Lin, S. Liu, Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid, Chem. Eng. J. 244 (2014) 137–144.spa
dc.relation.referencesB.G. Siqueira, M.A.P. Silva, C. Moraes, Synthesis of HMF from glucose in aqueous medium using niobium and titanium oxides, Brazilian J. Pet. Gas. 7 (2013) 71–82.spa
dc.relation.referencesM. Ohara, A. Takagaki, S. Nishimura, K. Ebitani, Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts, Appl. Catal. A Gen. 383 (2010) 149–155.spa
dc.relation.referencesI. Jiménez-Morales, J. Santamaría-González, A. Jiménez-López, P. Maireles-Torres, Glucose dehydration to 5-hydroxymethylfurfural on zirconium containing mesoporous MCM-41 silica catalysts, Fuel. 118 (2014) 265–271.spa
dc.relation.referencesH. Rasmussen, H.R. Sørensen, A.S. Meyer, Formation of degradation compounds from lignocellulosic biomass in the biorefinery: Sugar reaction mechanisms, Carbohydr. Res. 385 (2014) 45–57.spa
dc.relation.referencesK. Nakajima, Y. Baba, R. Noma, M. Kitano, J. Kondo, S. Hayashi, M. Hara, Nb2O5· nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites, J. Am. Chem. Soc. 133 (2011) 4224.spa
dc.relation.referencesJ.-M. Jehng, I.E. Wachs, Structural chemistry and raman spectra of niobium oxides, Chem. Mater. 3 (1991) 100–107.spa
dc.relation.referencesM. Hara, Heterogeneous Lewis acid catalysts workable in water, Bull. Chem. Soc. Jpn. 87 (2014) 931–941.spa
dc.relation.referencesA. Marsal, E. Rossinyol, F. Bimbela, C. Téllez, J. Coronas, A. Cornet, J.R. Morante, Characterisation of LaOCl sensing materials using CO2-TPD, XRD, TEM and XPS, Sensors Actuators, B Chem. 109 (2005) 38–40.spa
dc.relation.referencesA.S. Amarasekara, L.D. Williams, C.C. Ebede, Mechanism of the dehydration of D -fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 ° C : an NMR study, Carbohydr. Res. 343 (2008) 3021–3024.spa
dc.relation.referencesO. V. Manoilova, S.G. Podkolzin, B. Tope, J. Lercher, E.E. Stangland, J.M. Goupil, B.M. Weckhuysen, Surface acidity and basicity of La2O3, LaOCl, and LaCl3 characterized by IR spectroscopy, TPD, and DFT calculations, J. Phys. Chem. B. 108 (2004) 15770–15781.spa
dc.relation.referencesB. Siyo, M. Schneider, M.M. Pohl, P. Langer, N. Steinfelt, Synthesis, characterization, and application of PVP-PD NP in the aerobic oxidation of 5-hydroxymethylfurfural (HMF), Catal. Letters. 144 (2014) 498–506.spa
dc.relation.referencesZ. Miao, T. Wu, J. Li, T. Yi, Y. Zhang, X. Yang, Aerobic oxidation of 5-hydroxymethylfurfural (HMF) effectively catalyzed by a Ce0.8Bi0.2O2−δ supported Pt catalyst at room temperature, RSC Adv. 5 (2015) 19823–19829.spa
dc.relation.referencesX. Han, C. Li, X. Liu, Q. Xia, Y. Wang, Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx–CeO2 composite catalysts, Green Chem. (2017).spa
dc.relation.referencesY. Pierson, F. Bobbink, N. Yan, Alcohol Mediated Liquefaction of Lignocellulosic Materials : A Mini Review, Chem. Eng. Process Tech. 1 (2013) 1014–1019.spa
dc.relation.referencesK. Li, L. Bai, P.N. Amaniampong, X. Jia, J.M. Lee, Y. Yang, One-Pot Transformation of Cellobiose to Formic Acid and Levulinic Acid over Ionic-Liquid-based Polyoxometalate Hybrids, ChemSusChem. 7 (2014) 2670–2677.spa
dc.relation.referencesH. Abou-Yousef, E.B. Hassan, P. Steele, Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid, J. Fuel Chem. Technol. 41 (2013) 214–222.spa
dc.relation.referencesM.J. Climent, A. Corma, S. Iborra, Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels, Green Chem. 16 (2013) 516–547.spa
dc.relation.referencesG. Rothenberg, Catalysis: concepts and green applications, John Wiley Sons, 2015.spa
dc.relation.referencesR. Rinaldi, R. Palkovits, F. Schüth, Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids ** Zuschriften, Angew. Chemie. 47 (2008) 8167–8170.spa
dc.relation.referencesA. Corma, S. Iborra, A. Velty, Chemical Routes for the Transformation of Biomass into Chemicals, Chem. Rev. 107 (6) (2007) 2411–2502.spa
dc.relation.referencesE.F. Dunn, D.D.J. Liu, E.Y. Chen, Role of N-heterocyclic carbenes in glucose conversion into HMF by Cr catalysts in ionic liquids, Appl. Catal. A Gen. 460–461 (2013) 1–7.spa
dc.relation.referencesY.Y. Gorbanev, S.K. Klitgaard, J.M. Woodley, C.H. Christensen, A. Riisager, Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethyl- furfural in Water at Ambient Temperature, ChemSusChem. (2009) 672–675.spa
dc.relation.referencesS.P. Teong, G. Yi, Y. Zhang, Hydroxymethylfurfural production from bioresources: past , present and future, Green Chem. 16 (2014) 2015–2026.spa
dc.relation.referencesR. Weingarten, A. Rodriguez-Beuerman, F. Cao, J.S. Luterbacher, D.M. Alonso, J.A. Dumesic, G.W. Huber, Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents, ChemCatChem. 6 (2014) 2229–2234.spa
dc.relation.referencesS. Despax, B. Estrine, N. Hoffmann, J. Le Bras, J. Muzart, Isomerization of D-glucose into D-fructose with a heterogeneous catalyst in organic solvents, Catal. Commun. 39 (2013) 35–38.spa
dc.relation.referencesJ.N.N. Chheda, G.W.W. Huber, J.A.A. Dumesic, Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals, Angew. Chemie Int. Ed. 46 (2007) 7164–7183.spa
dc.relation.referencesJ. Wang, W. Xu, J. Ren, X. Liu, G. Lu, Y. Wang, Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid, Green Chem. 13 (2011) 2678.spa
dc.relation.referencesR.-J. van Putten, J.C. van der Waal, E. de Jong, C.B. Rasrendra, H.J. Heeres, J.G. de Vries, Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources, Chem. Rev. 113 (2013) 1499–1597.spa
dc.relation.referencesF. Tao, C. Zhuang, Y. Cui, J. Xu, Dehydration of glucose into 5-hydroxymethylfurfural in SO 3 H-functionalized ionic liquids, Chinese Chem. Lett. 25 (2014) 757–761.spa
dc.relation.referencesG. Yang, E.A. Pidko, E.J.M. Hensen, Mechanism of Bronsted acid-catalyzed conversion of carbohydrates, J. Catal. 295 (2012) 122–132.spa
dc.relation.referencesS.H. Bhosale, M.B. Rao, V. V Deshpande, Molecular and Industrial Aspects of Glucose Isomerase, Microbiol. Rev. 60 (1996) 280–300.spa
dc.relation.referencesY. Zhang, J. Wang, X. Li, X. Liu, Y. Xia, B. Hu, G. Lu, Y. Wang, Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts, FUEL. 139 (2015) 301–307.spa
dc.relation.referencesO.O. James, S. Maity, L.A. Usman, K.O. Ajanaku, O.O. Ajani, T.O. Siyanbola, S. Sahu, R. Chaubey, Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural, Energy Environ. Sci. 3 (2010) 1833–1850.spa
dc.relation.referencesA.A.D. Hesel, The influence of the initial and catalyst concentrations on the dehydration of D-fructose, Carbohydr. Res. 54 (1977) 165–176.spa
dc.relation.referencesH.M. Kuster, Ben F., Temmink, The influence of pH and weak-acid anions on the dehydration of D-fructose, Carbohydr. Res. 4 (1977) 185–191.spa
dc.relation.referencesH.E. Van Dam, A.P.G. Kieboom, H. van Bekkum, The Conversion of Fructose and Glucose in Acidic Media: Formation of Hydroxymethylfurfural, Starch ‐ Stärke. 38 (1986) 95–101.spa
dc.relation.referencesB.F. Kuster, The influence of water concentration on the dehydration of D-fructose, Carbohydr. Res. 54 (1977) 177–183.spa
dc.relation.referencesM.J. Antal, W.S.L. Mok, G.N. Richards, Mechanism of formation of S ( hydroxymethyl ) -2-furalde- hyde from D-fructose and sucrose, Carbohydr. Res. 199 (1990) 91–109.spa
dc.relation.referencesF. Yang, Q. Liu, X. Bai, Y. Du, Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst, Bioresour. Technol. 102 (2011) 3424–3429.spa
dc.relation.referencesF. Surface, B. Zeoliies, S. Acid, Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions, Chem. Rev. 95 (1995) 559–614.spa
dc.relation.referencesC. Carlini, M. Giuttari, A. Maria, R. Galletti, G. Sbrana, T. Armaroli, G. Busca, Selective saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts, Appl. Catal. A Gen. 183 (1999) 295–302.spa
dc.relation.referencesD. Stošić, S. Bennici, V. Rakić, A. Auroux, V. Raki, CeO2–Nb2O5 mixed oxide catalysts: Preparation, characterization and catalytic activity in fructose dehydration reaction, Catal. Today. 192 (2012) 160–168.spa
dc.relation.referencesP. Carniti, A. Gervasini, S. Biella, A. Auroux, Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: Fructose dehydration reaction, Catal. Today. 118 (2006) 373–378.spa
dc.relation.referencesD. Stošić, S. Bennici, V. Pavlović, V. Rakić, A. Auroux, Tuning the acidity of niobia: Characterization and catalytic activity of Nb2O5-MeO2 (Me = Ti, Zr, Ce) mesoporous mixed oxides, Mater. Chem. Phys. 146 (2014) 337–345.spa
dc.relation.referencesC. Antonetti, M. Melloni, D. Licursi, S. Fulignati, E. Ribechini, S. Rivas, J.C. Parajó, F. Cavani, A.M. Raspolli Galletti, Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts, Appl. Catal. B Environ. 206 (2017) 364–377.spa
dc.relation.referencesC. Yue, G. Li, E.A. Pidko, J.J. Wiesfeld, M. Rigutto, E.J.M. Hensen, Dehydration of Glucose to 5-Hydroxymethylfurfural Using Nb-doped Tungstite, ChemSusChem. 17 (2016) 2421–2429.spa
dc.relation.referencesJ. Qi, L.Ü. Xiuyang, Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water *, Chinese J. Chem. Eng. 16 (2008) 890–894.spa
dc.relation.referencesT.M. Aida, Y. Sato, M. Watanabe, K. Tajima, T. Nonaka, H. Hattori, K. Arai, Dehydration of d-glucose in high temperature water at pressures up to 80 MPa, J. Supercrit. Fluids. 40 (2007) 381–388..spa
dc.relation.referencesX. Qi, M. Watanabe, T.M. Aida, R.L. Smith, R. L. Smith Jr, Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural, Catal. Commun. 10 (2009) 1771–1775.spa
dc.relation.referencesA. Chareonlimkun, V. Champreda, A. Shotipruk, N. Laosiripojana, Reactions of C5 and C6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts, Fuel. 89 (2010) 2873–2880.spa
dc.relation.referencesF.S. Asghari, H. Yoshida, Dehydration of fructose to 5-hydroxymethylfurfural in sub-critical water over heterogeneous zirconium phosphate catalysts, Carbohydr. Res. 341 (2006) 2379–2387.spa
dc.relation.referencesZ. Fang, R.L. Smith, J.A. Kozinski, T. Minowa, K. Arai, Reaction of d -glucose in water at high temperatures ( 410 °C ) and pressures ( 180 MPa ) for the production of dyes and nano-particles, J. Supercrit. Fluids. 56 (2011) 41–47.spa
dc.relation.referencesR.L. De Souza, H. Yu, F. Rataboul, N. Essayem, 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System, Challenges. 3 (2012) 212–232.spa
dc.relation.referencesH. Yan, Y. Yang, D. Tong, X. Xiang, C. Hu, Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42−/ZrO2 and SO42−/ZrO2–Al2O3 solid acid catalysts, Catal. Commun. 10 (2009) 1558–1563..spa
dc.relation.referencesK. Seri, Y. Inoue, H. Ishida, Catalytic Activity of Lanthanide(III) Ions for the Dehydration of Hexose to 5-Hydroxymethyl-2-furaldehyde in Water, Bull. Chem. Soc. Jpn. 74 (2001) 1145–1150.spa
dc.relation.referencesS. Hu, Z. Zhang, J. Song, Y. Zhou, B. Han, Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid, Green Chem. 11 (2009) 1746–1749.spa
dc.relation.referencesJ. Tuteja, N. Shun, One-Pot Synthes is of Furans from Various Saccharides Using a Combination of Solid Acid and Base Catalysts, BCSJ Award Artic. 281 (2012) 275–281.spa
dc.relation.referencesJ.B. Binder, R.T. Raines, J.B. Binder, R.T. Raines, R.T. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals, J. Am. Chem. Soc. 131 (2009) 1979–1985.spa
dc.relation.referencesI. Jiménez-Morales, M. Moreno-Recio, J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural, "Applied Catal. B, Environ. 154–155 (2014) 190–196.spa
dc.relation.referencesI. Jiménez-morales, M. Moreno-recio, J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid catalyst, Appl. Catal. B Environ. 164 (2015) 70–76.spa
dc.relation.referencesH. Jiao, X. Zhao, C. Lv, Y. Wang, D. Yang, Z. Li, X. Yao, Nb2O5-γ-Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural, Sci. Rep. 6 (2016) 1–9.spa
dc.relation.referencesR. Liu, J. Chen, X. Huang, L. Chen, L. Ma, X. Li, Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials, Green Chem. 15 (2013) 2895–2903.spa
dc.relation.referencesJ. Wang, L. Zhu, Y. Wang, H. Cui, Y. Zhang, Y. Zhang, Fructose Dehydration to 5-HMF over Three Sulfonated Carbons: Effect of Different Pore Structures, Chem. Technol. Biotechnol. 92 (2017) 1454–1463.spa
dc.relation.referencesR.Y. Zheng, N. Liu, W.Y. Liu, J.X. Ma, B. Li, Conversion of Fructose to 5-hydroxymethylfurfural Catalyzed by Coaled Carbon-Based Solid Acid, Adv. Mater. Res. 724 (2013) 226–230.spa
dc.relation.referencesF. Tao, C. Zhuang, Y. Cui, J. Xu, Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids, Chinese Chem. Lett. (2014) 1–5.spa
dc.relation.referencesG. Morales, J.A. Melero, M. Paniagua, J. Iglesias, B. Hernández, M. Sanz, Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide, Chinese J. Catal. 35 (2014) 644–655.spa
dc.relation.referencesE.S. Kang, D.W. Chae, B. Kim, Y.G. Kim, Efficient preparation of dhmf and hmfa from biomass-derived hmf via a cannizzaro reaction in ionic liquids, J. Ind. Eng. Chem. 18 (2012) 174–177.spa
dc.relation.referencesZ. Zhang, B. Liu, K. Lv, J. Sun, K. Deng, Aerobic oxidation of biomass derived 5- hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalyzed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex, Green Chem. 16 (2014) 2762.spa
dc.relation.referencesO. Casanova, S. Iborra, A. Corma, Biomass into chemicals: Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts, ChemSusChem. 2 (2009) 1138–1144.spa
dc.relation.referencesF. Neaţu, R.S. Marin, M. Florea, N. Petrea, O.D. Pavel, V.I. Pârvulescu, Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts, Appl. Catal. B Environ. 180 (2016) 751–757.spa
dc.relation.referencesP. Verdeguer, N. Merat, A. Gaset, Oxydation catalytique du HMF en acide 2, 5-furane dicarboxylique, J. Mol. Catal. 85 (1993) 327–344.spa
dc.relation.referencesS.E. Davis, L.R. Houk, E.C. Tamargo, A.K. Datye, R.J. Davis, Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts, Catal. Today. 160 (2011) 55–60.spa
dc.relation.referencesS. Albonetti, T. Pasini, A. Lolli, M. Blosi, M. Piccinini, N. Dimitratos, J.A. Lopez-Sanchez, D.J. Morgan, A.F. Carley, G.J. Hutchings, F. Cavani, Selective oxidation of 5-hydroxymethyl-2-furfural over TiO 2-supported gold–copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio, Catal. Today. 195 (2012) 120–126.spa
dc.relation.referencesZ. Miao, Y. Zhang, X. Pan, T. Wu, B. Zhang, J. Li, T. Yi, Z. Zhang, X. Yang, Superior catalytic performance of Ce1−xBixO2−δ solid solution and Au/Ce1−xBixO2−δ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution, Catal. Sci. Technol. 5 (2015) 1314–1322.spa
dc.relation.referencesT. Pasini, M. Piccinini, M. Blosi, R. Bonelli, S. Albonetti, N. Dimitratos, J.A.J. Lopez-Sanchez, M. Sankar, Q. He, C.C.J. Kiely, G.J.G. Hutchings, F. Cavani, Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles, Green Chem. 13 (2011) 2091–2099.spa
dc.relation.referencesN.K. Gupta, S. Nishimura, A. Takagaki, K. Ebitani, Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure, Green Chem. 13 (2011) 824.spa
dc.relation.referencesA. Lolli, S. Albonetti, L. Utili, R. Amadori, F. Ospitali, C. Lucarelli, F. Cavani, Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd-Au nanoparticles, Appl. Catal. A Gen. 504 (2015) 408–419.spa
dc.relation.referencesL. Delannoy, N. Weiher, N. Tsapatsaris, A.M. Beesley, L. Nchari, S.L.M. Schroeder, C. Louis, Reducibility of supported gold (III) precursors: Influence of the metal oxide support and consequences for CO oxidation activity, Top. Catal. 44 (2007) 263–273.spa
dc.relation.referencesY.G. Wang, Y. Yoon, V.A. Glezakou, J. Li, R. Rousseau, The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics, J. Am. Chem. Soc. 135 (2013) 10673–10683.spa
dc.relation.referencesS. Albonetti, A. Lolli, V. Morandi, A. Migliori, C. Lucarelli, F. Cavani, Conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal–support interaction, Appl. Catal. B Environ. 163 (2015) 520–530.spa
dc.relation.referencesH. Li, X. Liu, Q. Zhang, S. Li, Y. Liu, H. He, Y. Cao, Deoxygenative coupling of nitroarenes to synthesize aromatic azo compounds with CO using supported gold nanoparticles, (2015).spa
dc.relation.referencesJ.A. Navio, M. Macias, F.J. Marchena, C. Real, Ruiz B., Stud. Suface Sci. Arid Catal. 72 (1992) 423–433.spa
dc.relation.referencesA. Valente, E. Unidos, N. Fordismo, Capítulo 2, (1993) 56–113.spa
dc.relation.referencesA. Martinez Orellana, Microanálisis Por Dispersión De Energías De Rayos-X ( Xeds ). Conceptos básicos, Serv. Microsc. Electrónica. SCAI. Univ. Málaga. (2010) 1–11. http://www.uma.es/sme/.spa
dc.relation.referencesT. Hatakeyama, Thermal Analysis. Fundamentals and applications to polymer science, (1999).spa
dc.relation.referencesF. González, Técnicas de Análisis Térmico, Univ. Canada West. (2015) 36. http://ocw.uc3m.es/ciencia-e-oin/caracterizacion-de-materiales/material-de-clase-1/Analisis_termico.pdf/view.spa
dc.relation.referencesUnidad de Microscopía Electrónica de Transmisión Servicios Centrales de Apoyo a la Investigación, (n.d.). http://www.scai.uma.es/servicios/area_microscopia/tem/tem.html.spa
dc.relation.referencesH.A. Rojas Sarmiento, G. Borda Guerra, J.S. Valencia Ríos, J.J. Martínez Zambrano, P.A. Reyes Núñez, Hidrogenación selectiva de citral en fase líquida sobre catalizadores ir-fe/tio2 reducidos a alta temperatura selective hydrogenation of citral in liquid phase over ir-fe/tio2 reduced at high temperature, Rev. Colomb. Quím. 34 (2005) 127–138..spa
dc.relation.referencesR.M. Veronika, Practical high-performance liquid chromatography, Fifth edit, Wiley, 2010.spa
dc.relation.referencesX. Huang, B. Wang, E.A. Grulke, M.J. Beck, Toward tuning the surface functionalization of small ceria nanoparticles, J. Chem. Phys. 140 (2014) 74703spa
dc.relation.referencesL.T. Zhuravlev, V. V. Potapov, Density of silanol groups on the surface of silica precipitated from a hydrothermal solution, Russ. J. Phys. Chem. 80 (2006) 1119–1128.spa
dc.relation.referencesT. Iizuka, K. Ogasawara, K. Tanabe, Acidic and Catalytic Properties of Niobium Pentaoxide., Bull. Chem. Soc. Jpn. 56 (1983) 2927–2931.spa
dc.relation.referencesF. Wang, H.Z. Wu, C.L. Liu, R.Z. Yang, W.S. Dong, Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent, Carbohydr. Res. 368 (2013) 78–83.spa
dc.relation.referencesT. Murayama, J. Chen, J. Hirata, K. Matsumoto, W. Ueda, Hydrothermal synthesis of octahedra-based layered niobium oxide and its catalytic activity as a solid acid, Catal. Sci. Technol. 4 (2014) 4250–4257.spa
dc.relation.referencesS. Bennici, V. Raki, CeO2 –Nb2O5 mixed oxide catalysts: Preparation , characterization and catalytic activity in fructose dehydration reaction, Catal. Today. 192 (2012) 160–168.spa
dc.relation.referencesJ. Datka, A.M. Turek, J.M. Jehng, I.E. Wachs, Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation, J. Catal. 135 (1992) 186–199.spa
dc.relation.referencesM.D.C. Rangel, A.P.D.M. Monteiro, S.G. Marchetti, S.B. Lima, M.D.S. Ramos, Ethylbenzene dehydrogenation in the presence of carbon dioxide over magnesia-supported iron oxides, J. Mol. Catal. A Chem. 387 (2014) 147–155.spa
dc.relation.referencesJ.J. Martínez, E. Nope, H. Rojas, J. Cubillos, Á.G. Sathicq, G.P. Romanelli, Dehydration of xylose to furfural and its valorization via different multicomponent reactions using sulfonated silica with magnetic properties as recyclable catalyst, Catal. Letters. 144 (2014) 1322–1331.spa
dc.relation.referencesY.F. Lin, C.Y. Yen, C.C.M. Ma, S.H. Liao, C.H. Lee, Y.H. Hsiao, H.P. Lin, High proton-conducting Nafion??/-SO3H functionalized mesoporous silica composite membranes, J. Power Sources. 171 (2007) 388–395.spa
dc.relation.referencesS.C. Shen, X. Chen, S. Kawi, S.C. Shen, X. Chen, S. Kawi, CO2 Adsorption over Si-MCM-41 Materials Having Basic Sites Created by Postmodification with La2O3, Langmuir. 20 (2004) 9130–9137.spa
dc.relation.referencesH. Rojas, G. Borda, P. Reyes, M. Brijaldo, J. Valencia, Liquid-phase hydrogenation of m-dinitrobenzene over platinum catalysts, J. Chil. Chem. Soc. 56 (2011) 793–798.spa
dc.relation.referencesA. Gayen, K.R. Priolkar, P.R. Sarode, V. Jayaram, M.S. Hegde, G.N. Subbanna, S. Emura, Formation of Ce1-x RhxO2-δ Solid Solution in Combustion-Synthesized Rh/CeO2 Catalyst: XRD, XPS, and EXAFS Investigation, Chem. Mater. 14 (2002) 2120–2128.spa
dc.rightsCopyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcMaestría en Química - Tesis y disertaciones académicas
dc.subject.other5-Hydroxymethylfurfural (HMF)
dc.titleEstudio de sistemas bifuncionales para la obtención de 5-(Hidroximetil)-2-Furaldehído y Acido 5-(Hidroximetil)Furan-2-Carboxílicospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
TGT_1203.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format
Description:
Archivo principal
Descargar
Loading...
Thumbnail Image
Name:
A_EXAP.pdf
Size:
700.9 KB
Format:
Adobe Portable Document Format
Description:
Autorización publcación
Descargar
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
14.45 KB
Format:
Item-specific license agreed upon to submission
Description:
Descargar