Modificación del almidón, nanoalmidón y su aplicación en lodos de perforación
dc.contributor.advisor | Muñoz Prieto, Efren de Jesús | spa |
dc.contributor.advisor | Palacios Alquisira, Joaquín | spa |
dc.contributor.author | Rodríguez Pineda, Lina María | |
dc.date.accessioned | 2019-03-29T16:29:56Z | |
dc.date.available | 2019-03-29T16:29:56Z | |
dc.date.issued | 2017 | |
dc.description | 1 recurso en línea (75 páginas) : ilustraciones color, figuras, tablas. | spa |
dc.description.abstract | Starch is a naturally occurring polymer with unique physicochemical properties and yet some key structural properties of starch that can be modified to meet specific requirements. The transition from starch to nano-starch and subsequent chemical modification provides a variety of benefits such as greater thermal stability and lower biodegradability. The preparation of potato starch nanoparticles (NPA) were prepared with combined methods of acid hydrolysis and sonication, after the NPA was made two modifications, a copolymer of potato starch nanoparticles grafted with polyacrylamide by free radicals, using persulfate of potassium (PSP), as initiator and carboxymethyl nano-starch of potato using potassium hydroxide as the activating agent and monochloroacetic acid as the esterifying agent, the two preparations were carried out by microwave irradiation. The true size of the nanoparticles could not be determined by SEM, because it presented agglomerations, the NPA obtained were amorphous, which indicated that the ultrasound affected the crystalline zones of the starch. The confirmation of the modification of the potato starch nanoparticles was observed by the presence of new bands in the infrared spectrum (FTIR), for the copolymer in 3191 and 1649 cm-1, the presence of the NH group and C = O respectively, and for the carboxymethyl nano-starch the presence of the carbonyl group at 1595 and 1406 cm-1. Finally, the grafted copolymer NPA-i-PAM (MCI-2) and carboxymethyl nano-starch potato (CMNPA), prepared above, were added and added to a water-based bentonite mud (8%), where an increase in viscosity was observed and decreased filtrate loss by 45 and 32% respectively, which indicated that these products could be used as additives in drilling muds as viscosifying and filtering reducing agents. | eng |
dc.description.abstract | El almidón es un polímero de origen natural con propiedades fisicoquímicas únicas y sin embargo, algunas propiedades estructurales claves del almidón que pueden modificarse para satisfacer requisitos específicos. El paso del almidón a nanoalmidón y posterior modificación química proporciona una variedad de beneficios como mayor estabilidad térmica y menor biodegradabilidad. La preparación de nano partículas de almidón de papa (NPA) se realizó mediante métodos combinados de hidrolisis acida y sonicación, posteriormente a las NPA se le realizaron dos modificaciones, un copolímero de nanopartículas de almidón de papa injertado con poliacrilamida mediante radicales libres, usando persulfato de potasio (PSP), como iniciador y carboximetil nanoalmidón de papa usando hidróxido de potasio como agente de activación y ácido monocloroacético como agente esterificante, las dos preparaciones se realizaron mediante irradiación de microondas. El tamaño de real de las nanopartículas no logro ser determinado por SEM, debido a que presentaba aglomeraciones, las NPA obtenidas fueron amorfas, lo que indico que el ultrasonido afecto las zonas cristalinas del almidón. La confirmación de la modificación de las nanopartículas de almidón de papa se observó mediante la presencia de nuevas bandas en el espectro infrarrojo (FTIR), para el copolimero en 3191 y 1649 cm-1, la presencia del grupo N-H y C=O respectivamente, y para el carboximetil nanoalmidón la presencia del grupo carbonilo en 1595 y 1406 cm-1. Finalmente se tomo el copolimero injertado NPA-i-PAM (MCI-2) y carboximetil nanoalmidón de papa (CMNPA), preparados anteriormente y se añadieron a un lodo bentonita base agua (8%), donde se observó un aumento en la viscosidad y disminuyo la perdida de filtrado en un 45 y 32 % respectivamente, lo que indicaron que estos productos podrán ser utilizados como aditivos en los lodos de perforación como agentes viscosificantes y reductores de filtrado. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Química | spa |
dc.description.notes | Bibliografía: páginas 70-74. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Rodríguez Pineda, L. M. (2017). Modificación del almidón, nanoalmidón y su aplicación en lodos de perforación. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2507 | spa |
dc.identifier.uri | http://repositorio.uptc.edu.co/handle/001/2507 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Pedagógica y Tecnológica de Colombia | spa |
dc.publisher.faculty | Facultad de Ciencias. Escuela de Posgrados. Maestría en Química | spa |
dc.relation.references | R. Prada Ospina, “Alternativa de aprovechamiento eficiente de residuos biodegradables: El caso de almidón residual derivado de la industrialización de la papa,” Rev. EAN, pp. 180–192, 2012. | spa |
dc.relation.references | D. Severian, Polysaccharides: Structural Diversity and Functional Versatility, Second Edition. University of Sherbrooke Quebec, Canada: CRC Press, 2004. | spa |
dc.relation.references | P. T. Nicholson and I. Shaw, Ancient Egyptian Materials and Technology. Cambridge University Press: Kingdom, United, 2000 | spa |
dc.relation.references | P. Rodríguez, M. E. San Martín, and G. Gonzales de la Cruz, “Calorimetría diferencial de barrido y rayos-x del almidón obtenido por nixtamalización fraccionada,” Superf. y vacío, vol. 13, pp. 61–65, 2001. | spa |
dc.relation.references | P. Srikanth, Handbook of Bioplastics and Biocomposites Engineering Applications, Vol.81. USA: Scrivener Publishing LLC, 2011. | spa |
dc.relation.references | J. Leon and M. Leszek, Thermoplastic Starch: Biodegradable Polymers and Their Practical Utility. Weinheim: Wiley, 2009. | spa |
dc.relation.references | D. Le core, J. Bras, and A. Dufresne, “Starch Nanoparticles : A Review,” Biomacromolecules, vol. 11, pp. 1139–1153, 2010 | spa |
dc.relation.references | P. M. Visakh and L. Yu, Starch-based blends, composites and nanocomposites, Vol 7. Royal Society of Chemistry, 2015 | spa |
dc.relation.references | B. Zhang, H. Gong, S. Lü, B. Ni, M. Liu, C. Gao, Y. Huang, and F. Han, “Synthesis and characterization of carboxymethyl potato starch and its application in reactive dye printing,” Int. J. Biol. Macromol., vol. 51, no. 4, pp. 668–674, 2012. | spa |
dc.relation.references | V. Singh, A. Tiwari, S. Pandey, and S. K. Singh, “Microwave-accelerated synthesis and characterization of potato starch-g-poly(acryiamide),” Starch/Staerke, vol. 58, no. 10, pp. 536–543, 2006. | spa |
dc.relation.references | P. Rani, G. Sen, S. Mishra, and U. Jha, “Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant,” Carbohydr. Polym., vol. 89, no. 1, pp. 275–281, 2012. | spa |
dc.relation.references | A. F. Bautista Cuadros and E. D. Flórez Barreto, “Factibilidad del uso de almidón de Yuca como aditivo en lodos de perforación. Tesis de Pregrado,” Universidad Industrial de Santander, Bucaramanga, 2011 | spa |
dc.relation.references | A. P. García Badillo, “Formulación de un fluido para perforar la zona de 8 ½” de los pozos del campo Velásquez, Tesis de Pregrado,” Universidad Industrial de Santander, Bucaramanga, 2008 | spa |
dc.relation.references | D. A. Bello Niño and H. F. Myna Reyes, “Estudio de factibillidad del almidon de papa como aditivo en fluidos de perforacion base agua, Tesis de Pregrado,” Universidad Industrial de Santander, 2012. | spa |
dc.relation.references | M. Amanullah and L. Yu, “Environment friendly fluid loss additives to protect the marine environment from the detrimental effect of mud additives,” J. Pet. Sci. Eng., vol. 48, no. 3–4, pp. 199–208, 2005. | spa |
dc.relation.references | M. C. Li, Q. Wu, K. Song, Y. Qing, and Y. Wu, “Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids,” ACS Appl. Mater. Interfaces, vol. 7, no. 8, pp. 5009–5016, 2015. | spa |
dc.relation.references | S. Rupinski, Z. K. Brzozowski, and M. Uliasz, “Study on the Application of Starch Derivatives as the Regulators of Potassium Drilling Fluids Filtration,” Chem. Chem. Technol., vol. 3, no. 3, 2009. | spa |
dc.relation.references | L. M. Zhang and D. Q. Chen, “Water-soluble grafted starches for hydration suppression of swellable clay,” Starch/Staerke, vol. 54, no. 7, pp. 285–289, 2002. | spa |
dc.relation.references | R. Jain, B. K. Paswan, T. K. Mahto, and V. Mahto, “Study the effect of synthesized graft copolymer on the inhibitive water based drilling fluid system,” Egypt. J. Pet., 2015. | spa |
dc.relation.references | L. M. Zhang, “A review of starches and their derivatives for oilfield applications in China,” Starch/Staerke, vol. 53, no. 9, pp. 401–407, 2001. | spa |
dc.relation.references | S. Betancur Marquez, F. B. Cortes Correa, and G. A. Alzate Espinosa, “Mejoramiento de los fluidos de perforación usando nanopartáculas funcionalizadas: reducción de las perdidas de filtrado y del espesor de la retorta,” Bol. Ciencias la Tierra; nro. 35 (2014); 5-14 2357-3740 0120-3630, pp. 5–14, 2014. | spa |
dc.relation.references | J. Abdo and M. D. Haneef, “Nanoparticles : Promising Solution to Overcome Stern Drilling Problems Mechanical and Industrial Engineering Department,” NSTI-Nanotech 2010, vol. 3, pp. 635–638, 2010. | spa |
dc.relation.references | K. P. Hoelscher, G. De Stefano, M. Riley, and S. Young, “Application of Nanotechnology in Drilling Fluids,” SPE Int. Oilf. Nanotechnol. Conf. Exhib., no. June, pp. 12–14, 2012. | spa |
dc.relation.references | M. Zakaria, M. Husein, and G. Harland, “Novel Nanoparticle-Based Drilling Fluid with Improved Characteristics,” Proc. SPE Int. Oilf. Nanotechnol. Conf., no. November, p. 2013, 2012. | spa |
dc.relation.references | S. M. Javeri, Z. M. W. Haindade, and C. B. Jere, “Mitigating Loss Circulation And Differential Sticking Problems Using Silicon Nanoparticles,” SPE/IADC Middle East Drill. Technol. Conf. Exhib., 2011. | spa |
dc.relation.references | M. M. Sharma, R. Zhang, and M. E. Chenevert, “A New Family of Nanoparticle Based Drilling Fluids,” SPE Annu. Tech. Conf. Exhib., pp. 1–13, 2012. | spa |
dc.relation.references | R. Saboori, S. Sabbaghi, D. Mowla, and A. Soltani, “Decreasing of water loss and mud cake thickness by CMC nanoparticles in mud drilling,” Int. J. Nano Dimens., vol. 3, no. 2, pp. 101–104, 2012 | spa |
dc.relation.references | M. C. Li, Q. Wu, K. Song, Y. Qing, and Y. Wu, “Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids,” ACS Appl. Mater. Interfaces, vol. 7, no. 8, pp. 5009–5016, 2015. | spa |
dc.relation.references | A. Mohammad Amini and S. M. A. Razavi, “A fast and efficient approach to prepare starch nanocrystals from normal corn starch,” Food Hydrocoll., vol. 57, pp. 132–138, 2016. | spa |
dc.relation.references | M. C. Condés, M. C. Añon, A. N. Mauri, and A. Dufresne, “Amaranth protein films reinforced with maize starch nanocrystals,” Food Hydrocoll., vol. 47, pp. 146–157, 2015. | spa |
dc.relation.references | N. L. García, M. Lamanna, N. D’Accorso, A. Dufresne, M. Aranguren, and S. Goyanes, “Biodegradable materials from grafting of modified PLA onto starch nanocrystals,” Polym. Degrad. Stab., vol. 97, no. 10, pp. 2021–2026, Oct. 2012. | spa |
dc.relation.references | D. Lecorre, J. Bras, and A. Dufresne, “Influence of native starch’s properties on starch nanocrystals thermal properties,” Carbohydr. Polym., vol. 87, no. 1, pp. 658–666, 2012. | spa |
dc.relation.references | Y. Qin, C. Liu, S. Jiang, L. Xiong, and Q. Sun, “Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type,” Ind. Crops Prod., vol. 87, pp. 182–190, 2016. | spa |
dc.relation.references | S. Bel Haaj, A. Magnin, C. Pétrier, and S. Boufi, “Starch nanoparticles formation via high power ultrasonication,” Carbohydr. Polym., vol. 92, no. 2, pp. 1625–1632, 2013. | spa |
dc.relation.references | H. Y. Kim, D. J. Park, J. Y. Kim, and S. T. Lim, “Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication,” Carbohydr. Polym., vol. 98, no. 1, pp. 295–301, 2013. | spa |
dc.relation.references | S. Bel Haaj, W. Thielemans, A. Magnin, and S. Boufi, “Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study,” Carbohydr. Polym., vol. 143, pp. 310–317, 2016. | spa |
dc.relation.references | O. I. Peñaranda, J. E. Perilla, and N. A. Allgecira, “Revisión de la modificación química del almidón con ácidos orgánicos,” Rev. Ing. e Investig., vol. 28, no. 3, pp. 47–52, 2008. | spa |
dc.relation.references | S. Lefnaoui and N. Moulai-Mostefa, “Synthesis and evaluation of the structural and physicochemical properties of carboxymethyl pregelatinized starch as a pharmaceutical excipient,” Saudi Pharm. J., vol. 23, no. 6, pp. 698–711, 2015. | spa |
dc.relation.references | A. C. Martinez-Arellano, J. L. Rivera-Armenta, A. M. Mendoza-Mart??nez, N. P. D??az-Zavala, J. G. S. Robles, and E. E. Banda-Cruz, “Estudio de copolimerización injerto del acrilato de butilo sobre almidón empleando sistema iniciador redox,” Quim. Nova, vol. 37, no. 3, pp. 426–430, 2014. | spa |
dc.relation.references | H. Zhang, J. Wang, R. Wang, and Y. Dong, “Microwave irradiated synthesis of grafted cationic starch: Synthesis, characterization, application, and biodegradation,” J. Appl. Polym. Sci., vol. 130, no. 3, pp. 1645–1652, Nov. 2013. | spa |
dc.relation.references | J. Liu, J. Ming, W. Li, and G. Zhao, “Synthesis, characterisation and in vitro digestibility of carboxymethyl potato starch rapidly prepared with microwave-assistance,” Food Chem., vol. 133, no. 4, pp. 1196–1205, 2012. | spa |
dc.relation.references | H. Zhang, J. K. Wang, W. J. Liu, and F. Y. Li, “Microwave-assisted synthesis, characterization, and textile sizing property of carboxymethyl corn starch,” Fibers Polym., vol. 16, no. 11, pp. 2308–2317, 2015. | spa |
dc.relation.references | P. Rachtanapun, P. Simasatitkul, W. Chaiwan, and Y. Watthanaworasakun, “Effect of sodium hydroxide concentration on properties of carboxymethyl rice starch,” Int. Food Res. J., vol. 19, no. 3, pp. 923–931, 2012. | spa |
dc.relation.references | K. Sangseethong, P. Chatakanonda, R. Wansuksri, and K. Sriroth, “Influence of reaction parameters on carboxymethylation of rice starches with varying amylose contents,” Carbohydr. Polym., vol. 115, pp. 186–192, 2015. | spa |
dc.relation.references | X. Li, W. yuan Gao, L. jing Huang, Y. li Wang, L. qi Huang, and C. xiao Liu, “Preparation and physicochemical properties of carboxymethyl Fritillaria ussuriensis Maxim. starches,” Carbohydr. Polym., vol. 80, no. 3, pp. 768–773, 2010. | spa |
dc.relation.references | O. S. Lawal, M. D. Lechner, and W. M. Kulicke, “The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source,” Polym. Degrad. Stab., vol. 93, no. 8, pp. 1520–1528, 2008. | spa |
dc.relation.references | L. F. Wang, S. Y. Pan, H. Hu, W. H. Miao, and X. Y. Xu, “Synthesis and properties of carboxymethyl kudzu root starch,” Carbohydr. Polym., vol. 80, no. 1, pp. 174–179, 2010. | spa |
dc.relation.references | W. Yanli, G. Wenyuan, and L. Xia, “Carboxymethyl Chinese yam starch: synthesis, characterization, and influence of reaction parameters,” Carbohydr. Res., vol. 344, no. 13, pp. 1764–1769, 2009. | spa |
dc.relation.references | D. Das, S. Jha, and K. J. Kumar, “Effect of carboxymethylation on physicochemical and release characteristics of Indian Palo starch,” Int. J. Biol. Macromol., vol. 77, pp. 181–187, 2015. | spa |
dc.relation.references | D. Bhattacharyya, R. S. Singhal, and P. R. Kulkarni, “Physicochemical properties of carboxymethyl starch prepared from corn and waxy amaranth starch,” Carbohydr. Polym., vol. 27, no. 3, pp. 167–169, 1995. | spa |
dc.relation.references | T. Heinze and A. Koschella, “Carboxymethyl ethers of cellulose and starch - A review,” Macromol. Symp., vol. 223, pp. 13–39, 2005. | spa |
dc.relation.references | A. V. Singh, L. K. Nath, and M. Guha, “Microwave assisted synthesis and characterization of Phaseolus aconitifolius starch-g-acrylamide,” Carbohydr. Polym., vol. 86, no. 2, pp. 872–876, 2011. | spa |
dc.relation.references | S. Mishra, A. Mukul, G. Sen, and U. Jha, “Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment,” Int. J. Biol. Macromol., vol. 48, no. 1, pp. 106–111, 2011. | spa |
dc.relation.references | S. Kaity, J. Isaac, P. M. Kumar, A. Bose, T. W. Wong, and A. Ghosh, “Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery,” Carbohydr. Polym., vol. 98, no. 1, pp. 1083–1094, 2013. | spa |
dc.relation.references | A. Umar, M. M. Sanagi, A. Salisu, W. A. Wan Ibrahim, K. J. Abd Karim, and A. S. Abdul Keyon, “Preparation and characterization of starch grafted with methacrylamide using ammonium persulphate initiator,” Mater. Lett., vol. 185, pp. 173–176, 2016. | spa |
dc.relation.references | N. D. Khanna and A. K. Inderjeet Kaur, “Starch-Grafted Polypropylene: Synthesis and Characterization,” Polym. Polym. Compos., vol. 21, no. 7, pp. 449–456, 2013. | spa |
dc.relation.references | I. Sarvi, A. Pourjavadi, and M. A. N. Aghaei, “Synthesis and characterization of bagasse poly(methyl methacrylate) graft copolymer,” Macromol. Symp., vol. 274, no. 1, pp. 49–54, 2008. | spa |
dc.relation.references | Y. Sugahara and T. Ohta, “Synthesis of Starch-graft-polyacrylonitrile hydrolyzate and its characterization,” J. Appl. Polym. Sci., vol. 82, no. 6, pp. 1437–1443, 2001. | spa |
dc.relation.references | L. Novelo-Cen and D. Betancur-Ancona, “Chemical and functional properties of Phaseolus lunatus and Manihot esculenta starch blends,” Starch/Staerke, vol. 57, no. 9, pp. 431–441, 2005. | spa |
dc.relation.references | API (American Pretroleum Institute)., Recommended practice for Field Testing Water based Drilling Fluids API13B-1, Third edit. 2003. | spa |
dc.relation.references | H. P. C. Oscar, C. C. Julio, and A. O. Cessar, “Caracterización estructural y térmica de almidones provenientes de diferentes variedades de papa,” Acta Agron., vol. 62, no. 4, pp. 289–295, 2013. | spa |
dc.relation.references | A. C. Bertolini, Starches: characterization, properties, and applications. Boca Raton London, New York: CRC Press, 2010. | spa |
dc.relation.references | H. Kargarzadeh and I. Ahmad, “Polysaccharide Nanocrystal-Reinforced Nanocomposites,” Polysaccharide-Based Nanocrystals Chem. Appl., pp. 165–218, 2015. | spa |
dc.relation.references | S. F. Chin, S. N. A. M. Yazid, and S. C. Pang, “Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin,” Int. J. Polym. Sci., vol. 2014, pp. 292–295, 2014. | spa |
dc.relation.references | D. LeCorre, J. Bras, and A. Dufresne, “Influence of botanic origin and amylose content on the morphology of starch nanocrystals,” J. Nanoparticle Res., vol. 13, no. 12, pp. 7193–7208, 2011 | spa |
dc.relation.references | M. Lamanna, N. J. Morales, N. L. Garcia, and S. Goyanes, “Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler,” Carbohydr. Polym., vol. 97, no. 1, pp. 90–97, 2013. | spa |
dc.relation.references | M. Eutamene, A. Benbakhti, M. Khodja, and A. Jada, “Preparation and aqueous properties of starch-grafted polyacrylamide copolymers,” Starch/Staerke, vol. 61, no. 2, pp. 81–91, 2009. | spa |
dc.rights | Copyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.armarc | Nanoalmidones | |
dc.subject.armarc | Síntesis de polímeros | |
dc.subject.armarc | Procesamiento de polímeros | |
dc.subject.armarc | Polímeros | |
dc.subject.armarc | Polímeros vegetales | |
dc.subject.armarc | Maestría en Química - Tesis y disertaciones académicas | |
dc.title | Modificación del almidón, nanoalmidón y su aplicación en lodos de perforación | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- TGT-1192.pdf
- Size:
- 1.73 MB
- Format:
- Adobe Portable Document Format
- Description:
- Archivo principal
Descargar
Loading...
- Name:
- A_LMRP.pdf
- Size:
- 699.94 KB
- Format:
- Adobe Portable Document Format
- Description:
- Autorización publicación
Descargar
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 14.45 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
Descargar