Modificación del almidón, nanoalmidón y su aplicación en lodos de perforación

dc.contributor.advisorMuñoz Prieto, Efren de Jesússpa
dc.contributor.advisorPalacios Alquisira, Joaquínspa
dc.contributor.authorRodríguez Pineda, Lina María
dc.date.accessioned2019-03-29T16:29:56Z
dc.date.available2019-03-29T16:29:56Z
dc.date.issued2017
dc.description1 recurso en línea (75 páginas) : ilustraciones color, figuras, tablas.spa
dc.description.abstractStarch is a naturally occurring polymer with unique physicochemical properties and yet some key structural properties of starch that can be modified to meet specific requirements. The transition from starch to nano-starch and subsequent chemical modification provides a variety of benefits such as greater thermal stability and lower biodegradability. The preparation of potato starch nanoparticles (NPA) were prepared with combined methods of acid hydrolysis and sonication, after the NPA was made two modifications, a copolymer of potato starch nanoparticles grafted with polyacrylamide by free radicals, using persulfate of potassium (PSP), as initiator and carboxymethyl nano-starch of potato using potassium hydroxide as the activating agent and monochloroacetic acid as the esterifying agent, the two preparations were carried out by microwave irradiation. The true size of the nanoparticles could not be determined by SEM, because it presented agglomerations, the NPA obtained were amorphous, which indicated that the ultrasound affected the crystalline zones of the starch. The confirmation of the modification of the potato starch nanoparticles was observed by the presence of new bands in the infrared spectrum (FTIR), for the copolymer in 3191 and 1649 cm-1, the presence of the NH group and C = O respectively, and for the carboxymethyl nano-starch the presence of the carbonyl group at 1595 and 1406 cm-1. Finally, the grafted copolymer NPA-i-PAM (MCI-2) and carboxymethyl nano-starch potato (CMNPA), prepared above, were added and added to a water-based bentonite mud (8%), where an increase in viscosity was observed and decreased filtrate loss by 45 and 32% respectively, which indicated that these products could be used as additives in drilling muds as viscosifying and filtering reducing agents.eng
dc.description.abstractEl almidón es un polímero de origen natural con propiedades fisicoquímicas únicas y sin embargo, algunas propiedades estructurales claves del almidón que pueden modificarse para satisfacer requisitos específicos. El paso del almidón a nanoalmidón y posterior modificación química proporciona una variedad de beneficios como mayor estabilidad térmica y menor biodegradabilidad. La preparación de nano partículas de almidón de papa (NPA) se realizó mediante métodos combinados de hidrolisis acida y sonicación, posteriormente a las NPA se le realizaron dos modificaciones, un copolímero de nanopartículas de almidón de papa injertado con poliacrilamida mediante radicales libres, usando persulfato de potasio (PSP), como iniciador y carboximetil nanoalmidón de papa usando hidróxido de potasio como agente de activación y ácido monocloroacético como agente esterificante, las dos preparaciones se realizaron mediante irradiación de microondas. El tamaño de real de las nanopartículas no logro ser determinado por SEM, debido a que presentaba aglomeraciones, las NPA obtenidas fueron amorfas, lo que indico que el ultrasonido afecto las zonas cristalinas del almidón. La confirmación de la modificación de las nanopartículas de almidón de papa se observó mediante la presencia de nuevas bandas en el espectro infrarrojo (FTIR), para el copolimero en 3191 y 1649 cm-1, la presencia del grupo N-H y C=O respectivamente, y para el carboximetil nanoalmidón la presencia del grupo carbonilo en 1595 y 1406 cm-1. Finalmente se tomo el copolimero injertado NPA-i-PAM (MCI-2) y carboximetil nanoalmidón de papa (CMNPA), preparados anteriormente y se añadieron a un lodo bentonita base agua (8%), donde se observó un aumento en la viscosidad y disminuyo la perdida de filtrado en un 45 y 32 % respectivamente, lo que indicaron que estos productos podrán ser utilizados como aditivos en los lodos de perforación como agentes viscosificantes y reductores de filtrado.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Químicaspa
dc.description.notesBibliografía: páginas 70-74.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRodríguez Pineda, L. M. (2017). Modificación del almidón, nanoalmidón y su aplicación en lodos de perforación. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2507spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2507
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.publisher.facultyFacultad de Ciencias. Escuela de Posgrados. Maestría en Químicaspa
dc.relation.referencesR. Prada Ospina, “Alternativa de aprovechamiento eficiente de residuos biodegradables: El caso de almidón residual derivado de la industrialización de la papa,” Rev. EAN, pp. 180–192, 2012.spa
dc.relation.referencesD. Severian, Polysaccharides: Structural Diversity and Functional Versatility, Second Edition. University of Sherbrooke Quebec, Canada: CRC Press, 2004.spa
dc.relation.referencesP. T. Nicholson and I. Shaw, Ancient Egyptian Materials and Technology. Cambridge University Press: Kingdom, United, 2000spa
dc.relation.referencesP. Rodríguez, M. E. San Martín, and G. Gonzales de la Cruz, “Calorimetría diferencial de barrido y rayos-x del almidón obtenido por nixtamalización fraccionada,” Superf. y vacío, vol. 13, pp. 61–65, 2001.spa
dc.relation.referencesP. Srikanth, Handbook of Bioplastics and Biocomposites Engineering Applications, Vol.81. USA: Scrivener Publishing LLC, 2011.spa
dc.relation.referencesJ. Leon and M. Leszek, Thermoplastic Starch: Biodegradable Polymers and Their Practical Utility. Weinheim: Wiley, 2009.spa
dc.relation.referencesD. Le core, J. Bras, and A. Dufresne, “Starch Nanoparticles : A Review,” Biomacromolecules, vol. 11, pp. 1139–1153, 2010spa
dc.relation.referencesP. M. Visakh and L. Yu, Starch-based blends, composites and nanocomposites, Vol 7. Royal Society of Chemistry, 2015spa
dc.relation.referencesB. Zhang, H. Gong, S. Lü, B. Ni, M. Liu, C. Gao, Y. Huang, and F. Han, “Synthesis and characterization of carboxymethyl potato starch and its application in reactive dye printing,” Int. J. Biol. Macromol., vol. 51, no. 4, pp. 668–674, 2012.spa
dc.relation.referencesV. Singh, A. Tiwari, S. Pandey, and S. K. Singh, “Microwave-accelerated synthesis and characterization of potato starch-g-poly(acryiamide),” Starch/Staerke, vol. 58, no. 10, pp. 536–543, 2006.spa
dc.relation.referencesP. Rani, G. Sen, S. Mishra, and U. Jha, “Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant,” Carbohydr. Polym., vol. 89, no. 1, pp. 275–281, 2012.spa
dc.relation.referencesA. F. Bautista Cuadros and E. D. Flórez Barreto, “Factibilidad del uso de almidón de Yuca como aditivo en lodos de perforación. Tesis de Pregrado,” Universidad Industrial de Santander, Bucaramanga, 2011spa
dc.relation.referencesA. P. García Badillo, “Formulación de un fluido para perforar la zona de 8 ½” de los pozos del campo Velásquez, Tesis de Pregrado,” Universidad Industrial de Santander, Bucaramanga, 2008spa
dc.relation.referencesD. A. Bello Niño and H. F. Myna Reyes, “Estudio de factibillidad del almidon de papa como aditivo en fluidos de perforacion base agua, Tesis de Pregrado,” Universidad Industrial de Santander, 2012.spa
dc.relation.referencesM. Amanullah and L. Yu, “Environment friendly fluid loss additives to protect the marine environment from the detrimental effect of mud additives,” J. Pet. Sci. Eng., vol. 48, no. 3–4, pp. 199–208, 2005.spa
dc.relation.referencesM. C. Li, Q. Wu, K. Song, Y. Qing, and Y. Wu, “Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids,” ACS Appl. Mater. Interfaces, vol. 7, no. 8, pp. 5009–5016, 2015.spa
dc.relation.referencesS. Rupinski, Z. K. Brzozowski, and M. Uliasz, “Study on the Application of Starch Derivatives as the Regulators of Potassium Drilling Fluids Filtration,” Chem. Chem. Technol., vol. 3, no. 3, 2009.spa
dc.relation.referencesL. M. Zhang and D. Q. Chen, “Water-soluble grafted starches for hydration suppression of swellable clay,” Starch/Staerke, vol. 54, no. 7, pp. 285–289, 2002.spa
dc.relation.referencesR. Jain, B. K. Paswan, T. K. Mahto, and V. Mahto, “Study the effect of synthesized graft copolymer on the inhibitive water based drilling fluid system,” Egypt. J. Pet., 2015.spa
dc.relation.referencesL. M. Zhang, “A review of starches and their derivatives for oilfield applications in China,” Starch/Staerke, vol. 53, no. 9, pp. 401–407, 2001.spa
dc.relation.referencesS. Betancur Marquez, F. B. Cortes Correa, and G. A. Alzate Espinosa, “Mejoramiento de los fluidos de perforación usando nanopartáculas funcionalizadas: reducción de las perdidas de filtrado y del espesor de la retorta,” Bol. Ciencias la Tierra; nro. 35 (2014); 5-14 2357-3740 0120-3630, pp. 5–14, 2014.spa
dc.relation.referencesJ. Abdo and M. D. Haneef, “Nanoparticles : Promising Solution to Overcome Stern Drilling Problems Mechanical and Industrial Engineering Department,” NSTI-Nanotech 2010, vol. 3, pp. 635–638, 2010.spa
dc.relation.referencesK. P. Hoelscher, G. De Stefano, M. Riley, and S. Young, “Application of Nanotechnology in Drilling Fluids,” SPE Int. Oilf. Nanotechnol. Conf. Exhib., no. June, pp. 12–14, 2012.spa
dc.relation.referencesM. Zakaria, M. Husein, and G. Harland, “Novel Nanoparticle-Based Drilling Fluid with Improved Characteristics,” Proc. SPE Int. Oilf. Nanotechnol. Conf., no. November, p. 2013, 2012.spa
dc.relation.referencesS. M. Javeri, Z. M. W. Haindade, and C. B. Jere, “Mitigating Loss Circulation And Differential Sticking Problems Using Silicon Nanoparticles,” SPE/IADC Middle East Drill. Technol. Conf. Exhib., 2011.spa
dc.relation.referencesM. M. Sharma, R. Zhang, and M. E. Chenevert, “A New Family of Nanoparticle Based Drilling Fluids,” SPE Annu. Tech. Conf. Exhib., pp. 1–13, 2012.spa
dc.relation.referencesR. Saboori, S. Sabbaghi, D. Mowla, and A. Soltani, “Decreasing of water loss and mud cake thickness by CMC nanoparticles in mud drilling,” Int. J. Nano Dimens., vol. 3, no. 2, pp. 101–104, 2012spa
dc.relation.referencesM. C. Li, Q. Wu, K. Song, Y. Qing, and Y. Wu, “Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids,” ACS Appl. Mater. Interfaces, vol. 7, no. 8, pp. 5009–5016, 2015.spa
dc.relation.referencesA. Mohammad Amini and S. M. A. Razavi, “A fast and efficient approach to prepare starch nanocrystals from normal corn starch,” Food Hydrocoll., vol. 57, pp. 132–138, 2016.spa
dc.relation.referencesM. C. Condés, M. C. Añon, A. N. Mauri, and A. Dufresne, “Amaranth protein films reinforced with maize starch nanocrystals,” Food Hydrocoll., vol. 47, pp. 146–157, 2015.spa
dc.relation.referencesN. L. García, M. Lamanna, N. D’Accorso, A. Dufresne, M. Aranguren, and S. Goyanes, “Biodegradable materials from grafting of modified PLA onto starch nanocrystals,” Polym. Degrad. Stab., vol. 97, no. 10, pp. 2021–2026, Oct. 2012.spa
dc.relation.referencesD. Lecorre, J. Bras, and A. Dufresne, “Influence of native starch’s properties on starch nanocrystals thermal properties,” Carbohydr. Polym., vol. 87, no. 1, pp. 658–666, 2012.spa
dc.relation.referencesY. Qin, C. Liu, S. Jiang, L. Xiong, and Q. Sun, “Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type,” Ind. Crops Prod., vol. 87, pp. 182–190, 2016.spa
dc.relation.referencesS. Bel Haaj, A. Magnin, C. Pétrier, and S. Boufi, “Starch nanoparticles formation via high power ultrasonication,” Carbohydr. Polym., vol. 92, no. 2, pp. 1625–1632, 2013.spa
dc.relation.referencesH. Y. Kim, D. J. Park, J. Y. Kim, and S. T. Lim, “Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication,” Carbohydr. Polym., vol. 98, no. 1, pp. 295–301, 2013.spa
dc.relation.referencesS. Bel Haaj, W. Thielemans, A. Magnin, and S. Boufi, “Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study,” Carbohydr. Polym., vol. 143, pp. 310–317, 2016.spa
dc.relation.referencesO. I. Peñaranda, J. E. Perilla, and N. A. Allgecira, “Revisión de la modificación química del almidón con ácidos orgánicos,” Rev. Ing. e Investig., vol. 28, no. 3, pp. 47–52, 2008.spa
dc.relation.referencesS. Lefnaoui and N. Moulai-Mostefa, “Synthesis and evaluation of the structural and physicochemical properties of carboxymethyl pregelatinized starch as a pharmaceutical excipient,” Saudi Pharm. J., vol. 23, no. 6, pp. 698–711, 2015.spa
dc.relation.referencesA. C. Martinez-Arellano, J. L. Rivera-Armenta, A. M. Mendoza-Mart??nez, N. P. D??az-Zavala, J. G. S. Robles, and E. E. Banda-Cruz, “Estudio de copolimerización injerto del acrilato de butilo sobre almidón empleando sistema iniciador redox,” Quim. Nova, vol. 37, no. 3, pp. 426–430, 2014.spa
dc.relation.referencesH. Zhang, J. Wang, R. Wang, and Y. Dong, “Microwave irradiated synthesis of grafted cationic starch: Synthesis, characterization, application, and biodegradation,” J. Appl. Polym. Sci., vol. 130, no. 3, pp. 1645–1652, Nov. 2013.spa
dc.relation.referencesJ. Liu, J. Ming, W. Li, and G. Zhao, “Synthesis, characterisation and in vitro digestibility of carboxymethyl potato starch rapidly prepared with microwave-assistance,” Food Chem., vol. 133, no. 4, pp. 1196–1205, 2012.spa
dc.relation.referencesH. Zhang, J. K. Wang, W. J. Liu, and F. Y. Li, “Microwave-assisted synthesis, characterization, and textile sizing property of carboxymethyl corn starch,” Fibers Polym., vol. 16, no. 11, pp. 2308–2317, 2015.spa
dc.relation.referencesP. Rachtanapun, P. Simasatitkul, W. Chaiwan, and Y. Watthanaworasakun, “Effect of sodium hydroxide concentration on properties of carboxymethyl rice starch,” Int. Food Res. J., vol. 19, no. 3, pp. 923–931, 2012.spa
dc.relation.referencesK. Sangseethong, P. Chatakanonda, R. Wansuksri, and K. Sriroth, “Influence of reaction parameters on carboxymethylation of rice starches with varying amylose contents,” Carbohydr. Polym., vol. 115, pp. 186–192, 2015.spa
dc.relation.referencesX. Li, W. yuan Gao, L. jing Huang, Y. li Wang, L. qi Huang, and C. xiao Liu, “Preparation and physicochemical properties of carboxymethyl Fritillaria ussuriensis Maxim. starches,” Carbohydr. Polym., vol. 80, no. 3, pp. 768–773, 2010.spa
dc.relation.referencesO. S. Lawal, M. D. Lechner, and W. M. Kulicke, “The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source,” Polym. Degrad. Stab., vol. 93, no. 8, pp. 1520–1528, 2008.spa
dc.relation.referencesL. F. Wang, S. Y. Pan, H. Hu, W. H. Miao, and X. Y. Xu, “Synthesis and properties of carboxymethyl kudzu root starch,” Carbohydr. Polym., vol. 80, no. 1, pp. 174–179, 2010.spa
dc.relation.referencesW. Yanli, G. Wenyuan, and L. Xia, “Carboxymethyl Chinese yam starch: synthesis, characterization, and influence of reaction parameters,” Carbohydr. Res., vol. 344, no. 13, pp. 1764–1769, 2009.spa
dc.relation.referencesD. Das, S. Jha, and K. J. Kumar, “Effect of carboxymethylation on physicochemical and release characteristics of Indian Palo starch,” Int. J. Biol. Macromol., vol. 77, pp. 181–187, 2015.spa
dc.relation.referencesD. Bhattacharyya, R. S. Singhal, and P. R. Kulkarni, “Physicochemical properties of carboxymethyl starch prepared from corn and waxy amaranth starch,” Carbohydr. Polym., vol. 27, no. 3, pp. 167–169, 1995.spa
dc.relation.referencesT. Heinze and A. Koschella, “Carboxymethyl ethers of cellulose and starch - A review,” Macromol. Symp., vol. 223, pp. 13–39, 2005.spa
dc.relation.referencesA. V. Singh, L. K. Nath, and M. Guha, “Microwave assisted synthesis and characterization of Phaseolus aconitifolius starch-g-acrylamide,” Carbohydr. Polym., vol. 86, no. 2, pp. 872–876, 2011.spa
dc.relation.referencesS. Mishra, A. Mukul, G. Sen, and U. Jha, “Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment,” Int. J. Biol. Macromol., vol. 48, no. 1, pp. 106–111, 2011.spa
dc.relation.referencesS. Kaity, J. Isaac, P. M. Kumar, A. Bose, T. W. Wong, and A. Ghosh, “Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery,” Carbohydr. Polym., vol. 98, no. 1, pp. 1083–1094, 2013.spa
dc.relation.referencesA. Umar, M. M. Sanagi, A. Salisu, W. A. Wan Ibrahim, K. J. Abd Karim, and A. S. Abdul Keyon, “Preparation and characterization of starch grafted with methacrylamide using ammonium persulphate initiator,” Mater. Lett., vol. 185, pp. 173–176, 2016.spa
dc.relation.referencesN. D. Khanna and A. K. Inderjeet Kaur, “Starch-Grafted Polypropylene: Synthesis and Characterization,” Polym. Polym. Compos., vol. 21, no. 7, pp. 449–456, 2013.spa
dc.relation.referencesI. Sarvi, A. Pourjavadi, and M. A. N. Aghaei, “Synthesis and characterization of bagasse poly(methyl methacrylate) graft copolymer,” Macromol. Symp., vol. 274, no. 1, pp. 49–54, 2008.spa
dc.relation.referencesY. Sugahara and T. Ohta, “Synthesis of Starch-graft-polyacrylonitrile hydrolyzate and its characterization,” J. Appl. Polym. Sci., vol. 82, no. 6, pp. 1437–1443, 2001.spa
dc.relation.referencesL. Novelo-Cen and D. Betancur-Ancona, “Chemical and functional properties of Phaseolus lunatus and Manihot esculenta starch blends,” Starch/Staerke, vol. 57, no. 9, pp. 431–441, 2005.spa
dc.relation.referencesAPI (American Pretroleum Institute)., Recommended practice for Field Testing Water based Drilling Fluids API13B-1, Third edit. 2003.spa
dc.relation.referencesH. P. C. Oscar, C. C. Julio, and A. O. Cessar, “Caracterización estructural y térmica de almidones provenientes de diferentes variedades de papa,” Acta Agron., vol. 62, no. 4, pp. 289–295, 2013.spa
dc.relation.referencesA. C. Bertolini, Starches: characterization, properties, and applications. Boca Raton London, New York: CRC Press, 2010.spa
dc.relation.referencesH. Kargarzadeh and I. Ahmad, “Polysaccharide Nanocrystal-Reinforced Nanocomposites,” Polysaccharide-Based Nanocrystals Chem. Appl., pp. 165–218, 2015.spa
dc.relation.referencesS. F. Chin, S. N. A. M. Yazid, and S. C. Pang, “Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin,” Int. J. Polym. Sci., vol. 2014, pp. 292–295, 2014.spa
dc.relation.referencesD. LeCorre, J. Bras, and A. Dufresne, “Influence of botanic origin and amylose content on the morphology of starch nanocrystals,” J. Nanoparticle Res., vol. 13, no. 12, pp. 7193–7208, 2011spa
dc.relation.referencesM. Lamanna, N. J. Morales, N. L. Garcia, and S. Goyanes, “Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler,” Carbohydr. Polym., vol. 97, no. 1, pp. 90–97, 2013.spa
dc.relation.referencesM. Eutamene, A. Benbakhti, M. Khodja, and A. Jada, “Preparation and aqueous properties of starch-grafted polyacrylamide copolymers,” Starch/Staerke, vol. 61, no. 2, pp. 81–91, 2009.spa
dc.rightsCopyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcNanoalmidones
dc.subject.armarcSíntesis de polímeros
dc.subject.armarcProcesamiento de polímeros
dc.subject.armarcPolímeros
dc.subject.armarcPolímeros vegetales
dc.subject.armarcMaestría en Química - Tesis y disertaciones académicas
dc.titleModificación del almidón, nanoalmidón y su aplicación en lodos de perforaciónspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
TGT-1192.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description:
Archivo principal
Descargar
Loading...
Thumbnail Image
Name:
A_LMRP.pdf
Size:
699.94 KB
Format:
Adobe Portable Document Format
Description:
Autorización publicación
Descargar
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
14.45 KB
Format:
Item-specific license agreed upon to submission
Description:
Descargar