“Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.”

dc.contributor.authorNiño Portilla, Diego Alejandro
dc.date.accessioned2024-01-23T14:59:15Z
dc.date.available2024-01-23T14:59:15Z
dc.date.issued2023
dc.description.degreelevelEspecializaciónen_US
dc.description.degreenameEspecialista en Gestión de Integridad y Corrosiónen_US
dc.description.notesBibliografía y webgrafía: páginas 61-75.en_US
dc.format.extent1 recurso en línea (75 páginas) : ilustracionesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNiño Portilla, D. A. (2023). “Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.” (Trabajo Especialización). Universidad Pedagógica y Tecnológica de Colombia. Facultad de Ingeniería, Tunja.en_US
dc.identifier.urihttps://repositorio.uptc.edu.co//handle/001/9269
dc.language.isoesen_US
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaen_US
dc.publisher.facultyFacultad de Ingenieríaen_US
dc.publisher.placeTunjaen_US
dc.publisher.programEspecialista en Gestión de Integridad y Corrosiónen_US
dc.relation.referencesAN, Biwen Annie, et al. Iron to Gas: Versatile Multiport Flow-Column Revealed Extremely High Corrosion Potential by Methanogen-Induced Microbiologically Influenced Corrosion (Mi-MIC). En: Frontiers in Microbiology. 31, marzo, 2020. vol. 11.en_US
dc.relation.referencesAPI. Damage mechanisms affecting fixed equipment in the refining industry. In API Recomended practice 571. 2a Ed, Emisión 489. API Publishing Services 2011.en_US
dc.relation.referencesARUNIMA, S. R., et al. Exploration of WO3/BiVO4 composite based hot-dip zinc coating to combat biocorrosion. En: Materials Science and Engineering: b. Septiembre, 2021. vol. 271, p. 115302.en_US
dc.relation.referencesBALAKRISHNAN, Anandkumar, et al. Polydimethylsiloxane–graphene oxide nanocomposite coatings with improved anti-corrosion and anti-biofouling properties. En: Environmental Science and Pollution Research. 8, octubre, 2020.en_US
dc.relation.referencesBEECH, I. B., et al. Biofilms and biocorrosion. En: Understanding biocorrosion. [s.l.]: Elsevier, 2014. p. 33-56.en_US
dc.relation.referencesBERTRON, Alexandra. Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. En: Materials and Structures. 14, octubre, 2014. vol. 47, no. 11 p. 1787-1806.en_US
dc.relation.referencesBRASCA, M., et al. Redox potential to discriminate among species of lactic acid bacteria. En: Journal of Applied Microbiology. 19, junio, 2007. vol. 103, no. 5,p. 1516-1524.en_US
dc.relation.referencesBROWN, Damon C. y TURNER, Raymond J. Biofilms and microbiologically influenced corrosion in the petroleum industry. En: ACS symposium series. Washington, DC: American Chemical Society, 2019. p. 187-203.en_US
dc.relation.referencesCAI, Haoyuan, et al. Sulfide ions-induced release of biocides from a metal-phenolic supramolecular film fabricated on aluminum for inhibition of microbially influenced corrosion. En: Corrosion Science. Mayo, 2020. vol. 167, p. 108534.en_US
dc.relation.referencesCAI, Wei, et al. Antifouling and anticorrosion properties of one-pot synthesized dedoped bromo-substituted polyaniline and its composite coatings. En: Surface and Coatings Technology. Enero, 2018. vol. 334 p. 7-18.en_US
dc.relation.referencesCHANDRASATHEESH, C.; JAYAPRIYA, J. y PRABUNATHAN, P. Fabrication of Ag-TiO2/Cardanol Epoxy-Based Composite Coatings Against Microbiologically Influenced Corrosion of Mild Steel. En: Journal of Polymers and the Environment. 28, septiembre, 2021. vol. 30, no. 4, p. 1528-1546.en_US
dc.relation.referencesCHENG, Xin, et al. Constructing nanostructured functional film on EH40 steel surface for anti-adhesion of Pseudomonas aeruginosa. En: Surface and Coatings Technology. Enero, 2021. vol. 405, p. 126683.en_US
dc.relation.referencesCURLING, Simon F.; CLAUSEN, Carol A. y WINANDY, Jerrold E. Experimental method to quantify progressive stages of decay of wood by basidiomycete fungi. En: International Biodeterioration & Biodegradation. Enero, 2002. vol. 49, no. 1, p. 13-19.en_US
dc.relation.referencesDALL’AGNOL, L. T., & MOURA, J. J. G, Sulphate-reducing bacteria (SRB) and biocorrosion. En: T. LIENGEN, R. BASSÉGUY, D. FÉRON, & I. B. BEECH, Understanding Biocorrosion: Fundamentals and Applications. 1a Ed. Woodhead Publishing Limited 2015, p. 77–106.en_US
dc.relation.referencesDEEPA, M. J., et al. Exploration of Mo incorporated TiO2 composite for sustained biocorrosion control on zinc coating. En: Applied Surface Science. Noviembre, 2019. vol. 494, p. 361-376.en_US
dc.relation.referencesDONG, Yuqiao, et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. En: Bioelectrochemistry. Octubre, 2018. vol. 123, p. 34-44.en_US
dc.relation.referencesDOU, Wenwen, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. En: Corrosion Science. Abril, 2019. vol. 150 [consultado el 8, mayo, 2023], p. 258-267.en_US
dc.relation.referencesDU, Chongwei, et al. Preparation of superhydrophobic steel surfaces with chemical stability and corrosion. En: Coatings. 20, junio, 2019. vol. 9, no. 6, p. 398.en_US
dc.relation.referencesEDUOK, Ubong; FAYE, Omar y SZPUNAR, Jerzy. Effect of benzothiazole biocide on SRB-induced biocorrosion of hot-dip galvanized steel. En: Engineering Failure Analysis. Noviembre, 2018. vol. 93, p. 111-121.en_US
dc.relation.referencesEDUOK, Ubong; OHAERI, Enyinnaya y SZPUNAR, Jerzy. Accelerated corrosion of pipeline steel in the presence of Desulfovibrio desulfuricans biofilm due to carbon source deprivation in CO2 saturated medium. En: Materials Science and Engineering: C. Diciembre, 2019. vol. 105, p. 110095.en_US
dc.relation.referencesFAYYAD, Eman M., et al. Novel electroless deposited corrosion — resistant and anti-bacterial NiP–TiNi nanocomposite coatings. En: Surface and Coatings Technology. Julio, 2019. vol. 369, p. 323-333.en_US
dc.relation.referencesFERRARI, Michele; BENEDETTI, Alessandro y CIRISANO, Francesca. Superhydrophobic coatings from recyclable materials for protection in a real sea environment. En: Coatings [en línea]. 6, mayo, 2019. vol. 9, no. 5 [consultado el 8, mayo, 2023], p. 303. Disponible en Internet: <https://doi.org/10.3390/coatings9050303>. ISSN 2079-6412.en_US
dc.relation.referencesGADD, Geoffrey Michael y DYER, Thomas D. Bioprotection of the built environment and cultural heritage. En: Microbial Biotechnology . 24, julio, 2017. vol. 10, no. 5 , p. 1152-1156.en_US
dc.relation.referencesGARRETT, Trevor Roger; BHAKOO, Manmohan y ZHANG, Zhibing. Bacterial adhesion and biofilms on surfaces. En: Progress in Natural Science. Septiembre, 2008. vol. 18, no. 9, p. 1049-1056.en_US
dc.relation.referencesGAYLARDE, C.; RIBAS SILVA, M. y WARSCHEID, T. Microbial impact on building materials: an overview. En: Materials and Structures. 27, abril, 2003. vol. 36, no. 259, p. 342-352.en_US
dc.relation.referencesGROVER, Navdeep, et al. Acylase-containing polyurethane coatings with anti-biofilm activity. En: Biotechnology and Bioengineering [en línea]. 20, junio, 2016. vol. 113, no. 12, p. 2535-2543.en_US
dc.relation.referencesGU, Tingyue. New Understandings of Biocorrosion Mechanisms and their Classifications. En: Journal of Microbial & Biochemical Technology. 2012. vol. 04, n.04.en_US
dc.relation.referencesGUO, Feng, et al. Achieving superior anticorrosion and antibiofouling performance of polyaniline/graphitic carbon nitride composite coating. En: Progress in Organic Coatings. Junio, 2023. vol. 179, p. 107512.en_US
dc.relation.referencesGUO, Jing, et al. Polymers for combating biocorrosion. En: Frontiers in Materials [en línea]. 12, marzo, 2018. vol. 5 [consultado el 7, mayo, 2023]. Disponible en Internet: <https://doi.org/10.3389/fmats.2018.00010>. ISSN 2296-8016.en_US
dc.relation.referencesI. MAREK, Miroslav. Introduction to the fundamentals of corrosion. En: Corrosion: fundamentals, testing, and protection [en línea]. 9a ed. [s.l.]: ASM International, 2003 [consultado el 7, mayo, 2023]. p. 3-4. Disponible en Internet: <https://doi.org/10.31399/asm.hb.v13a.a0003577>.en_US
dc.relation.referencesIJAOLA, Ahmed Olanrewaju; FARAYIBI, Peter Kayode y ASMATULU, Eylem. Superhydrophobic coatings for steel pipeline protection in oil and gas industries: a comprehensive review. En: Journal of Natural Gas Science and Engineering. Noviembre, 2020. vol. 83, p. 103544.en_US
dc.relation.referencesJAVAHERDASHTI, Reza. On the role of fluid characteristics on promoting microbiologically influenced corrosion (MIC). En: Fluid Mechanics research International Journal. 2019. vol. 3, no. 1, p. 17-18.en_US
dc.relation.referencesJIA, Ru, et al. Microbiologically influenced corrosion and current mitigation strategies: a state of the art review. En: International Biodeterioration & Biodegradation. Febrero, 2019. vol. 13, p. 42-58.en_US
dc.relation.referencesKIANI KHOUZANI, Mahdi, et al. Microbiologically Influenced Corrosion of a Pipeline in a Petrochemical Plant. En: Metals. 19, abril, 2019. vol. 9, no. 4, p. 459.en_US
dc.relation.referencesKOKILARAMANI, Seenivasan, et al. Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures - A review. En: Chemosphere. Febrero, 2021. vol. 265, p. 129075.en_US
dc.relation.referencesKRISHNAMURTHY, Ajay, et al. Superiority of graphene over polymer coatings for prevention of microbially induced corrosion. En: Scientific Reports. 9, septiembre, 2015. vol. 5, no. 1.en_US
dc.relation.referencesLEKBACH, Yassir, et al. Catechin hydrate as an eco-friendly biocorrosion inhibitor for 304L stainless steel with dual-action antibacterial properties against Pseudomonas aeruginosa biofilm. En: Corrosion Science. Agosto, 2019. vol. 157, p. 98-108.en_US
dc.relation.referencesLEKBACH, Yassir, et al. Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. En: Bioelectrochemistry. Agosto, 2019. vol. 128, p. 193-203.en_US
dc.relation.referencesLI, Haiyan, et al. Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings. En: Progress in Organic Coatings. Febrero, 2018. vol. 115, p. 164-171.en_US
dc.relation.referencesLI, Ji, et al. Facile Li-Al layered double hydroxide films on Al alloy for enhanced hydrophobicity, anti-biofouling and anti-corrosion performance. En: Journal of Materials Science & Technology. Diciembre, 2020.en_US
dc.relation.referencesLI, Ling-Yu, et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review. En: Acta Biomaterialia [en línea]. Octubre, 2018. vol. 79, p. 23-36.en_US
dc.relation.referencesLI, Yingchao, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. En: Journal of Materials Science & Technology. Octubre, 2018. vol. 34, no. 10, p. 1713-1718.en_US
dc.relation.referencesLIDUINO, Vitor, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection. En: Colloids and Surfaces B: biointerfaces. Junio, 2021. vol. 202, p. 111701.en_US
dc.relation.referencesLITTLE, B. J., et al. Microbially influenced corrosion—Any progress? En: Corrosion Science. Julio, 2020. vol. 170, p. 108641.en_US
dc.relation.referencesLIU, Bo, et al. Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil. En: Bioelectrochemistry. Octubre, 2020. vol. 135, p. 107551.en_US
dc.relation.referencesLIU, Tao y CHENG, Y. Frank. The influence of cathodic protection potential on the biofilm formation and corrosion behaviour of an X70 steel pipeline in sulfate reducing bacteria media. En: Journal of Alloys and Compounds. Diciembre, 2017. vol. 729, p. 180-188.en_US
dc.relation.referencesLÓPEZ-ORTEGA, A., et al. Development of a superhydrophobic and bactericide organic topcoat to be applied on thermally sprayed aluminum coatings in offshore submerged components. En: Progress in Organic Coatings. Diciembre, 2019. vol. 137, p. 105376.en_US
dc.relation.referencesLOTO, C. A. Microbiological corrosion: mechanism, control and impact—a review. En: The International Journal of Advanced Manufacturing Technology. 15, mayo, 2017. vol. 92, no. 9-12, p. 4241-4252.en_US
dc.relation.referencesMANOHARAN, Kapil y BHATTACHARYA, Shantanu. Superhydrophobic surfaces review: functional application, fabrication techniques and limitations. En: Journal of Micromanufacturing. Mayo, 2019. vol. 2, no. 1, p. 59-78.en_US
dc.relation.referencesMANSFELD, F., et al. Electrochemical impedance and noise data for polymer coated steel exposed at remote marine test sites. En: Progress in Organic Coatings [en línea]. Enero, 1997. vol. 30, no. 1-2, p. 89-100.en_US
dc.relation.referencesMANSFELD, F., et al. Evaluation of corrosion protection by polymer coatings using electrochemical impedance spectroscopy and noise analysis. En: Electrochimica Acta [en línea]. Junio, 1998. vol. 43, no. 19-20, p. 2933-2945.en_US
dc.relation.referencesMEENA, Mukesh Kumar, et al. Development of polyurethane-based superhydrophobic coatings on steel surfaces. En: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 3, febrero, 2020. vol. 378, no. 2167, p. 20190446.en_US
dc.relation.referencesMIRMOHSENI, Abdolreza; AZIZI, Maryam y SEYED DORRAJI, Mir Saeed. Facile synthesis of copper/ reduced single layer graphene oxide as a multifunctional nanohybrid for simultaneous enhancement of antibacterial and antistatic properties of waterborne polyurethane coating. En: Progress in Organic Coatings. Junio, 2019. vol. 131, p. 322-332.en_US
dc.relation.referencesNACE INTERNATIONAL. TM 0106 - 2016 Detection, testing, and evaluation of Microbiologically Influenced Corrosion (MIC) on external surfaces of buried pipelines, Emisión 21248. Nace International 2016en_US
dc.relation.referencesO'TOOLE, George; KAPLAN, Heidi B. y KOLTER, Roberto. Biofilm formation as microbial development. En: Annual Review of Microbiology. Octubre, 2000. vol. 54, no. 1, p. 49-79.en_US
dc.relation.referencesOUYANG, Yibo, et al. Nanowall enclosed architecture infused by lubricant: a bio-inspired strategy for inhibiting bio-adhesion and bio-corrosion on stainless steel. En: Surface and Coatings Technology. Enero, 2020. vol. 381, p. 125143.en_US
dc.relation.referencesPACKIAVATHY, Issac Abraham SybiyaVasantha, et al. The control of microbially induced corrosion by methyl eugenol – A dietary phytochemical with quorum sensing inhibitory potential. En: Bioelectrochemistry . Agosto, 2019. vol. 128, p. 186-192.en_US
dc.relation.referencesPAKIET, Marta, et al. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel. En: Bioelectrochemistry. Agosto, 2019. vol. 128, p. 252-262.en_US
dc.relation.referencesPARTHIPAN, Punniyakotti, et al. Glycolipid biosurfactant as an eco-friendly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains. En: Journal of Molecular Liquids [en línea]. Julio, 2018. vol. 261 [consultado el 8, mayo, 2023], p. 473-479. Disponible en Internet: <https://doi.org/10.1016/j.molliq.2018.04.045>. ISSN 0167-7322.en_US
dc.relation.referencesPARTHIPAN, Punniyakotti, et al. Glycolipid biosurfactant as an eco-friendly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains. En: Journal of Molecular Liquids. Julio, 2018. vol. 261, p. 473-479.en_US
dc.relation.referencesPARTHIPAN, Punniyakotti; CHENG, Liang y RAJASEKAR, Aruliah. Glycyrrhiza glabra extract as an eco-friendly inhibitor for microbiologically influenced corrosion of API 5LX carbon steel in oil well produced water environments. En: Journal of Molecular Liquids. Julio, 2021. vol. 333, p. 115952en_US
dc.relation.referencesPEHKONEN, Simo Olavi y YUAN, Shaojun. Novel antibacterial coatings for biofouling and biocorrosion inhibition. En: Interface science and technology. [s.l.]: Elsevier, 2018. p. 257-372.en_US
dc.relation.referencesPEREIRA, M. A., et al. Influence of physico-chemical properties of porous microcarriers on the adhesion of an anaerobic consortium. En: Journal of Industrial Microbiology and Biotechnology. 1, marzo, 2000. vol. 24, no. 3, p. 181-186.en_US
dc.relation.referencesQIAN, Hongchang, et al. Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense. En: Corrosion Science [en línea]. Diciembre, 2018. vol. 145 [consultado el 7, mayo, 2023], p. 151-161. Disponible en Internet: <https://doi.org/10.1016/j.corsci.2018.09.020>. ISSN 0010-938X.en_US
dc.relation.referencesRAGHUPATHI, Prem K., et al. Synergistic interactions within a multispecies biofilm enhance individual species protection against grazing by a pelagic protozoan. En: Frontiers in Microbiology. 9, enero, 2018. vol. 8, p 1-11.en_US
dc.relation.referencesRASHEED, P. Abdul, et al. Recent advancements of nanomaterials as coatings and biocides for the inhibition of sulfate reducing bacteria induced corrosion. En: Current Opinion in Chemical Engineering. Septiembre, 2019. vol. 25, p. 35-42.en_US
dc.relation.referencesRASHEED, P. Abdul, et al. Controlling the biocorrosion of sulfate-reducing bacteria (SRB) on carbon steel using ZnO/chitosan nanocomposite as an eco-friendly biocide. En: Corrosion Science. Marzo, 2019. vol. 148, p. 397-406.en_US
dc.relation.referencesSAJI, Viswanathan S. y UMOREN, Saviour A. eds. Corrosion inhibitors in the oil and gas industry [en línea]. [s.l.]: Wiley, 2020 [consultado el 8, mayo, 2023].en_US
dc.relation.referencesSHAHRYARI, Z.; GHEISARI, Kh y MOTAMEDI, H. Effect of sulfate reducing Citrobacter sp. strain on the corrosion behavior of API X70 microalloyed pipeline steel. En: Materials Chemistry and Physics. Octubre, 2019. vol. 236, p. 121799.en_US
dc.relation.referencesSHI, Xianbo, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel. En: Journal of Materials Science & Technology. Diciembre, 2018. vol. 34, no. 12, p. 2480-2491.en_US
dc.relation.referencesSTANASZEK-TOMAL, Elżbieta. Environmental factors causing the development of microorganisms on the surfaces of national cultural monuments made of mineral building materials—review. En: Coatings. 10, diciembre, 2020. vol. 10, no. 12, p. 1203.en_US
dc.relation.referencesSTANASZEK-TOMAL, Elżbieta. Environmental factors causing the development of microorganisms on the surfaces of national cultural monuments made of mineral building materials—review. En: Coatings. 10, diciembre, 2020. vol. 10, no. 12, p. 1203.en_US
dc.relation.referencesSUN, Ke, et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel. En: Applied Surface Science. Abril, 2018. vol. 436, p. 263-267.en_US
dc.relation.referencesSUN, Ke, et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel. En: Applied Surface Science. Abril, 2018. vol. 436, p. 263-267.en_US
dc.relation.referencesTALBOT, David E. J. y TALBOT, James D. R. Corrosion science and technology. 3a ed. [s.l.]: Taylor & Francis Group, 2018. 568 p. ISBN 9781351259910.en_US
dc.relation.referencesTELEGDI, J., SHABAN, A., & TRIF, L. Microbiologically influenced corrosion (MIC). Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission 2017, p 191–214.en_US
dc.relation.referencesTIWARI, Atul y HIHARA, L. H. High performance reaction-induced quasi-ceramic silicone conversion coating for corrosion protection of aluminium alloys. En: Progress in Organic Coatings [en línea]. Septiembre, 2010. vol. 69, no. 1, p. 16-25.en_US
dc.relation.referencesTRAN, Thu Hien, et al. Influence of the intrinsic characteristics of mortars on biofouling by Klebsormidium flaccidum. En: International Biodeterioration & Biodegradation. Mayo, 2012. vol. 70, p. 31-39.en_US
dc.relation.referencesUSHER, K. M., KAKSONEN, A. H., COLE, I., & MARNEY, D. Critical review: Microbially influenced corrosion of buried carbon steel pipes. International Biodeterioration and Biodegradation 2014. vol 93, p. 84–106en_US
dc.relation.referencesVIDELA, Héctor A. Prevention and control of biocorrosion. En: International Biodeterioration & Biodegradation. Junio, 2002. vol. 49, no. 4, p. 259-270.en_US
dc.relation.referencesWANG, Di, et al. Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. En: Corrosion Science. Diciembre, 2020. vol. 177, p. 108993.en_US
dc.relation.referencesWEI, Huige, et al. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. En: Journal of Materials Chemistry A [en línea]. 2015. vol. 3, no. 2, p. 469-480.en_US
dc.relation.referencesXU, Dake; LI, Yingchao y GU, Tingyue. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. En: Bioelectrochemistry. Agosto, 2016. vol. 110 p. 52-58.en_US
dc.relation.referencesprepared by double cathode glow discharge technique. En: Applied Surface Science. Julio, 2018. vol. 447, p. 500-511.en_US
dc.relation.referencesYANG, Chuntian, et al. Microbiologically influenced corrosion behavior of friction stir welded S32654 super austenitic stainless steel in the presence of Acidithiobacillus caldus SM-1 biofilm. En: Materials Today Communications, diciembre, 2020. vol. 25, p. 101491en_US
dc.relation.referencesYIN, Ke; LIU, Hongwei y CHENG, Y. Frank. Microbiologically influenced corrosion of X52 pipeline steel in thin layers of solution containing sulfate-reducing bacteria trapped under disbonded coating. En: Corrosion Science. Diciembre, 2018. vol. 145, p. 271-282.en_US
dc.relation.referencesZHAI, Xiaofan, et al. Microbial Corrosion Resistance and Antibacterial Property of Electrodeposited Zn–Ni–Chitosan Coatings. En: Molecules [en línea]. 22, mayo, 2019. vol. 24, no. 10, p. 1974.en_US
dc.relation.referencesZHAI, Xiaofan, et al. Corrosion behavior of the chitosan-zinc composite films in sulfate-reducing bacteria. En: Surface and Coatings Technology. Junio, 2018. vol. 344, p. 259-268.en_US
dc.relation.referencesZHANG, Dawei, et al. Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions. En: Journal of Coatings Technology and Research. 19, octubre, 2015. vol. 13, no. 1, p. 11-29.en_US
dc.relation.referencesZHANG, Dawei, et al. Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions. En: Journal of Coatings Technology and Research. 19, octubre, 2015. vol. 13, no. 1, p. 11-29.en_US
dc.relation.referencesZHANG, Zhi-hui, et al. One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function. En: Scientific Reports. 1, marzo, 2018. vol. 8, no. 1en_US
dc.relation.referencesZHOU, Enze, et al. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing. En: Journal of Materials Science & Technology [en línea]. Julio, 2020. vol. 48 [consultado el 7, mayo, 2023], p. 72-83. Disponible en Internet: <https://doi.org/10.1016/j.jmst.2020.01.055>. ISSN 1005-0302.en_US
dc.relation.referencesZHOU, Wenhao, et al. Novel pH-responsive tobramycin-embedded micelles in nanostructured multilayer-coatings of chitosan/heparin with efficient and sustained antibacterial properties. En: Materials Science and Engineering: C. Septiembre, 2018. vol. 90, p. 693-705.en_US
dc.rightsCopyright (c) 2023 Universidad Pedagógica y Tecnológica de Colombiaen_US
dc.rights.coarhttp://purl.org/coar/resource_type/c_db06en_US
dc.rights.creativecommonsLicencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subject.armarcCorrosión y anticorrosivosen_US
dc.subject.armarcRevestimientos protectoresen_US
dc.subject.armarcControl de la corrosiónen_US
dc.subject.armarcRevestimientos metálicosspa
dc.subject.armarcBiodegradaciónspa
dc.title“Avances en el control y mitigación de la Corrosión Influenciada Microbiológicamente (MIC) en aceros al carbono de la industria Oil&Gas empleando recubrimientos compuestos orgánicos. Estado del arte.”en_US
dc.typeTrabajo de grado especializaciónen_US
dc.type.contentTexten_US
dcterms.audiencePúblico generalen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Avances_control_y_mitigacion_corrosion.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
Description:
Archivo principal
Descargar
Loading...
Thumbnail Image
Name:
A_DANP.pdf
Size:
176.2 KB
Format:
Adobe Portable Document Format
Description:
Autorización publicación
Descargar
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Descargar