Thermal transfer analysis of tubes with extended surface with fractal design

dc.contributor.authorLlano Sánchez, Luis Eduardo
dc.contributor.authorDomínguez Cajeli, Darío Manuel
dc.contributor.authorRuiz Cárdenas, Luis Carlos
dc.date.accessioned2018-09-10T15:49:54Z
dc.date.available2018-09-10T15:49:54Z
dc.date.issued2018-01-15
dc.description1 recurso en línea (páginas 31-37).spa
dc.description.abstractOs permutadores de calor estão conformados por tubos com superfícies estendidas, com o propósito de melhorar a transferência de calor entre dois meios, que podem ser um sólido e um líquido em movimento. No presente trabalho expõe-se o desenho que se realizou de um tubo de superfície estendida com geometria fractal, correspondente ao floco de Koch e a curva de Cesaro, com a ferramenta computacional CAD, para logo realizar a análise por elementos finitos CAE e verificar o comportamento térmico do tubo desenhado. Logrou-se obter como resultado reduzir o tempo de transferência de calor e aumentar o fluxo de calor no sistema da seguinte maneira: para tubo liso, 250 W/m2; para superfície de Koch, 500 W/m2; para seis aletas, 1450 W/m2, e, finalmente, para curva de Cesaro, 3600 W/m2. Tudo isto, permitiu evidenciar os limites do desenho e as vantagens que podem chegar a terem relação a sua implementação em maquinarias como condensadores, permutadores de calor e caldeiras.por
dc.description.abstractHeat exchangers are formed by tubes with extended surfaces that improve the transfer of heat between two media (e.g., a solid and a liquid in motion). This paper presents the design of an extended surface tube with fractal geometry, corresponding to the Koch snowflake and the Cesaro curve. For the design, we used the CAD computational tool, and afterwards we performed the CAE finite element analysis and verified the thermal behavior of the designed tube. We were able to reduce the heat transfer time and increase the heat flow in the system in the following manner: for smooth tube, 250 W/m2; for Koch surface, 500 W/m2; for six fins, 1450 W/ m2; and for Cesaro curve, 3600 W/m2. These results demonstrate the limits of the design and the advantages of its implementation in machinery such as condensers, heat exchangers, and boilers.eng
dc.description.abstractLos intercambiadores de calor están conformados por tubos con superficies extendidas, con el propósito de mejorar la transferencia de calor entre dos medios, que pueden ser un sólido y un líquido en movimiento. En el presente trabajo se expone el diseño que se llevó a cabo de un tubo de superficie extendida con geometría fractal, correspondiente al copo de Koch y la curva de Cesaro, con la herramienta computacional CAD, para luego realizar el análisis por elementos finitos CAE y verificar el comportamiento térmico del tubo diseñado. Se logró obtener como resultado reducir el tiempo de transferencia de calor y aumentar el flujo de calor en el sistema del modo siguiente: para tubo liso, 250 W/m2; para superficie de Koch, 500 W/m2; para seis aletas, 1450 W/m2, y, finalmente, para curva de Cesaro, 3600 W/m2. Todo ello, permitió evidenciar los límites del diseño y las ventajas que pueden llegar a tener respecto a su implementación en maquinarias como condensadores, intercambiadores de calor y calderas.spa
dc.description.notesBibliografía: páginas 36-37.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationLlano Sánchez, L. E., Domínguez Cajeli, D. M. & Ruiz Cárdenas, L. C. (2018). Thermal transfer analysis of tubes with extended surface with fractal design. Revista Facultad de Ingeniería, 27(47), 31-37. https://doi.org/10.19053/01211129.v27.n47.2018.7749. http://repositorio.uptc.edu.co/handle/001/2167spa
dc.identifier.doi10.19053/01211129.v27.n47.2018.7749
dc.identifier.issn2357-5328
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2167
dc.language.isoengspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.relation.ispartofjournalRevista Facultad de Ingeniería;Volumen 27, número 47 (Enero-Abril 2018)spa
dc.relation.referencesR. Senthilkumar, S. Prabhu, and M. Cheralathan, “Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces,” Applied Thermal Engineering, vol. 50(1), pp. 1361-1368, Jan. 2013. DOI: DOI: http://doi.org/10.1016/j. applthermaleng.2012.05.040.spa
dc.relation.referencesS. W. Chang, W. L. Cai, and R. S. Syu, “Heat transfer and pressure drop measurements for tubes fitted with twin and four twisted fins on rod,” Experimental Thermal and Fluid Science, vol. 74, pp. 220-234, Jun. 2016. DOI: DOI: http://doi.org/10.1016/j. expthermflusci.2016.01.001.spa
dc.relation.referencesB. Niezgoda – Zelasko, and J. Zelasko, “Refrigerant boiling at low heat flux in vertical tubes with heat transfer enhancing fittings,” International Journal of Refrigeration, vol. 54, pp. 151-169, Jun. 2015. DOI: http://doi.org/10.1016/j.ijrefrig.2015.03.007.spa
dc.relation.referencesE. Gkanas, and Makridis, “Effective thermal management of a cylindrical MgH2 tank including thermal coupling with an operating SOFC and the usage of extended surfaces during the dehydrogenation process,” International Journal of Hydrogen Energy, vol. 41(13), pp. 5693-5708, Apr. 2016. DOI: http:// doi.org/10.1016/j.ijhydene.2016.01.165.spa
dc.relation.referencesH. W. Carpenter, and R. G. Reid, “The response of layered anisotropic tubes to centrifugal loading,” Composite Structures, vol. 139, pp. 141- 150, Apr. 2016. DOI: http://doi.org/10.1016/j. compstruct.2015.11.071.spa
dc.relation.referencesK. Yang, S. Xu, J. Shen, S. Zhou, and Y. M. Xie, “Energy absorption of thin-walled tubes with prefolded origami patterns: Numerical simulation and experimental verification,” Thin-Walled Structures, vol. 103, pp. 33-44, Jun. 2016. DOI: http://doi. org/10.1016/j.tws.2016.02.007.spa
dc.relation.referencesR. Romero-Méndez, P. Lara-Vázquez, F. Oviedo- Tolentino, H. M. Durán-García, F. G. Pérez- Gutiérrez, and A. Pacheco-Vega, “Use of Artificial Neural Networks for Prediction of the Convective Heat Transfer Coefficient in Evaporative Mini- Tubes,” Ingeniería, Investigación y Tecnología, vol. 17(1), pp. 23-34, Jan. 2016. DOI: http://doi. org/10.1016/j.riit.2016.01.003.spa
dc.relation.referencesS. Jedari Salami, “Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets,” Physica E: Low-dimensional Systems and Nanostructures, vol. 76, pp. 187-197, Feb. 2016. DOI: http://doi.org/10.1016/j.physe.2015.10.015.spa
dc.relation.referencesS. Rimza, K. Satpathy, S. Khirwadkar, and K. Velusamy, “Optimal design of divertor heat sink with different geometric configurations of sectorial extended surfaces,” Fusion Engineering and Design, vol. 100, pp. 581-595, Nov. 2015. DOI: http://doi. org/10.1016/j.fusengdes.2015.08.008.spa
dc.relation.referencesB. Anoop, C. Balaji, Velusamu, and K. Velusamy, “A characteristic correlation for heat transfer over serrated finned tubes,” Annals of Nuclear Energy, vol. 85, pp. 1052-1065, Nov. 2015. DOI: http://doi. org/10.1016/j.anucene.2015.07.025.spa
dc.relation.referencesP. A. Di Maio, P. Arena, G. Bongiovi, P. Chiovaro, A. del Nevo, and R. Forte, “Optimization of the breeder zone cooling tubes of the DEMO Water- Cooled Lithium Lead breeding blanket,” Fusion Engineering and Design, vol. 109-111(A), pp. 227-231, Nov. 2016. DOI: http://doi.org/10.1016/j. fusengdes.2016.03.021.spa
dc.relation.referencesS. Mirfendereski, A. Abbassi, and M. Saffar - Avval, “Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall heat flux,” Advanced Powder Technology, vol. 26(5), pp. 1483-1494, Sep. 2015. DOI: http://doi.org/10.1016/j.apt.2015.08.006.spa
dc.relation.referencesD. J. Kukulka, and R. Smith, “Thermal-hydraulic performance of Vipertex 1EHT enhanced heat transfer tubes,” Applied Thermal Engineering, vol. 61(1), pp. 60-66, Oct. 2013. DOI: http://doi. org/10.1016/j.applthermaleng.2012.12.037.spa
dc.relation.referencesJ. Yan, Q. Bi, G. Zhu, L. Cai, Q. Yuan, and H. Lv, “Critical heat flux of highly subcooled water flow boiling in circular tubes with and without internal twisted tapes under high mass fluxes,” International Journal of Heat and Mass Transfer, vol. 95, pp. 606-619, Apr. 2016. DOI: http://doi.org/10.1016/j. ijheatmasstransfer.2015.12.024.spa
dc.relation.referencesJ. Yan, Q. Bi, L. Cai, G. Zhu, and Q. Yuan, “Subcooled flow boiling heat transfer of water in circular tubes with twisted-tape inserts under high heat fluxes,” Experimental Thermal and Fluid Science, vol. 68, pp. 11-21, Nov. 2015. DOI: http://doi.org/10.1016/j. expthermflusci.2015.04.003.spa
dc.relation.referencesB. Li, X. Han, Z. Wan, X. Wang, and Y. Tang, “Influence of ultrasound on heat transfer of copper tubes with different surface characteristics in subcooled boiling,” Applied Thermal Engineering, vol. 92, pp. 93-103, Jan. 2016. DOI: http://doi. org/10.1016/j.applthermaleng.2015.09.069.spa
dc.relation.referencesV. Garcia-Morales, “Fractal surfaces from simple arithmetic operations,” Physica A: Statistical Mechanics and its Applications, vol. 447, pp. 535- 544, Apr. 2016. DOI: http://doi.org/10.1016/j. physa.2015.12.028.spa
dc.relation.referencesI. M. Rian, and S. Asayama, “Computational Design of a nature-inspired architectural structure using the concepts of self-similar and random fractals,” Automation in Construction, vol. 66, pp. 43-58, Jun. 2016. DOI: http://doi.org/10.1016/j. autcon.2016.03.010.spa
dc.relation.referencesH. Khezrzadeh, “Overall properties of particulate composites with fractal distribution of fibers,” Mechanics of Materials, vol. 96, pp. 1-11, May. 2016. DOI: http://doi.org/10.1016/j.mechmat.2016.01.014.spa
dc.relation.referencesG. Pia, L. Casnedi, R. Ricciu, L. A. Besalduch, O. Cocco, A. Murru, Paola Meloni, and U. Sanna, “Thermal properties of porous stones in cultural heritage: Experimental findings and predictions using an intermingled fractal units model,” Energy and Buildings, vol. 118, pp. 232-239, Apr. 2016. DOI: http://doi.org/10.1016/j.enbuild.2016.03.011.spa
dc.relation.referencesN. Nagarani, K. Mayilsamy, A. Murugesan, and G. Sathesh Kumar, “Review of utilization of extended surfaces in heat transfer problems,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 604- 613, Jan. 2014. DOI: http://doi.org/10.1016/j. rser.2013.08.068.spa
dc.relation.referencesM. L. Lapidus, and R. G. Niemeyer, “Towards the Koch Snowflake Fractal Billard: Computer Experiments and Mathematical Conjectures,” Contemporary Mathematics, vol. 517, pp. 231- 265, Jan. 2010. DOI: http://doi.org/10.1090/ conm/517/1014.spa
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/7749/6139spa
dc.subject.armarcAlternate energy sources
dc.subject.armarcDynamical systems
dc.subject.proposalBoilersspa
dc.subject.proposalCesaro curvespa
dc.subject.proposalFractal designspa
dc.subject.proposalHeat transferspa
dc.subject.proposalKoch Snowflakespa
dc.subject.proposalTubes with extended surfacespa
dc.titleThermal transfer analysis of tubes with extended surface with fractal designspa
dc.title.alternativeAnálisis de transferencia térmica de tubos con superficies extendidas con diseño fractaleng
dc.title.alternativeAnálise de transferência térmica de tubos com superfícies estendidas com desenho fractaleng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PPS_875_Thermal_transfer_analysis.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:
Archivo principal
Descargar
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
14.45 KB
Format:
Item-specific license agreed upon to submission
Description:
Descargar