Síntesis de un biofloculante sustituto de mucilagos naturales en el proceso de producción de panela

dc.contributor.advisorMoreno, Lucia Marlenspa
dc.contributor.advisorMedina Vargas, Oscar Juliospa
dc.contributor.authorRincón Fuentes, Liliana Marcela
dc.date.accessioned2019-05-10T21:17:43Z
dc.date.available2019-05-10T21:17:43Z
dc.date.issued2018
dc.description1 recurso en línea (55 páginas): ilustraciones color, figuras, tablas.spa
dc.description.abstractPanela is produced in 30 countries; Colombia is the second producer of panela after India. In the panela production process, residual biomass is generated in the mill for the extraction of sugarcane juices, which generate problems for the producers who use it as fuel for the heating of the burners in the production process, generating gas toxic (CO2). The bagasse in its cell wall contains cellulose, one of the most abundant polymers in nature, offering alternatives in the food and environmental conservation industries. Another disadvantage for panela producers is in the process of clarification, vegetable mucilages from each region are used, such as balsa, guácimo and caldillo, which has been affected by its indiscriminate use, which has led to an increase in its cost and use alternative flocculants. A cationic flocculant is proposed from residual biomass of sugarcane bagasse, performing a cellulose extraction of the biomass and carrying out a selective chemical modification of the cationic dialdehyde cellulose (CDAC), and comparing the flocculation of the cationic flocculant with the balsa brought from the trapiche Buena Vista in the municipality of Santana Boyacá. Cellulose and CDAC were characterized by techniques such as infrared spectroscopy with Fourier transform (FT-IR), Raman, X-ray diffraction (XRD), a thermal properties study by thermogravimetry (TGA) and differential scanning calorimetry. (DSC) corroborating the successful extraction of cellulose with a yield of 50% and the modification to CDAC, the clarifying capacity of the cationic flocculant is efficient compared to the native balsa of the Boyacá region.eng
dc.description.abstractLa panela es producida en 30 países, Colombia es el segundo país productor de panela después de la india. En el proceso de producción de panela se genera biomasa residual en la molienda para la extracción de los jugos de caña de azúcar, que generan problemas a los productores quienes lo utilizan como combustible para el calentamiento de las hornillas en el proceso de producción, generando gases tóxicos (CO2). El bagazo en su pared celular contiene celulosa, uno de los polímeros más abundantes de la naturaleza, ofreciendo alternativas en las industrias de alimentos y conservación del medio ambiente. Otro inconveniente para los productores de panela es en el proceso de clarificación, se utilizan mucílagos vegetales propios de cada región como el balso, guácimo y caldillo los cuales se ha visto afectado en por su uso indiscriminado lo que ha llevado a subir su costo y utilizar floculantes alternativos. Se plantea una un floculante catiónico a partir de biomasa residual de bagazo de caña de azúcar, realizando una extracción de celulosa de la biomasa y realizando una modificación química selectiva de la celulosa dialdehído catiónica (CDAC), y comparando la floculación del floculante catiónico con el balso traído del trapiche Buena Vista en el municipio de Santana Boyacá. Se caracterizó la celulosa y CDAC por técnicas como Espectroscopia infrarroja con transformada de Fourier (FT-IR), Raman, Difracción de rayos-X (DRX), se realizó un estudio a las propiedades térmicas por termogravimetría (TGA) y calorimetría diferencial de barrido (DSC) corroborando la extracción exitosa de celulosa con un rendimiento del 50% y la modificación a CDAC, la capacidad clarificante del floculante catiónico es eficiente comparado con el balso nativo de la región de Boyacá.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Químicaspa
dc.description.notesBibliografía: páginas 47-50.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRincón Fuentes, L. M. (2018). Síntesis de un biofloculante sustituto de mucilagos naturales en el proceso de producción de panela. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2581spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2581
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.publisher.facultyFacultad de Ciencias. Escuela de Posgrados. Maestría en Químicaspa
dc.relation.referencesG. O. CADAVID, Buenas practicas agricolas -BPA- y buenas practicas de manufactura -BPM- en la produccion de caña y panela. 2007.spa
dc.relation.referencesR. de Colombia, I. N. de Salud, and U. de E. de R. para la I. de los A.- UERIA, “Concepto cientifico poliacrilamida en panela,” 2011.spa
dc.relation.referencesG. R. Borray, “La Agroindustria Rural De La Panela En Colombia Roles, Problemática Y Nuevos Retos.”spa
dc.relation.referencesZ. Yang et al., “Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan- graft -polyacrylamide ଝ,” vol. 255, pp. 36–45, 2013.spa
dc.relation.referencesB. E. E.-F. y M. E. S.- Morales, “Acrilamida en alimentos: sus causas y consecuencias.” p. 13, 2010.spa
dc.relation.referencesY. Zhang, J. Jiao, Y. Ren, X. Wu, and Y. Zhang, “Determination of acrylamide in infant cereal-based foods by isotope dilution liquid chromatography coupled with electrospray ionization tandem mass spectrometry,” Anal. Chim. Acta, vol. 551, no. 1, pp. 150–158, 2005.spa
dc.relation.referencesM. Friedman, “Chemistry, biochemistry, and safety of acrylamide. A review,” Journal of Agricultural and Food Chemistry. 2003.spa
dc.relation.referencesM. Sanny, S. Jinap, E. J. Bakker, M. A. J. S. van Boekel, and P. A. Luning, “Is lowering reducing sugars concentration in French fries an effective measure to reduce acrylamide concentration in food service establishments?,” Food Chem., vol. 135, no. 3, pp. 2012–2020, 2012.spa
dc.relation.referencesJ. J. V. LASSO, “Determinación y cuantificación por hplc de la acrilamida generada en la producción de panela, su cinética de formación y posible inhibición,” 2014.spa
dc.relation.referencesV. A. Chavez1, “Problemática del contenido de acrilamida y proceso de empaque de la panela en Boyacá.”spa
dc.relation.referencesW. H. Organization and i. a. f. r. o. cancer, “international agency for research on cancer iarc monographs on the evaluation of carcinogenic risks to humans,” 1999spa
dc.relation.referencesGema Arribas Lorenzo, “Universidad complutense de madrid,” 2013.spa
dc.relation.referencesD. A. Vattem and K. Shetty, “Acrylamide in food : a model for mechanism of formation and its reduction,” vol. 4, no. 3, pp. 331–338, 2003.spa
dc.relation.referencesK. Evelin and B. Arteaga, “Biología reproductiva del balso blanco ( Heliocarpus americanus L .),” vol. 18, no. 2, pp. 28–44, 2014.spa
dc.relation.referencesC. Vásquez, A. M. Gutiérrez, and Álvarez, “Propagación Por Estacas Juveniles Del Balso,” Rev. Fac. Nac. Agron., vol. 59, no. 2, pp. 3479–3498, 2006.spa
dc.relation.referencesS. Wang, A. Lu, and L. Zhang, “Recent advances in regenerated cellulose materials,” Prog. Polym. Sci., vol. 53, pp. 169–206, 2016.spa
dc.relation.referencesO. Nechyporchuk, M. N. Belgacem, and J. Bras, “Production of cellulose nanofibrils: A review of recent advances,” Ind. Crops Prod., 2016.spa
dc.relation.referencesE. H. C. RUEDA, “Obtención y caracterización de nanofibras de celulosa a partir de desechos agroindustriales,” 2009.spa
dc.relation.referencesR. A. Festucci-buselli, W. C. Otoni, and C. P. Joshi, “Structure , organization , and functions of cellulose synthase complexes in higher plants,” vol. 19, no. 1, pp. 1 –13, 2007.spa
dc.relation.referencesM. Poletto, V. Pistor, and A. J. Zattera, “Structural Characteristics and Thermal Properties of Native Cellulose,” 2013.spa
dc.relation.referencesP. D. Klemm and P. H. Schmauder, “275 10,” pp. 275–287.spa
dc.relation.referencesM. G. Northolt, H. Boerstoel, H. Maatman, R. Huisman, J. Veurink, and H. Elzerman, “Rn-7732-18-5,” vol. 42, 2001.spa
dc.relation.referencesW. Pires and F. Neto, “Etude morphologique des nanocristaux de cellulose et application nanocomposites,” no. January, 2017.spa
dc.relation.referencesC. V. Raman, “A new radiation,” Proc. Indian Acad. Sci. - Sect. A, vol. 37, no. 3, pp. 333–341, 1953.spa
dc.relation.referencesM. Granström, “Cellulose Derivatives : Synthesis , Properties and Applications,” no. May. p. 120, 2009.spa
dc.relation.referencesE. C. Lengowski, G. Ines, and B. De Muniz, “Avaliação de métodos de obtenção de celulose com diferentes graus de cristalinidade Cellulose acquirement evaluation methods with different degrees of crystallinity,” pp. 185–194, 2013.spa
dc.relation.referencesF. A. T. J. J. Vargas Lassoa,* Pérezb, Y. V. Talero, Suárezc and L. R. C. Caballerod, “Determinación de acrilamida en el procesamiento de la panela por cromatografía líquida,” vol. 5, no. 2, pp. 99–105, 2014.spa
dc.relation.referencesF. I. F. D. FROM, A. U. F. C. D. WATER, and J. A. S. SYRUPS, “Industrias alimentarias. floculantes derivados de la acrilamida utilizados en la clarificación del agua potable y de los jugos y jarabes de la caña de azúcar,” 1994.spa
dc.relation.referencesF. Home, 3 Medical Devices, 4 Databases, and 5, “CFR - Code of Federal Regulations Title 21 The information on this page is current as of April 1 2017 .,” pp. 7–8, 2017.spa
dc.relation.referencesC. Organismos et al., “COMISIÓN DEL CODEX ALIMENTARIUS,” pp. 1–5, 2015.spa
dc.relation.referencesL. Fao, “Mejorando la producción de panela en Colombia,” vol. 1, pp. 1–6, 2017.spa
dc.relation.referencesS. M. de la Rosa, “Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos,” 2015.spa
dc.relation.referencesS. M. L. Ticiane Taflick, Luana A. Schwendler and S. M. B. N. Rosa, Clara I.D. Bica, “Cellulose nanocrystals from acacia bark–Influence of solvent extraction,” Int. J. Biol. Macromol., 2017.spa
dc.relation.referencesV. P. C. Morán, J Analía Vazquez, “Extracción de celulosa y obtención de nanocelulosa a partir de fibra sisal - caracterización,” no. 1, pp. 16–17, 2008.spa
dc.relation.referencesZ. Khatri, G. Mayakrishnan, Y. Hirata, K. Wei, and I. Kim, “Cationic-cellulose nanofibers : Preparation and dyeability with anionic reactive dyes for apparel application,” Carbohydr. Polym., vol. 91, no. 1, pp. 434–443, 2013.spa
dc.relation.referencesJ. Sirviö, A. Honka, H. Liimatainen, J. Niinimäki, and O. Hormi, “Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent,” vol. 86, pp. 266–270, 2011.spa
dc.relation.referencesH. Tibolla, F. M. Pelissari, and F. C. Menegalli, “Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment,” LWT - Food Sci. Technol., vol. 59, no. 2, pp. 1311–1318, 2014.spa
dc.relation.referencesJ. Sirvio, U. Hyvakko, H. Liimatainen, J. Niinimaki, and O. Hormi, “Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators,” Carbohydr. Polym., vol. 83, no. 3, pp. 1293–1297, 2011.spa
dc.relation.referencesA. Tejado, M. N. Alam, M. Antal, H. Yang, and T. G. M. van de Ven, “Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers,” Cellulose, vol. 19, no. 3, pp. 831–842, 2012.spa
dc.relation.referencesR. G. P. Viera, G. R. Filho, R. M. N. de Assunção, C. da Carla, J. G. Vieira, and G. S. de Oliveira, “Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose,” Carbohydr. Polym., vol. 67, no. 2, pp. 182–189, 2007.spa
dc.relation.referencesD. Ciolacu, F. Ciolacu, and V. I. Popa, “AMORPHOUS CELLULOSE – STRUCTURE AND CHARACTERIZATION,” vol. 45, pp. 13–21, 2011.spa
dc.relation.referencesA. Moubarik, N. Grimi, and N. Boussetta, “Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene,” Compos. Part B Eng., vol. 52, pp. 233–238, 2013.spa
dc.relation.referencesW. Wang, T. Liang, H. Bai, W. Dong, and X. Liu, “All cellulose composites based on cellulose diacetate and nanofibrillated cellulose prepared by alkali treatment,” Carbohydr. Polym., vol. 179, no. September 2017, pp. 297–304, 2018.spa
dc.relation.referencesN. Tyagi and S. Suresh, “Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization,” J. Clean. Prod., vol. 112, pp. 71–80, 2016.spa
dc.relation.referencesF. Prieto-García, E. Jiménez-Muñoz, O. A. Acevedo-Sandoval, R. Rodríguez- Laguna, R. A. Canales-Flores, and J. Prieto-Méndez, “Obtaining and Optimization of Cellulose Pulp from Leaves of Agave tequilana Weber Var. Blue. Preparation of Handmade Craft Paper,” Waste and Biomass Valorization, vol. 0, no. 0, pp. 1–17, 2018.spa
dc.relation.referencesH. Yang, D. Chen, and T. G. M. van de Ven, “Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers,” Cellulose, vol. 22, no. 3, pp. 1743–1752, 2015.spa
dc.relation.referencesL. Du, J. Wang, Y. Zhang, C. Qi, M. P. Wolcott, and Z. Yu, “A co-production of sugars , lignosulfonates , cellulose , and cellulose nanocrystals from ball-milled woods,” Bioresour. Technol., vol. 238, pp. 254–262, 2017.spa
dc.relation.referencesH. Tibolla, F. M. Pelissari, and F. C. Menegalli, “Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment,” LWT - Food Sci. Technol., vol. 59, no. 2, pp. 1311–1318, 2014.spa
dc.relation.referencesY. Matsuzawa, M. Ayabe, J. Nishino, N. Kubota, and M. Motegi, “Evaluation of char fuel ratio in municipal pyrolysis waste,” in Fuel, 2004, vol. 83, no. 11–12, pp. 1675–1687.spa
dc.relation.referencesA. L. Torres, M. B. Roncero, J. F. Colom, F. I. J. Pastor, A. Blanco, and T. Vidal, “Effect of a novel enzyme on fibre morphology during ECF bleaching of oxygen delignified Eucalyptus kraft pulps,” Bioresour. Technol., vol. 74, no. 2, pp. 135–140, 2000.spa
dc.relation.referencesO. Nechyporchuk, M. N. Belgacem, and J. Bras, “Production of cellulose nanofibrils : A review of recent advances,” vol. 93, pp. 2–25, 2016.spa
dc.relation.referencesM. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, “Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose,” Vib. Spectrosc., vol. 36, no. 1, pp. 23–40, 2004.spa
dc.relation.referencesS. Coseri et al., “Erratum: One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate (RSC Adv. (2015) 5 (85889- 85897)),” RSC Advances, vol. 5, no. 117. p. 96927, 2015.spa
dc.relation.referencesH. Kono, “Cationic flocculants derived from native cellulose : Preparation , biodegradability , and removal of dyes in aqueous solution,” Resour. Technol., vol. 3, no. 1, pp. 55–63, 2017.spa
dc.relation.referencesM. Szymańska-Chargot, J. Cybulska, and A. Zdunek, “Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR Spectroscopy,” Sensors, vol. 11, no. 6, pp. 5543–5560, 2011.spa
dc.relation.referencesJ. H. Wiley and R. H. Atalla, “Band assignments in the raman spectra of celluloses,” Carbohydr. Res., vol. 160, no. C, pp. 113–129, 1987.spa
dc.relation.referencesK. Kavkler and A. Demšar, “Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 78, no. 2, pp. 740–746, 2011.spa
dc.relation.referencesL. M. Proniewicz, C. Paluszkiewicz, A. Wesełucha-Birczyńska, H. Majcherczyk, A. Barański, and A. Konieczna, “FT-IR and FT-Raman study of hydrothermally degradated cellulose,” in Journal of Molecular Structure, 2001, vol. 596, no. 1–3, pp. 163–169.spa
dc.relation.referencesK. Schenzel, H. Almlöf, and U. Germgård, “Quantitative analysis of the transformation process of cellulose I → cellulose II using NIR FT Raman spectroscopy and chemometric methods,” Cellulose, vol. 16, no. 3, pp. 407–415, 2009.spa
dc.relation.referencesR. G. P. Viera, G. R. Filho, R. M. N. de Assunção, C. da Carla, J. G. Vieira, and G. S. de Oliveira, “Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose,” Carbohydr. Polym., 2007.spa
dc.relation.referencesA. Kaboorani and B. Riedl, “Surface modification of cellulose nanocrystals ( CNC ) by a cationic surfactant,” Ind. Crop. Prod., vol. 65, pp. 45–55, 2015.spa
dc.relation.referencesD. M. Panaitescu, A. N. Frone, and I. Chiulan, “Nanostructured biocomposites from aliphatic polyesters and bacterial cellulose,” Ind. Crops Prod., 2016.spa
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcJugo de caña
dc.subject.armarcMucilagos
dc.subject.armarcPanela - Control de Calidad
dc.subject.armarcClarificación
dc.subject.armarcMaestría en Química - Tesis y disertaciones académicas
dc.titleSíntesis de un biofloculante sustituto de mucilagos naturales en el proceso de producción de panelaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
TGT_1201.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
Archivo principal
Descargar
Loading...
Thumbnail Image
Name:
A_LMRF.pdf
Size:
649.68 KB
Format:
Adobe Portable Document Format
Description:
Autorización publicación
Descargar
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
14.45 KB
Format:
Item-specific license agreed upon to submission
Description:
Descargar