Tecnología aplicada en el funcionamiento y la detección de minas antipersonales : estado del arte

dc.contributor.authorLedezma Ríos, Javier Andrés
dc.date.accessioned2019-02-18T22:07:52Z
dc.date.available2019-02-18T22:07:52Z
dc.date.issued2017-07-04
dc.description1 recurso en línea (páginas 23-35).spa
dc.description.abstractEl principal objetivo de esta investigación es conocer las diferentes tecnologías implementadas para la detección de minas antipersonales. Por diferentes medios bibliográficos se estudiaron las últimas actualizaciones empleadas para la detección de objetos enterrados, los factores que afectan la pérdida de energía de las ondas como transmisoras de información entre estos, las características del suelo, la amplitud de la señal emitida, la frecuencia y las condiciones del terreno. En este artículo se informa sobre los medios computacionales, de su trabajo con los diferentes algoritmos para modelar una información acertada de lo que está sucediendo con el fenómeno de detección. Asimismo, se dan a conocer a la comunidad científica los parámetros de susceptibilidad magnética, el porcentaje de agua y porosidad del entorno donde reaccionan las ondas emitidas, la dificultad de la estabilidad de la señal que se ha de capturar para detectar las minas antipersonales, en un contorno geográfico. En la actualidad se están utilizando tubos de PVC, latas y jeringas para su fabricación, y dispositivos de manipulación manual para su activación. Las ondas van a tener un comportamiento diferente ante estos materiales.spa
dc.description.abstractThe main objective of this investigation is to know the different technologies implemented for the detection of antipersonnel mines, documented by different bibliographic means of the latest updates used for the detection of buried objects, the factors that affect the loss of energy of the waves as transmitters of information between them, the characteristics of the soil, the amplitude of the emitted signal, the frequency and the conditions of the terrain. This paper informs about the computational means, of their work with the different algorithms to model correct information of what is happening with the phenomenon of detection. Thus, through this research, the scientific community is informed on the parameters of magnetic susceptibility, the percentage of water and porosity of the environment where the emitted waves react, the difficulty of the stability of the signal to be captured to detect antipersonnel mines, in a geographical context. Currently, PVC tubes, cans, syringes and hand-held devices are being used for their production, and the waves will behave differently against these materials.eng
dc.description.notesBibliografía y webgrafía: páginas 32-35.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationLedezma Ríos, J. A. (2017). Tecnología aplicada en el funcionamiento y la detección de minas antipersonales : estado del arte. Revista Ingeniería, Investigación y Desarrollo, 17(2), 23-35. DOI: https://doi.org/10.19053/1900771X.v17.n2.2017.7182. http://repositorio.uptc.edu.co/handle/001/2444spa
dc.identifier.doi10.19053/1900771X.v17.n2.2017.7182
dc.identifier.issn2422-4324
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2444
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.relation.ispartofjournalRevista Ingeniería, Investigación y Desarrollo;Volumen 17, número 2 (Julio-Diciembre 2017)spa
dc.relation.referencesL.H. Morales-Pinto, M.C. Fuentes, J.A. Hernández. (2013, jul.). Monitoreo y control de vibraciones por efecto de voladuras en el túnel Sumapaz, concesión Bogotá Girardot. Revista Ingeniería, Investigación y Desarrollo. [En línea]. 13(2), 15-21. Disponible: http://revistas.uptc.edu.co/index.php/ingenieria_ sogamoso/article/view/3419spa
dc.relation.referencesO. Lopera y N. Milisavljevic. (2007). Prediction of the effects of soil and target properties on the antipersonnel landmine detection performance of ground-penetrating radar: A Colombian case study. Journal of Applied Geophysics. [En línea]. 63(1), 13–23.Disponible: https://doi.org/10.1016/j.jappgeo. 2007.02.002spa
dc.relation.referencesF. Liu, Y. Ling, X. Xia y X. Shi. (2004). Wavelet methods for Ground Penetrating Radar imaging. Journal of Computational and Applied Mathematics. [En línea]. 169(2), 459–474. Disponible: https://doi. org/10.1016/j.cam.2003.12.036spa
dc.relation.referencesN.A. Duarte-Pinilla y H. Paz-Penagos. (2015, jul.). Justificación de una propuesta regulatoria para radiodifusión sonora y transmóviles en las fronteras colombianas. Revista Ingeniería, Investigación y Desarrollo. [En línea]. 15(2), 31-41. Disponible: http://revistas.uptc.edu.co/index.php/ingenieria_ sogamoso/article/view/4248spa
dc.relation.referencesA.J. Arrieta-Fuentes. (2016, jul.) Dispersión de material particulado (PM 10), con interrelación de factores meteorológicos y topográficos. Revista Ingeniería, Investigación y Desarrollo. [En línea]. 16(2), 43-54. Disponible: http://revistas.uptc.edu.co/index. php/ingenieria_sogamoso/article/view/544spa
dc.relation.referencesC. Colla y C. Maierhofer. (2000). Investigations of historic masonry via radar reflection and tomography. Presentado en 2000 8th International Conference on Ground Penetrat- ing Radar (GPR). [En línea]. Disponible: http://proceedings.spiedigitallibrary. org/proceeding.aspx?articleid=912896spa
dc.relation.referencesS.A. Arcone y A.J. Delaney. (2000). Gpr images of hidden crevasses in Antarctica. Presentado en 2000 8th International Conference on Ground Penetrating Radar (GPR). [En línea]. Disponible: http://spie.org/Publications/Proceedings/Paper/ 10.1117/12.383512spa
dc.relation.referencesD. Daniels. (2004). Ground Penetrating Radar. Stevenage: IET Press. [En línea]. Disponible: http://digital- library.theiet.org/content/journals/10.1049/ el.2017.1570spa
dc.relation.referencesC. van Coevorden, A. Bretones, M. Pantoja, F. Ruiz, S. García y R. Martin. (2006). Ga design of a thin-wire bow-tie antenna for Gpr applications. IEEE Trans. Geosci. Remote Sens. [En línea]. 44(4), 1004–1010. Disponible : http://ieeexplore.ieee. org/document/1610835/spa
dc.relation.referencesR.M. Morey, S.M. Conklin, S.P. Farrington y J.D. ShinnII. (1999). Tomographic Site Characterization Using CPT, ERT and GPR. [En línea]. Disponible: https:// www.osti.gov/scitech/servlets/purl/773811spa
dc.relation.referencesN. Joachimowicz, C. Pichot y J.-P. Hugonin. (1991). Inverse scattering: an iterative numerical method for electromagnetic imaging. IEEE Trans. Antennas Propag. [En línea]. 39(12), 1742–1753. Disponible: http://ieeexplore.ieee.org/abstract/document/ 121595/spa
dc.relation.referencesC. Christodoulou y M. Georgiopoulos, Applications of Neural Networks in Electromagnetics. Norwood: Artech House, 2001.spa
dc.relation.referencesD. A. Gomes Vieira, Rede. perceptron com camadas paralelas (plp-parallel layer perceptron) (Ph.D. thesis), Universidade Federal de Minas Gerais, 2006.spa
dc.relation.referencesW.M. Caminhas, D.A.G. Vieira y J.A. Vasconcelos. (2003). Parallel layer perceptron, Neurocomputing. [En línea]. 55 (3–4), 771–778. Disponible: https:// www.researchgate.net/publication/222302650_ Parallel_layer_perceptronspa
dc.relation.referencesC. Christodoulou, J. Huang y M. Georgiopoulos. (1995). Design of gratings and frequency-selective surfaces using artmap neural networks, J. Electromagn. Waves Appl. [En línea]. 9 (1/2), 17–36. Disponible: http://tandfonline.com/doi/ abs/10.1163/156939395X00235?tab=permissions& scroll=top&spa
dc.relation.referencesM.K. Smail, Y.L. Bihan y L. Pichon, “Fast diagnosis of transmission lines using neural networks and principal component analysis”, Int. J. Appl. Electromagn. Mech., vol. 39 n.º 1, 2012, pp. 435–441.spa
dc.relation.referencesS. Caorsi y G. Cevini. (2005). An electromagnetic approach based on neural networks for the gpr investigation of buried cylinders, IEEE Geosci. Remote Sens. Lett. [En línea]. 2 (1) 3–7. Disponible: http:// ieeexplore.ieee.org/document/1381337/spa
dc.relation.referencesL. Newnham y A. Goodier. (2000). Using neural networks to interpret subsurface radar imagery of reinforced concrete 4084. [En línea]. Disponible: http:// proceedings.spiedigitallibrary.org/proceeding.aspx? articleid=912595spa
dc.relation.referencesX. Travassos, D. Vieira, N. Ida, C. Vollaire y A. Nicolas. (2008) Characterization of inclusions in a nonhomogeneous gpr problem by artificial neural networks, IEEE Trans. Magn. [En línea]. 44(6) 1630– 1633. Disponible: http://ieeexplore.ieee.org/document/ 4527012/spa
dc.relation.referencesS.G. García, A.R. Bretones, B.G. Olmedo y R.G. Martn, “Finite difference time domain methods”, in Time Domain Techniques in Computational Electromagnetics, D. Poljak (Ed.), Ashurst, UK: WIT Press, 2003, pp. 91–132.spa
dc.relation.referencesA. Giannopoulos. (1997). The investigation of transmission-line matrix and finite- difference time-domain methods for the forward problem of ground probing radar (Ph.D. thesis), University of York, 1997. [En línea]. Disponible: https://www. researchgate.net/publication/35719439_The_investigation_ of_transmission-line_matrix_and_finite- difference_time-domain_methods_for_the_ forward_problem_of_ground_probing_radarspa
dc.relation.referencesR. Godoy-Rubio. (2005). Métodos de diferencias finitas incondicionalmente estables para la resolución de las ecuaciones de maxwell en el dominio del tiempo (Ph. D. thesis), Universidad de Granada. [En línea]. Disponible: https://dialnet.unirioja.es/servlet/ tesis?codigo=108732spa
dc.relation.referencesB.G. Olmedo, S.G. García, A.R. Bretones y R.G. Martin. (2005). New trends in FDTD methods in computational electrodynamics: unconditionally stable schemes, in Recent Res. Development in Electronics, Transworld Research Network. [En línea]. Disponible en: http://personalpages.manchester. ac.uk/staff/fumie.costen/tmp/TRNEL18_corrected2. pdfspa
dc.relation.referencesR. Tibshirani, T. Hastie y J. Friedman, The Elements of Statistical Learning, New York City: Springer, 2001.spa
dc.relation.referencesS. Campana y S. Piro. (2008). Seeing the Unseen, Geophysics and Landscape Archae- ology. London: A Balkema Book, Taylor & Francis. [En línea]. Disponible: http://www.crcnetbase.com/doi/ pdf/10.1201/9780203889558.fmattspa
dc.relation.referencesJ.B, Rodríguez, et al. (2015). A prediction algorithm for data analysis in GPR-based surveys. [En línea]. Disponible: https://www.researchgate.net/publication/ 279160326_A_Prediction_Algorithm_for_ Data_Analysis_in_GPR-based_Surveysspa
dc.relation.referencesS. Stergiopoulos. (2000). Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real Time Systems. Boca Raton: CR Press. [En línea]. Disponible: https://www.crcpress.com/Advanced- Signal-Processing-Handbook-Theory-and-plementation-for-Radar/Stergiopoulos/p/ book/9781420037395spa
dc.relation.referencesL. Travassos, D.A.G. Vieira, N. Ida y A. Nicolas. (2009). In the use of parametric and non-parametric algorithms for the nondestructive evaluation of concrete struc- tures, Res. Nondestruct. Eval. [En línea]. 20(2), 71–93. Disponible: https://www.ncbi. nlm.nih.gov/pmc/articles/PMC3252010/spa
dc.relation.referencesF. Higuera, et al. (2013). Diseño y construcción de un prototipo de generador hidráulico para estudio y desarrollo de estrategias de control para la generación eléctrica en minas subterráneas, Revista Ingeniería, Investigación y Desarrollo. [En línea]. 13(2), 22-27. Disponible: http://revistas.uptc. edu.co/index.php/ingenieria_sogamoso/article/ view/3421spa
dc.relation.referencesD. A. Gomes Vieira, R. H. Caldeira Takahashi, V. Palade, J. A. Vasconcelos y W. Matos Caminhas, “The q -norm complexity measure and the minimum gradient method: a novel approach to the machine learning structural risk minimization problem”, IEEE Trans. Neural Netw., vol. 19 n.º 8, 2008, pp. 1415–1430.spa
dc.relation.referencesI.T. Jolliffe. (2002). Principal Component Analysis. New York City: Springer. [En línea]. Disponible: http://www.springer.com/us/ book/9780387954424spa
dc.relation.referencesF. Rosenblatt. (1958). The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev. [En línea]. 65 (6), 386–408. Disponible: http://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.588.3775spa
dc.relation.referencesF. Rosenblatt, (1962). Principles of Neurodynamics. Washington:,Spartan Books. [En línea]. Disponible: https://catalog.hathitrust.org/Record/000203591spa
dc.relation.referencesM. Minsky y S. Papert, Principal Component Analysis. Cambridge, MA: MIT Press, 1969.spa
dc.relation.referencesH. Ortiz, I. Gómez, F. Angarita Cediel y C. A. Neira Triana. (2016). Amplificador operacional de transconductancia con alto rango modo común y bajo consumo de potencia. Ingeniería Investigación y Desarrollo [En línea]. 16(2), 78-83. Disponible: http://revistas.uptc.edu.co/index.php/ingenieria_ sogamoso/article/view/5448spa
dc.relation.referencesS. Grossberg. (1976). Adaptive pattern classifi- cation and universal recoding: I. parallel development and coding of neural feature detectors. Biol. Cybern. [En línea]. 23(3), 121–134. Disponible: https://link.springer.com/article/10.1007/ BF00344744spa
dc.relation.referencesT. Kohonen. (1972). Correlation matrix memories, IEEE Trans. Comput. [En línea]. C-21(4), 353–359. Disponible: http://ieeexplore.ieee.org/document/ 5008975/spa
dc.relation.referencesK. Fukushima. (1980). Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biol. Cybern. [En línea]. 36(4), 193–202. Disponible: https://www.ncbi.nlm.nih.gov/pubmed/7370364spa
dc.relation.referencesJ.J. Hopfield. (2010). Neural networks and physical system with emergent collective computational abilities, Proc. Natl. Acad. Sci. [En línea]. 79, 2554–2558. Disponible: http://www.pnas.org/ content/79/8/2554.abstractspa
dc.relation.referencesD.E. Rumelhart, G.E. Hinton y R.J. Williams. (1986). Learning internal representations by error propagation, in: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, Cambridge, MA, USA: MIT Press, pp. 318–362. [En línea]. Disponible: http://dl.acm.org/citation. cfm?id=104293spa
dc.relation.referencesJ. Shing y R. Jang. (1993). Anfis: Adaptive-network- based fuzzy inference system, IEEE Trans. Syst. Man Cybern. [En línea]. 23, 665–685. Disponible: http://ieeexplore.ieee.org/document/256541/spa
dc.relation.referencesJ.D. Toews, y W.Sirovyak. (2003). Metal Detector Trial – Colombia, DRDC Suffield TM 2003-099, pp. 3-7. [En línea]. Disponible: https://www.yumpu. com/en/document/view/16574172/metal-detector- trial-colombia-gichdspa
dc.relation.referencesMullins, C.E. (1977). Magnetic susceptibility of the soil and its significance in soil science: a review, J. Soil Sci. [En línea]. 28, 223- 246. Disponible: http://onlinelibrary.wiley.com/ doi/10.1111/j.1365-2389.1977.tb02232.x/abstractspa
dc.relation.referencesJ.A. Dearing. (1994). Environmental Magnetic Susceptibility. Kenilworth, UK: Chi Publishing. [En línea]. Disponible: http://onlinelibrary.wiley.com/ doi/10.1111/j.1365-246X.1996.tb04051.x/fullspa
dc.relation.referencesA.S. Balanis, “Geometrical Theory of Diffraction” en Advanced Engineering Electromagnetics. New York: John Wiley & Sons, 1989.spa
dc.relation.referencesM. Hagan y M.-B. Menhaj. (1994). Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Netw. [En línea]. 5(6), 989–993. Disponible: http://ieeexplore.ieee.org/document/ 329697/spa
dc.relation.referencesC. Guattari, F. Amico y A. Benedetto. (2010). Integrated road pavement survey using gpr and lfwd, in 2010 13th International Conference on Ground Penetrating Radar (GPR), 2010, pp. 1–6. [En línea]. Disponible: http://ieeexplore.ieee.org/xpl/mostRecentIssue. jsp?punumber=5540532&filter%- 3DAND%28p_IS_Number%3A5550063%29&pageNumber= 5spa
dc.relation.referencesK.-Y. Huang y K.-S. Fu. (1987). Decision-theoretic approach for classification of ricker wavelets and detection of seismic anomalies, IEEE Trans. Geosci. Remote Sens. [En línea]. GE-25(2), 118–123. Disponible: http://ieeexplore.ieee.org/document/ 4072616/spa
dc.relation.referencesA. M Alani, M. Aboutalebi y G. Kilic. (2013). Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment. Journal of Applied Geophysics. [En línea]. 97, 45–54. Disponible: https://doi.org/10.1016/j.jappgeo.2013.04.009spa
dc.relation.referencesH. W. Yang, Z. Yang Kun y Y. Kun Pei. (2014). Ground-penetrating radar for soil and underground pipelines using the forward modeling simulation method. Optik International Journal for Light and Electron Optics. [En línea]. 125(23), 7075–7079. Disponible: https://doi.org/10.1016/j. ijleo.2014.08.099spa
dc.relation.referencesR. Rouveure, P. Faure y M.O. Monod. (2016). PELICAN: Panoramic millimeter-wave radarfor perception in mobile robotics applications, Part 1: Principles of FMCW radar and of 2D image construction. Robotics and Autonomous Systems. [En línea]. 81, 1–16. Disponible: https://doi.org/10.1016/j.robot. 2016.04.001spa
dc.relation.referencesM. Rucka, J. Lachowicz y M. Zielioska, M. (2016). GPR investigation of the strengthening system of a historic masonry tower. Journal of Applied Geophysics. [En línea]. Disponible: https://doi. org/10.1016/j.jappgeo.2016.05.014spa
dc.relation.referencesA. Ruffell. (2006). Under-water Scene Investigation Using Ground Penetrating Radar (GPR) in the Search for a Sunken Jet ski, Northern Ireland. Science & Justice. [En línea]. 46(4), 221–230. Disponible: https://www.ncbi.nlm.nih.gov/pubmed/17500424spa
dc.relation.referencesF. Sagnard, C. Norgeot, X. Derobert, V. Baltazart, E. Merliot, F. Derkx y B. Lebental. (2016). Utility detection and positioning on the urban site Sense-City using Ground-Penetrating Radar systems. Measurement. [En línea]. 88, 318–330. Disponible: https://doi.org/10.1016/j.measurement. 2016.03.044spa
dc.relation.referencesG.P. Tsoflias,L. Seyfi y E. Yaldız. (2010). A novel software for an energy efficient GPR. Advances in Engineering Software. [En línea]. 41(10), 1195–1199. Disponible: http://dl.acm.org/citation.cfm?id=1862460S.L. De Vore y M. Lynott (2016). Combining ER and GPR surveys for evidence of prehistoric landscape construction: case study at Mound City, Ohio, USA. Journal of Applied Geophysics. [En línea]. 129, 178–186. Disponible: https://doi. org/10.1016/j.jappgeo.2016.04.002spa
dc.relation.referencesL. Seyfi y E. Yaldız. (2010). A novel software for an energy efficient GPR. Advances in Engineering Software. [En línea]. 41(10), 1195–1199. Disponible: http://dl.acm.org/citation.cfm?id=1862460spa
dc.relation.referencesD. Seyfried, R. Jansen y J. Schoebel (2014). Shielded loaded bowtie antenna incorporating the presence of paving structure for improved GPR pipe detection. Journal of Applied Geophysics. [En línea]. 111, 289–298. Disponible: https://doi.org/10.1016/j. jappgeo.2014.10.019spa
dc.relation.referencesD. Seyfried y J. Schoebel. (2015). Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality. Journal of Applied Geophysics. [En línea]. 118, 167–174. Disponible: https://doi.org/10.1016/j.jappgeo.2015.03.029spa
dc.relation.referencesD. Seyfried y J. Schoebel. (2016). Ground penetrating radar for asparagus detection. Journal of Applied Geophysics. [En línea]. 126, 191–197. Disponible: https://doi.org/10.1016/j.jappgeo. 2016.01.022spa
dc.relation.referencesD. Seyfried, K. Schubert y J. Schoebel. (2014a). Investigations on the sensitivity of a stepped- frequency radar utilizing a vector network analyzer for Ground Penetrating Radar. Journal of Applied Geophysics. [En línea]. 111, 234–241. Disponible: http://www.sciencedirect.com/science/article/pii/ S0926985114003103spa
dc.relation.referencesA. Taflove y S. C. Hagness. (s.f.). Computational Electrodynamics: The Images of the front covers of Allen’s FDTD books published in 1995. [En línea]. Disponible: http://www.ece.northwestern.edu/ ecefaculty/Allen1.htmlspa
dc.rightsCopyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/7182/5610spa
dc.subject.armarcMinas antipersonales
dc.subject.armarcExplosivos - Detección
dc.subject.proposalInvestigaciónspa
dc.subject.proposalOndasspa
dc.subject.proposalTerrenospa
dc.subject.proposalTransmisorasspa
dc.subject.proposalFabricaciónspa
dc.titleTecnología aplicada en el funcionamiento y la detección de minas antipersonales : estado del artespa
dc.title.alternativeTechnology applied in the operation and detection of antipersonnel mines : state of the arteng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PPS_1025_Tecnologia_aplicacion_deteccion_minas.pdf
Size:
569.63 KB
Format:
Adobe Portable Document Format
Description:
Archivo principal
Descargar
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
14.45 KB
Format:
Item-specific license agreed upon to submission
Description:
Descargar