Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido

dc.contributor.advisorGómez Cuaspud, Jairo Albertospa
dc.contributor.advisorParra Vargas, Carlos Arturospa
dc.contributor.authorCruz Pacheco, Andrés Felipe
dc.date.accessioned2019-05-10T21:46:13Z
dc.date.available2019-05-10T21:46:13Z
dc.date.issued2017
dc.description1 recurso en línea (114 páginas) : ilustraciones color, figuras, tablas.spa
dc.description.abstractThe properties of cerium dioxide are due to the fluorite crystal structure, which guarantees the mobility of oxygen ions and electrons on the surface and inside the material. In addition, the modification of cerium cations by praseodymium increase oxygen vacancies due to the interconversion of their oxidation states, causing in the solids, high structural stability at high temperatures, accompanied by improvements in the properties of ionic and electronic conductivity make it of great interest to be used as component in solid oxide fuel cells (SOFC). In this way, the (Ce1-xPrxO2 (X = 0.0, 0.2, 0.4, 0.6, 0.8) and Pr6O11) system were obtained by the combustion method using citric acid as a chelating agent. In order to determine the best synthesis conditions in terms of the optimum temperature for the consolidation of the desired crystalline phases, thermogravimetric and differential thermal analyzes (TGA-DTA) were performed in a temperature range between 25 °C and 1000 °C. After the combustion and calcination processes, the obtained solids were characterized by infrared spectroscopy (FTIR), to determine the absorption bands associated with the citrate species formed and the subsequent removal of them after the heat treatment. The structural and morphological characteristics that resulted in the different modifications of cerium oxide after the calcination process at 800 °C were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), evidencing the obtaining of nanometric crystallites with homogeneous morphology. The magnetic behavior of the different synthesized systems was evaluated by the measurements of magnetization as a function of the temperature and the applied magnetic field, showing that all modifications of cerium oxide with praseodymium ions and pure praseodymium oxide have a paramagnetic behavior, in contrast with CeO2, which exhibits a diamagnetic behavior. In the same way, the magnetic susceptibility analyzes allowed to give an approximation of the oxidation states of the Ce and Pr ions in each of the synthesized oxides, by calculating the effective magnetic moments. X-ray photoelectron spectroscopy (XPS) analyzes corroborated the magnetic analyzes as to the identification of the valences and binding energies of the cerium and praseodymium cations. Surface area analysis using nitrogen adsorption isotherms by the BET method revealed that all the systems synthesized exhibit values between 70 and 135 m2 g-1, with pore volumes consistent with the classification of mesoporous materials. The oxygen storage capacity (OSC) measurements show that the proportional substitution of Ce ions by Pr increases the oxygen storage due to the generation of oxygen vacancies, caused by the presence of Pr3+ ions. In order to determine the structural stability of each oxide synthesized in reducing environments, programmed hydrogen reduction (TPR-H2) experiments were carried out, which allowed us to determine that the materials are partially stable up to 830 ° C. Finally, the electrical characterization by impedance spectroscopy (IE) allowed the determination of the electrical and ionic conduction processes by analyzing the equivalent circuits and the Nyquist diagrams of all the synthesized and calcined solids, identifying the most relevant material in terms conduction, structural stability, morphology and texture to be a possible anodic component in solid oxide fuel cells.eng
dc.description.abstractLas propiedades del dióxido de cerio se deben en gran medida a la estructura cristalina tipo fluorita, la cual garantiza la movilidad de iones oxígeno y electrones tanto en la superficie como al interior del material. Además, la modificación de cationes cerio por praseodimio logra aumentar las vacancias de oxígeno debido a la interconversión de sus estados de oxidación, provocando en los sólidos, alta estabilidad estructural a altas temperaturas, acompañada de las mejoras en las propiedades de conductividad iónica y electrónica que lo hacen de gran interés para ser usado como componente en pilas de combustible de óxido sólido (SOFC). En este sentido se obtuvieron cinco óxidos de cerio modificados con praseodimio y praseodimio puro (Ce1-xPrxO2 (X = 0.0, 0.2, 0.4, 0.6, 0.8) y Pr6O11) por el método de combustión, utilizando ácido cítrico como agente quelante. Para determinar las mejores condiciones de síntesis en términos de la temperatura óptima para la consolidación de las fases cristalinas deseadas se realizaron análisis termogravimétricos y térmicos diferenciales (ATG-ATD) en un intervalo de temperatura entre 25 °C y 1000 °C. Luego de los procesos de combustión y calcinación, los sólidos obtenidos se caracterizaron por espectroscopia infrarroja con transformada de Fourier (FTIR), para determinar las bandas de absorción asociadas con las especies citrato formadas y la posterior eliminación de las mismas luego del tratamiento térmico. Las características estructurales y morfológicas que resultaron en las diferentes modificaciones del óxido de cerio después del proceso de calcinación a 800 °C se analizaron, mediante difracción de rayos X (DRX), microscopia electrónica de transmisión (MET) y microscopia electrónica de barrido (MEB), evidenciándose la obtención de cristalitos nanométricos con morfología homogénea. El comportamiento magnético de los diferentes sistemas sintetizados se evaluó mediante las medidas de magnetización en función de la temperatura y el campo magnético aplicado, dejando entrever que todas las modificaciones del óxido de cerio con iones praseodimio y el óxido de praseodimio puro presentan un comportamiento paramagnético, en contraste con el CeO2, el cual exhibe un comportamiento diamagnético. De la misma manera, los análisis de susceptibilidad magnética permitieron dar una aproximación de los estados de oxidación en los que se encuentran los iones Ce y Pr en cada uno de los óxidos sintetizados, mediante el cálculo de los momentos magnéticos efectivos. Los análisis de espectroscopia fotoelectrónica de rayos X (XPS), corroboraron los análisis magnéticos, en cuanto a la identificación de los estados de oxidación y las energías de enlace de los cationes cerio y praseodimio. Los análisis de área superficial usando isotermas de adsorción de nitrógeno, por el método BET, revelo que todos los sistemas sintetizados exhiben valores entre 70 y 135 m2 g-1, con volúmenes de poro acordes a la clasificación de materiales mesoporosos. Las medidas de capacidad de almacenamiento de oxígeno (OSC), demuestran que la sustitución proporcional de iones Ce por Pr, incrementa el almacenamiento de oxígeno debido a la generación de vacancias de oxígeno, provocadas por la presencia de iones Pr3+. Para determinar la estabilidad estructural de cada óxido sintetizado en ambientes reductores, se llevaron a cabo experimentos de reducción a temperatura programada de hidrógeno (RTP-H2), los cuales permitieron determinar que los materiales son parcialmente estables hasta 830 °C. Por último, la caracterización eléctrica mediante espectroscopia de impedancias (EI), permitió determinar los procesos de conducción eléctrica y iónica mediante el análisis de los circuitos equivalentes y los diagramas de Nyquist de todos los sólidos sintetizados y calcinados, logrando identificar el material más relevante en términos de conducción, estabilidad estructural, morfología y textura para ser un posible componente anódico en pilas de combustible de óxido sólido.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Químicaspa
dc.description.notesBibliografía: páginas 104-114.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCruz Pacheco, A. F. (2017) . Síntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólido. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2584spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2584
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.publisher.facultyFacultad de Ciencias. Escuela de Posgrados. Maestría en Químicaspa
dc.relation.referencesJ. Alvarado-Flores and L. Avalos-Rodríguez, “Materiales para ánodos, cátodos y electrolitos utilizados en celdas de combustible de óxido sólido (SOFC),” Rev. Mex. Física, vol. 59, no. 1, pp. 66–87, 2013.spa
dc.relation.referencesJ. Qian, J. Hou, Z. Tao, and W. Liu, “Fabrication of (Sm, Ce)O2−δ interlayer for yttria-stabilized zirconia-based intermediate temperature solid oxide fuel cells,” J. Alloys Compd., vol. 631, pp. 255–260, 2015.spa
dc.relation.referencesY. Ma, N. Fenineche, and O. Elkedim, “Ab initio study of La10−xSrx(Si,Ge)6O27−0.5x apatite for SOFC electrolyte,” Comput. Mater. Sci., vol. 109, pp. 25–33, 2015.spa
dc.relation.referencesY. Li, J. Yang, and J. Song, “Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles,” Renew. Sustain. Energy Rev., vol. 67, pp. 160–172, 2017.spa
dc.relation.referencesW.-R. Chang, J.-J. Hwang, and W. Wu, “Environmental impact and sustainability study on biofuels for transportation applications,” Renew. Sustain. Energy Rev., vol. 67, pp. 277–288, 2017.spa
dc.relation.referencesL. van Biert, M. Godjevac, K. Visser, and P. V. Aravind, “A review of fuel cell systems for maritime applications,” J. Power Sources, vol. 327, pp. 345–364, 2016.spa
dc.relation.referencesC. P. Lawrence, R. ElShatshat, M. M. A. Salama, and R. A. Fraser, “An efficient auxiliary system controller for Fuel Cell Electric Vehicle (FCEV),” Energy, vol. 116, pp. 417–428, 2016.spa
dc.relation.referencesV. B. V. Belenguer, “Electrodos avanzados para pilas de combustible de óxido sólido,” Universidad Politécnica de Valéncia, 2011.spa
dc.relation.referencesM. Yari, A. S. Mehr, S. M. S. Mahmoudi, and M. Santarelli, “A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester,” Energy, vol. 114, pp. 586–602, 2016.spa
dc.relation.referencesY. Wang, D. Y. C. Leung, J. Xuan, and H. Wang, “A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells,” Renew. Sustain. Energy Rev., vol. 65, pp. 961–977, 2016.spa
dc.relation.referencesL. Blum, W. A. Meulenberg, H. Nabielek, and R. Steinberger-Wilckens, “Worldwide SOFC Technology Overview and Benchmark,” Int. J. Appl. Ceram. Technol., vol. 2, no. 6, pp. 482–492, Nov. 2005.spa
dc.relation.referencesK. Y. Rajpure, “Exploring structural and magnetic properties of nanocrystalline iron oxide synthesized by autocombustion method,” Superlattices Microstruct., vol. 77, pp. 181–195, 2015.spa
dc.relation.referencesM. Quintero, “Sintesis y caracterizacion de ferritas mixtas de cobalto y zinc, del tipo ZnxCo1-xFe2O2 (x=0, 0.3, 0.5) y estudio en la utilizacion de catalisadores,” Universidad de los Andes, 2008.spa
dc.relation.referencesM. Jahanbakhshi, “Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid,” Mater. Sci. Eng. C, vol. 70, pp. 544–551, 2017.spa
dc.relation.referencesJ. H. Lunsford, “Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century,” Catal. Today, vol. 63, no. 2, pp. 165–174, 2000.spa
dc.relation.referencesL. C. Moreno, “Preparación y caracterización de perovskitas de cobalto y manganeso por los métodos citrato y atomización pirolítica (Spray Pyrolysis),” Univerisdad Nacional de Colombia, 2014.spa
dc.relation.referencesA. R. West, Solid State Chemistry and its applications, Segunda ed. Reino Unido, 2014.spa
dc.relation.referencesL. Suescun, “Caracterización estructural y magnética de compuestos REBaCuCoO5 de tipo perovskita 112 (RE: Tierra rara o Ytrio),” Universidad de la República, 2003.spa
dc.relation.referencesX. Xi, A. Kondo, and M. Naito, “Preparation and characterization of Ni-YSZ composite electrode for solid oxide fuel cells by different co-precipitation routes,” J. Alloys Compd., vol. 688, pp. 1047–1052, 2016.spa
dc.relation.referencesT. Hibino, A. Hashimoto, M. Yano, M. Suzuki, and M. Sano, “Ru-catalyzed anode materials for direct hydrocarbon SOFCs,” Electrochim. Acta, vol. 48, no. 17, pp. 2531–2537, 2003.spa
dc.relation.referencesE. de J. Alcañiz, “Los elementos,” Universidad de Alcala, 2013.spa
dc.relation.referencesG. Niu, M. A. Schubert, F. d’Acapito, M. H. Zoellner, T. Schroeder, and F. Boscherini, “On the local electronic and atomic structure of Ce1−xPrxO2−δ epitaxial films on Si,” J. Appl. Phys., vol. 116, no. 12, p. 123515, Sep. 2014.spa
dc.relation.referencesD. A. Rothamer and T. J. Donohue, “Chemistry and combustion of fit-for-purpose biofuels,” Curr. Opin. Chem. Biol., vol. 17, no. 3, pp. 522–528, 2013.spa
dc.relation.referencesT. Shrinivasa, “Rudolf Diesel — The rational inventor of a heat engine,” Resonance, vol. 17, no. 4, pp. 319–320, Apr. 2012.spa
dc.relation.referencesJ. M. Jaksic, F. Nan, G. D. Papakonstantinou, G. A. Botton, and M. M. Jaksic, “Theory, Substantiation, and Properties of Novel Reversible Electrocatalysts for Oxygen Electrode Reactions,” J. Phys. Chem. C, vol. 119, no. 21, pp. 11267–11285, May 2015.spa
dc.relation.referencesA. J. Appleby, “From Sir William Grove to today: fuel cells and the future,” J. Power Sources, vol. 29, no. 1–2, pp. 3–11, Jan. 1990.spa
dc.relation.referencesW. R. Grove, “On a Gaseous Voltaic Battery,” Philos. Mag., vol. 92, no. 31, pp. 3753–3756, Nov. 2012.spa
dc.relation.referencesA. E. Yilmaz and M. M. Ispirli, “An Investigation on the Parameters that Affect the Performance of Hydrogen Fuel Cell,” Procedia - Soc. Behav. Sci., vol. 195, pp. 2363–2369, Jul. 2015.spa
dc.relation.referencesC. M. Reid et al., “History of Electrochemical and Energy Storage Technology Development at NASA Glenn Research Center,” J. Aerosp. Eng., vol. 26, no. 2, pp. 361–371, Apr. 2013.spa
dc.relation.references“Ohio transit agency launches fuel cell bus project with NASA,” Fuel Cells Bull., vol. 2013, no. 1, p. 2, 2013.spa
dc.relation.referencesD. Cameron, “World developments of fuel cells,” Int. J. Hydrogen Energy, vol. 15, no. 9, pp. 669–675, 1990.spa
dc.relation.referencesJ.-H. Koo and K.-T. Lee, “The effect of firing conditions on electrical conductivity and electrochemical properties of Sr0.8La0.2TiO3–Ce0.9Gd0.1O1.95 composite anodes for solid oxide fuel cells,” Ceram. Int., vol. 42, no. 2, pp. 2209–2213, 2016.spa
dc.relation.referencesF. Meng et al., “Hydrothermal synthesis of hexagonal CeO2 nanosheets and their room temperature ferromagnetism,” J. Alloys Compd., vol. 647, pp. 1013–1021, 2015.spa
dc.relation.referencesX.-M. Ge, S.-H. Chan, Q.-L. Liu, and Q. Sun, “Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization,” Adv. Energy Mater., vol. 2, no. 10, pp. 1156–1181, Oct. 2012.02bgfcspa
dc.relation.referencesA. Alaswad, A. Baroutaji, H. Achour, J. Carton, A. Al Makky, and A. G. Olabi, “Developments in fuel cell technologies in the transport sector,” Int. J. Hydrogen Energy, vol. 41, no. 37, pp. 16499–16508, 2016.spa
dc.relation.referencesJ. Nease, N. Monteiro, and T. A. Adams, “Application of a two-level rolling horizon optimization scheme to a solid-oxide fuel cell and compressed air energy storage plant for the optimal supply of zero-emissions peaking power,” Comput. Chem. Eng., vol. 94, pp. 235–249, 2016.spa
dc.relation.referencesH.-H. Möbius, “On the history of solid electrolyte fuel cells,” J. Solid State Electrochem., vol. 1, no. 1, pp. 2–16, Jul. 1997.spa
dc.relation.referencesS. de Souza, S. J. Visco, and L. C. De Jonghe, “Thin-film solid oxide fuel cell with high performance at low-temperature,” Solid State Ionics, vol. 98, no. 1, pp. 57–61, 1997.spa
dc.relation.referencesG. M. Haarberg, K. S. Osen, J. Thonstad, R. J. Heus, and J. J. Egan, “Measurement of electronic conduction in cryolite alumina melts and estimation of its effect on current efficiency,” Metall. Trans. B, vol. 24, no. 5, pp. 729–735, Oct. 1993.spa
dc.relation.referencesE. Baur and H. Preis, “Über Brennstoff‐Ketten mit Festleitern,” Berichte der Bunsengesellschaft für Phys. Chemie, vol. 43, no. 9, pp. 727–732, 1937.spa
dc.relation.referencesE. Fabbri, D. Pergolesi, and E. Traversa, “Ionic conductivity in oxide heterostructures: the role of interfaces,” Sci. Technol. Adv. Mater., vol. 11, no. 5, p. 54503, Oct. 2010.spa
dc.relation.referencesB. Zhu, “Next generation fuel cell R&D,” Int. J. Energy Res., vol. 30, no. 11, pp. 895–903, Sep. 2006.spa
dc.relation.referencesX. X. Guo, I. Matei, J.-S. Lee, and J. Maier, “Ion conduction across nanosized CaF2∕BaF2 multilayer heterostructures,” Appl. Phys. Lett., vol. 91, pp. 103102, 2007.spa
dc.relation.referencesM. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, and M. Salavati-Niasari, “Synthesis and characterization of CeO2 nanoparticles via hydrothermal route,” J. Ind. Eng. Chem., vol. 21, pp. 1301–1305, 2015.spa
dc.relation.referencesX. Ji et al., “Enhanced activities of nano-CeO2−δ@430L composites by zirconium doping for hydrogen electro-oxidation in solid oxide fuel cells,” Int. J. Hydrogen Energy, vol. 41, no. 26, pp. 11331–11339, 2016spa
dc.relation.referencesN. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, “Progress in material selection for solid oxide fuel cell technology: A review,” Prog. Mater. Sci., vol. 72, pp. 141–337, 2015.spa
dc.relation.referencesS. Somacescu, L. Navarrete, M. Florea, J. M. Calderon-Moreno, and J. M. Serra, “Self-assembled (Ni/Cu, Ti)-YSZ with potential applications for IT-SOFCs: Catalytic and electrochemical assessment,” J. Alloys Compd., vol. 690, pp. 873–883, 2017.spa
dc.relation.referencesJ. S. A. Carneiro, R. A. Brocca, M. L. R. S. Lucena, and E. Nikolla, “Optimizing cathode materials for intermediate-temperature solid oxide fuel cells (SOFCs): Oxygen reduction on nanostructured lanthanum nickelate oxides,” Appl. Catal. B Environ., vol. 200, pp. 106–113, 2017.spa
dc.relation.referencesY. Ji, H. Wang, and H. Zhang, “Gd0.8Sr0.2CoO3-δ–Sm0.1Ce0.9O1.95 composite cathode for intermediate temperature solid oxide fuel cells,” Mater. Res. Bull., vol. 85, pp. 30–34, 2017.spa
dc.relation.referencesC.-C. Yu et al., “Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell,” ACS Appl. Mater. Interfaces, vol. 8, no. 16, pp. 10343–10349, Apr. 2016.spa
dc.relation.referencesZ. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, and S. A. Barnett, “A perspective on low-temperature solid oxide fuel cells,” Energy Environ. Sci., vol. 9, no. 5, pp. 1602–1644, 2016.spa
dc.relation.referencesK. C. Wincewicz and J. S. Cooper, “Taxonomies of SOFC material and manufacturing alternatives,” J. Power Sources, vol. 140, no. 2, pp. 280–296, 2005.spa
dc.relation.referencesM. Kogler, E.-M. Köck, B. Klötzer, L. Perfler, and S. Penner, “Surface Reactivity of YSZ, Y2O3, and ZrO2 toward CO, CO2, and CH4: A Comparative Discussion,” J. Phys. Chem. C, vol. 120, no. 7, pp. 3882–3898, Feb. 2016.spa
dc.relation.referencesW. Shen and J. L. Hertz, “Ionic conductivity of YSZ/CZO multilayers with variable lattice mismatch,” J. Mater. Chem. A, vol. 3, no. 5, pp. 2378–2386, 2015.spa
dc.relation.referencesI. Ruiz de Larramendi et al., “Pr-doped ceria nanoparticles as intermediate temperature ionic conductors,” Int. J. Hydrogen Energy, vol. 36, pp. 10981–10990, 2011.spa
dc.relation.referencesY. Endo, A. Dempoh, T. Terai, and A. Suzuki, “Grain Size Effect on Conductivity of LSGM Thin Film Electrolyte for Solid Oxide Fuel Cell,” ECS Trans., vol. 68, no. 1, pp. 441–447, Jul. 2015.spa
dc.relation.referencesT. Masui, R. Nagai, and N. Imanaka, “Effect of the introduction of oxide ion vacancies into cubic fluorite-type rare earth oxides on the NO decomposition catalysis,” J. Solid State Chem., vol. 220, pp. 181–184, 2014.spa
dc.relation.referencesM. Irshad et al., “High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC,” AIP Adv., vol. 6, no. 2, p. 25202, Feb. 2016.spa
dc.relation.referencesZ. Tao et al., “The co-doping effect of Sm and In on ceria for electrolyte application in IT-SOFC,” J. Alloys Compd., vol. 663, pp. 750–754, 2016.spa
dc.relation.referencesT. Ramos, S. Veltzé, B. R. Sudireddy, P. S. Jørgensen, L. Theil Kuhn, and P. Holtappels, “Effect of Ru/CGO versusNi/CGO Co-Infiltration on the Performance and Stability of STN-Based SOFCs,” Fuel Cells, vol. 14, no. 6, pp. 1062–1065, Dec. 2014.spa
dc.relation.referencesA. J. Jacobson, “Materials for Solid Oxide Fuel Cells,” Chem. Mater., vol. 22, no. 3, pp. 660–674, Feb. 2010.spa
dc.relation.referencesH. Mieda, A. Mineshige, A. Saito, T. Yazawa, H. Yoshioka, and R. Mori, “Influence of nano-sized LSCF cathode and its firing temperature on electrochemical performance in oxygen-excess-type solid electrolyte (OESE)-based fuel cells,” J. Power Sources, vol. 272, pp. 422–426, 2014.spa
dc.relation.referencesL. Malavasi, C. A. J. Fisher, and M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features,” Chem. Soc. Rev., vol. 39, no. 11, p. 4370, 2010.spa
dc.relation.referencesM. Li et al., “A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3,” Nat Mater, vol. 13, no. 1, pp. 31–35, Jan. 2014.spa
dc.relation.referencesT. Wei, P. Singh, Y. Gong, J. B. Goodenough, Y. Huang, and K. Huang, “Sr3−3xNa3xSi3O9−1.5x (x = 0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells,” Energy Environ. Sci., vol. 7, no. 5, p. 1680, 2014.spa
dc.relation.referencesM. A. Vasiliades, M. M. Makri, P. Djinović, B. Erjavec, A. Pintar, and A. M. Efstathiou, “Dry reforming of methane over 5wt% Ni/Ce1-xPrxO2-δ catalysts: Performance and characterisation of active and inactive carbon by transient isotopic techniques,” Appl. Catal. B Environ., vol. 197, pp. 168–183, 2016.spa
dc.relation.referencesP. Singh and J. B. Goodenough, “Monoclinic Sr1–xNaxSiO3–0.5x: New Superior Oxide Ion Electrolytes,” J. Am. Chem. Soc., vol. 135, no. 27, pp. 10149–10154, Jul. 2013.spa
dc.relation.referencesD. W. Jung, J. C. Nino, K. L. Duncan, S. R. Bishop, and E. D. Wachsman, “Enhanced long-term stability of bismuth oxide-based electrolytes for operation at 500 °C,” Ionics (Kiel)., vol. 16, no. 2, pp. 97–103, Mar. 2010.spa
dc.relation.referencesV. Ramasamy and G. Vijayalakshmi, “Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles,” Superlattices Microstruct., vol. 85, pp. 510–521, 2015.spa
dc.relation.referencesR. K. Nimat, R. S. Joshi, and S. H. Pawar, “Temperature dependent conductivity and dielectric properties of Bi2V0.9Cu0.1O5.35 solid electrolyte thin films,” Mater. Sci. Eng. B, vol. 137, no. 1, pp. 93–98, 2007.spa
dc.relation.referencesY. Shirai et al., “Crystal structure and thermal expansion behavior of oxygen stoichiometric lanthanum strontium manganite at high temperature,” Solid State Ionics, vol. 256, pp. 83–88, 2014.spa
dc.relation.referencesR. Moriche, D. Marrero-López, F. J. Gotor, and M. J. Sayagués, “Chemical and electrical properties of LSM cathodes prepared by mechanosynthesis,” J. Power Sources, vol. 252, pp. 43–50, 2014.spa
dc.relation.referencesE.-M. Köck, M. Kogler, T. Götsch, B. Klötzer, and S. Penner, “Structural and chemical degradation mechanisms of pure YSZ and its components ZrO2 and Y2O3 in carbon-rich fuel gases,” Phys. Chem. Chem. Phys., vol. 18, no. 21, pp. 14333–14349, 2016.spa
dc.relation.referencesL. Jia et al., “Oxygen adsorption properties on a palladium promoted La1−xSrxMnO3 solid oxide fuel cell cathode,” RSC Adv., vol. 5, no. 10, pp. 7761–7765, 2015.spa
dc.relation.referencesY. Chen, K. Gerdes, and X. Song, “Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells,” Sci. Rep., vol. 6, p. 32997, Sep. 2016.spa
dc.relation.referencesT. Ishihara, Ed., Perovskite Oxide for Solid Oxide Fuel Cells. Boston, MA: Springer US, 2009.spa
dc.relation.referencesA. Kaddouri, S. Bassil, B. Béguin, and P. Gélin, “On the sol–gel synthesis and catalytic activity of Ce1−xAxO2−δ (A = Pr, Sm, Gd) SOFCs anode materials for reforming of methane,” J. Sol-Gel Sci. Technol., vol. 67, no. 1, pp. 175–181, Jul. 2013.spa
dc.relation.referencesJ. T. Mefford et al., “Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts,” Nat. Commun., vol. 7, p. 11053, Mar. 2016.spa
dc.relation.referencesS. Y. Smolin, M. D. Scafetta, A. K. Choquette, M. Y. Sfeir, J. B. Baxter, and S. J. May, “Static and Dynamic Optical Properties of La1–xSrxFeO3−δ: The Effects of A-Site and Oxygen Stoichiometry,” Chem. Mater., vol. 28, no. 1, pp. 97–105, Jan. 2016.spa
dc.relation.referencesJ. Alvarado-Flores, J. Espino-Valencia, and L. Ávalos-Rodríguez, “Análisis de materiales catódicos de estructura perovskita para celdas de combustible de óxido sólido, sofc’s,” Rev. Mex. física, vol. 61, no. 1, pp. 32–57, 2015.spa
dc.relation.referencesE. Y. Gerasimov, L. A. Isupova, and S. V. Tsybulya, “Microstructural features of the La1−xCaxFeO3−δ solid solutions prepared via Pechini route,” Mater. Res. Bull., vol. 70, pp. 291–295, Oct. 2015.spa
dc.relation.referencesN. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, and B. Johansson, “Quantum Origin of the Oxygen Storage Capability of Ceria,” Phys. Rev. Lett., vol. 89, no. 16, p. 166601, Sep. 2002.spa
dc.relation.referencesC. Sun et al., “Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres,” J. Phys. Chem. B, vol. 110, no. 27, pp. 13445–13452, Jul. 2006.spa
dc.relation.referencesK. Mudiyanselage, I. Al-Shankiti, A. Foulis, J. Llorca, and H. Idriss, “Reactions of ethanol over CeO2 and Ru/CeO2 catalysts,” Appl. Catal. B Environ., vol. 197, pp. 198–205, 2016.spa
dc.relation.referencesB. Timurkutluk, C. Timurkutluk, M. D. Mat, and Y. Kaplan, “A review on cell/stack designs for high performance solid oxide fuel cells,” Renew. Sustain. Energy Rev., vol. 56, pp. 1101–1121, 2016.spa
dc.relation.referencesE. Varga et al., “The Effect of Rh on the Interaction of Co with Al2O3 and CeO2 Supports,” Catal. Letters, vol. 146, no. 9, pp. 1800–1807, Sep. 2016.spa
dc.relation.referencesA. Vita, C. Italiano, C. Fabiano, L. Pino, M. Laganà, and V. Recupero, “Hydrogen-rich gas production by steam reforming of n-dodecane: Part I: Catalytic activity of Pt/CeO2 catalysts in optimized bed configuration,” Appl. Catal. B Environ., vol. 199, pp. 350–360, 2016.spa
dc.relation.referencesO. C. Vergara-Estupiñán and J. A. Gómez-Cuaspud, “Synthesis and Characterization of the La0.95Sr0.05CrO3,” Cienc. en Desarro., vol. 6, no. 1, pp. 119–125, 2015.spa
dc.relation.referencesC. Esther Jeyanthi, R. Siddheswaran, P. Kumar, M. Karl Chinnu, K. Rajarajan, and R. Jayavel, “Investigation on synthesis, structure, morphology, spectroscopic and electrochemical studies of praseodymium-doped ceria nanoparticles by combustion method,” Mater. Chem. Phys., vol. 151, pp. 22–28, 2015.spa
dc.relation.referencesV. Vibhu, A. Rougier, C. Nicollet, A. Flura, J.-C. Grenier, and J.-M. Bassat, “La2−xPrxNiO4+δ as suitable cathodes for metal supported SOFCs,” Solid State Ionics, vol. 278, pp. 32–37, 2015.spa
dc.relation.referencesA. Kaddouri and B. Béguin, “Methane steam reforming in the absence and presence of H2S over Ce0.8Pr0.2O2−δ, Ce0.85Sm0.15O2−δ and Ce0.9Gd0.1O2−δ SOFCs anode materials,” Catal. Commun., vol. 46, pp. 22–27, 2014.spa
dc.relation.referencesG. Accardo, C. Ferone, R. Cioffi, D. Frattini, L. Spiridigliozzi, and G. Dell’Agli, “Electrical and microstructural characterization of ceramic gadolinium-doped ceria electrolytes for ITSOFCs by sol-gel route.,” J. Appl. Biomater. Funct. Mater., vol. 14, no. 1, pp. 35-41, Apr. 2016.spa
dc.relation.referencesM. Balaguer, C. Solís, S. Roitsch, and J. M. Serra, “Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ + Co 2 mol%,” Dalt. Trans., vol. 43, no. 11, pp. 4305–4312, 2014.spa
dc.relation.referencesN. Paunović et al., “Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals,” Nanoscale, vol. 4, no. 17, p. 5469, 2012.spa
dc.relation.referencesC.-L. Chang, C.-S. Hsu, J.-B. Huang, P.-H. Hsu, and B.-H. Hwang, “Preparation and characterization of SOFC cathodes made of SSC nanofibers,” J. Alloys Compd., vol. 620, pp. 233–239, 2015.spa
dc.relation.referencesN. Pannier, A. Guglielmetti, L. Van Brutzel, and A. Chartier, “Molecular dynamics study of Frenkel pair recombinations in fluorite type compounds,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 267, no. 18, pp. 3118–3121, 2009.spa
dc.relation.referencesJ. A. Gómez-Cuaspud and M. Schmal, “Nanostructured metal oxides obtained by means polymerization-combustion at low temperature for CO selective oxidation,” Int. J. Hydrogen Energy, vol. 38, no. 18, pp. 7458–7468, 2013.spa
dc.relation.referencesH. Taguchi, R. Chiba, T. Komatsu, H. Orui, K. Watanabe, and K. Hayashi, “LNF SOFC cathodes with active layer using Pr6O11 or Pr-doped CeO2,” J. Power Sources, vol. 241, pp. 768–775, Nov. 2013.spa
dc.relation.referencesP. Delgado–Niño, S. A. López–Rivera, L. Mestres–Vila, M. L. Martínez–Sarrión, and J. S. Valencia–Ríos, “Optical and structural characterization of SrZr0.1Ti0.9O3,” J. Lumin., vol. 132, no. 10, pp. 2546–2552, 2012.spa
dc.relation.referencesO. A. Gerena, J. B. Carda, H. Beltrán, E. Cordoncillo Cordoncillo, and J. S. Valencia, “Síntesis, caracterización y evaluación eléctrica de circonatos de bario dopados con lantánidos trivalentes,” Boletín la Soc. Española Cerámica y Vidr., vol. 53, no. 2, pp. 60–68, 2014.spa
dc.relation.referencesM. S. Hegde, G. Madras, and K. C. Patil, “Noble Metal Ionic Catalysts,” Acc. Chem. Res., vol. 42, no. 6, pp. 704–712, Jun. 2009.spa
dc.relation.referencesF. Deganello, G. Marcì, and G. Deganello, “Citrate–nitrate autocombustion synthesis of perovskite type nanopowders: A systematic approach,” J. Eur. Ceram. Soc., vol. 29, no. 3, pp. 439–450, Feb. 2009.spa
dc.relation.referencesX. Li, Z. Feng, J. Lu, F. Wang, M. Xue, and G. Shao, “Synthesis and electrical properties of Ce1−xGdxO2−x/2 (x=0.05–0.3) solid solutions prepared by a citrate–nitrate combustion method,” Ceram. Int., vol. 38, no. 4, pp. 3203–3207, 2012.spa
dc.relation.referencesC. E. Jeyanthi, R. Siddheswaran, P. Kumar, V. S. Shankar, and K. Rajarajan, “Structural and spectroscopic studies of rare earths doped ceria,” Ceram. Int., vol. 40, no. 6, pp. 8599–8605, 2014.spa
dc.relation.referencesA. F. Cruz Pacheco, J. A. Gómez Cuaspud, and C. A. Para Vargas, “Synthesis, characterization and magnetic evaluation of praseodymium modified cerium oxide,” J. Phys. Conf. Ser., vol. 786, no. 1, p. 12023, Jan. 2017.spa
dc.relation.referencesV. B. Vert-Belenguer, “Electrodos avanzados para pilas de combustible de óxido sólido (SOFCs),” Universitat Politècnica De València, 2011.spa
dc.relation.referencesJ. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Phys. B Condens. Matter, vol. 192, no. 1, pp. 55–69, 1993.spa
dc.relation.referencesC. Sun, H. Li, and L. Chen, “Nanostructured ceria-based materials: synthesis, properties, and applications,” Energy Environ. Sci., vol. 5, no. 9, p. 8475, 2012.spa
dc.relation.referencesB. M. Abu-zied, Y. A. Mohamed, and A. M. Asiri, “Fabrication, characterization, and electrical conductivity properties of Pr6O11 nanoparticles,” J. Rare Earths, vol. 31, no. 7, pp. 701–708, 2013.spa
dc.relation.referencesN. Jaiswal, B. Gupta, D. Kumar, and O. Parkash, “Effect of addition of erbium stabilized bismuth oxide on the conductivity of lanthanum doped ceria solid electrolyte for IT-SOFCs,” J. Alloys Compd., vol. 633, pp. 174–182, 2015.spa
dc.relation.referencesM. Balaguer-Ramírez, “New solid state oxygen and hydrogen conducting materials. Towards their applications as high temperature electrochemical devices and gas separation membranes,” Universitat Politècnica de València, 2013.spa
dc.relation.referencesC. E. Alarcón Suesca, “Síntesis y caracterización estructural, eléctrica y magnética de la perovskita compleja Sr2TiMoO6 utilizando el método de reacción de estado sólido,” Universidad Nacional de Colombia, 2011spa
dc.relation.referencesQ. Design, “Versalab 3 tesla, cryogen free physical property measurement system,” 2017. [Online]. Available: https://www.qdusa.com/products/versalab.html.spa
dc.relation.referencesD. L. C. Wencel, “X-ray Photoelectron Spectroscopy,” Universidad Nacional Autónoma de México, 2017.spa
dc.relation.referencesJ. A. Cuervo-Farfán, “Propiedades estructurales y espectroscopía de impedancia del estanato tipo perovskita (Ba,Sr)SnO3,” Universidad Nacional de Colombia, 2011.spa
dc.relation.referencesJ. L. Vázquez-Gutiérrez, “Empleo de la técnica de espectroscopía de impedancias electroquímicas para la caracterización de biomateriales. Aplicación a una aleación biomédica de Co-Cr-Mo,” Universidad Politécnica de Valencia, 2007.spa
dc.relation.referencesM. López-Blanco, “Síntesis, caracterización estructural y eléctrica de materiales tipo columbita y tri-rutilos ANb2-xTaxO6 (A=Ni y Mn) y de algunos derivados sustituidos-Ti,” Universidad Carlos III de Madrid, 2011.spa
dc.relation.referencesJ. T. S. Irvine, D. C. Sinclair, and A. R. West, “Electroceramics: Characterization by Impedance Spectroscopy,” Adv. Mater., vol. 2, no. 3, pp. 132–138, 1990.spa
dc.relation.referencesH. Beltrán, B. Gómez, N. Masó, E. Cordoncillo, P. Escribano, and A. R. West, “Electrical properties of ferroelectric BaTi2O5 and dielectric Ba6Ti17O40 ceramics,” J. Appl. Phys., vol. 97, no. 8, p. 84104, Apr. 2005.spa
dc.relation.referencesB. Stojadinović et al., “Comparative study of structural and electrical properties of Pr and Ce doped BiFeO3 ceramics synthesized by auto-combustion method,” J. Alloys Compd., vol. 657, pp. 866–872, Feb. 2016.spa
dc.relation.referencesC. E. Jeyanthi, R. Siddheswaran, R. Medlín, M. K. Chinnu, R. Jayavel, and K. Rajarajan, “Electrochemical and structural analysis of the RE3+: CeO2 nanopowders from combustion synthesis,” J. Alloys Compd., vol. 614, pp. 118–125, 2014.spa
dc.relation.referencesJ. A. Gómez-Cuaspud, J. S. Valencia-Ríos, and J. B. Carda-Castelló, “Preparation and characterization of perovskite oxides by polymerization-combustion,” J. Chil. Chem. Soc., vol. 55, no. 4, pp. 445–449, Dec. 2010.spa
dc.relation.referencesI. L. Samperio-Gómez, A. M. Bolarín-Miró, F. Sánchez-De Jesús, and C. A. Cortés-Escobedo, “Reducción química de NiO-8YSZ para la obtención de Cermets Ni-8YSZ útiles como ánodos en celdas de combustible de óxido sólido,” Superf. y vacío, vol. 26, no. 2, pp. 50–53, 2013.spa
dc.relation.referencesN. S. Gajbhiye, U. Bhattacharya, and V. S. Darshane, “Thermal decomposition of zinc-iron citrate precursor,” Thermochim. Acta, vol. 264, pp. 219–230, 1995.spa
dc.relation.referencesG. Mustafa et al., “Temperature dependent structural and magnetic properties of Cerium substituted Co – Cr ferrite prepared by auto-combustion method,” J. Magn. Magn. Mater., vol. 378, pp. 409–416, 2015.spa
dc.relation.referencesŽ. Petrović et al., “Formation of RuO2 nanoparticles by thermal decomposition of Ru(NO)(NO3)3,” Ceram. Int., vol. 41, no. 6, pp. 7811–7815, Jul. 2015.spa
dc.relation.referencesR. J. Gorte and J. M. Vohs, “Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons,” J. Catal., vol. 216, no. 1, pp. 477–486, 2003spa
dc.relation.referencesA. M. Wahba, N. Aboulfotoh-Ali, and M. M. Eltabey, “Effect of Al-ion substitution on structural and magnetic properties of Co–Ni ferrites nanoparticles prepared via citrate precursor method,” Mater. Chem. Phys., vol. 146, no. 3, pp. 224–229, Aug. 2014.spa
dc.relation.referencesS. Johnson Jeyakumar, T. Dhanushkodi, I. Kartharinal Punithavathy, and M. Jothibas, “A facile route to synthesis of hexagonal shaped CeO2 nanoparticles,” J. Mater. Sci. Mater. Electron., vol. 28, no. 4, pp. 3740–3745, 2017spa
dc.relation.referencesC. Binet, A. Badri, and J.-C. Lavalley, “A Spectroscopic Characterization of the Reduction of Ceria from Electronic Transitions of Intrinsic Point Defects,” J. Phys. Chem., vol. 98, no. 25, pp. 6392–6398, Jun. 1994.spa
dc.relation.referencesM. A. . Monteiro, “Investigação Fotoluminescente de sistemas contendo Alumina dopada com Íons de Terras Raras: Preparados pelos métodos Cerâmico, Combustão e Pechini,” Universidade de São Paulo (USP), 2005.spa
dc.relation.referencesR. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep. 1976.spa
dc.relation.referencesM. Mogensen, N. M. Sammes, and G. A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria,” Solid State Ionics, vol. 129, no. 1, pp. 63–94, 2000.spa
dc.relation.referencesC. Artini, M. Pani, M. M. Carnasciali, M. T. Buscaglia, J. R. Plaisier, and G. A. Costa, “Structural Features of Sm- and Gd-Doped Ceria Studied by Synchrotron X-ray Diffraction and μ-Raman Spectroscopy,” Inorg. Chem., vol. 54, no. 8, pp. 4126–4137, Apr. 2015.spa
dc.relation.referencesJ. Zhang, R. B. Von Dreele, and L. Eyring, “Structures in the Oxygen-Deficient Fluorite-Related RnO2n−2 Homologous Series: Pr12O22,” J. Solid State Chem., vol. 122, no. 1, pp. 53–58, 1996.spa
dc.relation.referencesA. L. A. da Silva, “Síntese e caracterização de cromitas de lantânio dopadas com estrôncio e bário para aplicação em células a combustível de óxido sólido,” Universidad Federal de Rio de Janeiro, 2011.spa
dc.relation.referencesJ. R. McBride, K. C. Hass, B. D. Poindexter, and W. H. Weber, “Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb,” J. Appl. Phys., vol. 76, no. 4, pp. 2435–2441, Aug. 1994.spa
dc.relation.referencesR. Chiba, H. Taguchi, T. Komatsu, H. Orui, K. Nozawa, and H. Arai, “High temperature properties of Ce1-xPrxO2-δ as an active layer material for SOFC cathodes,” Solid State Ionics, vol. 197, no. 1, pp. 42–48, Aug. 2011spa
dc.relation.referencesO. Mendiuk, M. Nawrocki, and L. Kepinski, “The synthesis of Ce1−xLnxO2−y (Ln=Pr, Sm, Gd, Tb) nanocubes by hydrothermal methods,” Ceram. Int., vol. 42, no. 1, pp. 1998–2012, Jan. 2016.spa
dc.relation.referencesG. Niu et al., “Oxygen Vacancy Induced Room Temperature Ferromagnetism in Pr-Doped CeO2 Thin Films on Silicon,” ACS Appl. Mater. Interfaces, vol. 6, no. 20, pp. 17496–17505, Oct. 2014.spa
dc.relation.referencesM. Oumezzine et al., “Correlation between structural, magnetic and electrical transport properties of barium vacancies in the La0.67Ba0.33−xMnO3 (x=0, 0.05, and 0.1) manganite,” J. Alloys Compd., vol. 582, pp. 640–646, 2014.spa
dc.relation.referencesG. I. Supelano, C. A. Parra Vargas, A. J. Barón-González, A. Sarmiento Santos, and C. Frontera, “Structural study of CaMn1−xMoxO3 (0.08 ≤ x ≤ 0.12) system by neutron powder diffraction,” J. Alloys Compd., vol. 676, pp. 575–581, 2016.spa
dc.relation.referencesS. Hao, J. Hou, P. Aprea, and F. Pepe, “Mesoporous CePrO solid solution with efficient photocatalytic activity under weak daylight irradiation,” Appl. Catal. B Environ., vol. 160, pp. 566–573, 2014.spa
dc.relation.referencesM. H. Zoellner et al., “Stoichiometry–structure correlation of epitaxial Ce1−xPrxO2−δ (x=0−1) thin films on Si(111),” J. Cryst. Growth, vol. 355, no. 1, pp. 159–165, 2012.spa
dc.relation.referencesL. Ding and S. Hu, “Effect of nano-CeO2 on microstructure and wear resistance of Co-based coatings,” Surf. Coatings Technol., vol. 276, pp. 565–572, 2015.spa
dc.relation.referencesS. Lütkehoff and M. Neumann, “3d and 4d x-ray-photoelectron spectra of Pr under gradual oxidation,” Phys. Rev. B, vol. 52, no. 19, pp. 13808–13811, Nov. 1995.spa
dc.relation.referencesN. Guillén-Hurtado, A. García-García, and A. Bueno-López, “Active oxygen by Ce–Pr mixed oxide nanoparticles outperform diesel soot combustion Pt catalysts,” Appl. Catal. B Environ., vol. 174, pp. 60–66, 2015.spa
dc.relation.referencesD. H. Everett, “Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry,” Pure Appl. Chem., vol. 31, no. 4, pp. 577–638, Jan. 1972.spa
dc.relation.referencesF. Tietz, “Materials Selection for Solid Oxide Fuel Cells,” Mater. Sci. Forum, vol. 426–432, pp. 4465–4470, 2003.spa
dc.relation.referencesJ. A. Gómez-Cuaspud, “Synthesis and characterization of cerium fluorites based on Ce1-xLnxO2-δ system (Ln: Nd3+, Sm3+, Eu3+, Gd3+, Dy3+ and Ho3+),” J. Chil. Chem. Soc., vol. 60, no. 2, pp. 2890–2895, Jun. 2015.spa
dc.relation.referencesN. F. P. Ribeiro, R. C. R. Neto, M. M. V. M. Souza, and M. Schmal, “Synthesis of NiAl2O4 with high surface area as precursor of Ni nanoparticles for hydrogen production,” Int. J. Hydrogen Energy, vol. 35, no. 21, pp. 11725–11732, 2010.spa
dc.relation.referencesH. Zhu, Z. Qin, W. Shan, W. Shen, and J. Wang, “Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents,” J. Catal., vol. 225, no. 2, pp. 267–277, 2004.spa
dc.relation.referencesF. V. Vityazev et al., “Pectin-silica gels as matrices for controlled drug release in gastrointestinal tract,” Carbohydr. Polym., vol. 157, pp. 9–20, 2017.spa
dc.relation.referencesQ. Jin, Y. Shen, and S. Zhu, “Praseodymium Oxide Modified CeO2/Al2O3 Catalyst for Selective Catalytic Reduction of NO by NH3,” Chinese J. Chem., vol. 34, no. 12, pp. 1283–1290, 2016.spa
dc.relation.referencesB. C. H. Steele, “Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C,” Solid State Ionics, vol. 129, no. 1, pp. 95–110, 2000.spa
dc.relation.referencesM. Shamshi Hassan, M. Shaheer Akhtar, K.-B. Shim, and O.-B. Yang, “Morphological and Electrochemical Properties of Crystalline Praseodymium Oxide Nanorods,” Nanoscale Res. Lett., vol. 5, no. 4, pp. 735, 2010.spa
dc.relation.referencesH. E. Liying, S. U. Yumin, J. Lanhong, and S. H. I. Shikao, “Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies : a review,” J. Rare Earths, vol. 33, no. 8, pp. 791–799, 2015.spa
dc.relation.referencesS.-H. Pi et al., “Performance and Durability of Anode-Supported Flat-Tubular Solid Oxide Fuel Cells with Ag-Infiltrated Cathodes,” J. Nanosci. Nanotechnol., vol. 14, no. 10, pp. 7668–7673, Oct. 2014.spa
dc.relation.referencesT. Montini, M. Melchionna, M. Monai, and P. Fornasiero, “Fundamentals and Catalytic Applications of CeO2-Based Materials,” Chem. Rev., vol. 116, no. 10, pp. 5987–6041, May 2016.spa
dc.relation.referencesM. Fernández-García, A. Martínez-Arias, J. C. Hanson, and J. A. Rodriguez, “Nanostructured Oxides in Chemistry: Characterization and Properties,” Chem. Rev., vol. 104, no. 9, pp. 4063–4104, Sep. 2004.spa
dc.relation.referencesM. Ghose, S. Banerjee, S. Patra, and K. K. Mukherjea, “Synthesis, structure and artificial protease activities of two cerium (III) complexes,” J. Lumin., vol. 180, pp. 224–233, 2016.spa
dc.relation.referencesA. Fujimori, “Mixed-valent ground state of CeO2,” Phys. Rev. B, vol. 28, no. 4, pp. 2281–2283, Aug. 1983.spa
dc.relation.referencesY. Wu et al., “Microstructure and ferromagnetism of Co-doped CeO2 nano-octahedrons,” Mater. Lett., vol. 183, pp. 161–164, 2016.spa
dc.relation.referencesM. Noked, E. Avraham, Y. Bohadana, A. Soffer, and D. Aurbach, “Development of Anion Stereoselective, Activated Carbon Molecular Sieve Electrodes Prepared by Chemical Vapor Deposition,” J. Phys. Chem. C, vol. 113, no. 17, pp. 7316–7321, Apr. 2009.spa
dc.relation.referencesJ. L. Sun et al., “Synthesis and electrical properties of screen-printed doped ceria interlayer for IT-SOFC applications,” J. Alloys Compd., vol. 628, pp. 450–457, 2015.spa
dc.relation.referencesS. Anirban, T. Paul, P. T. Das, T. K. Nath, and A. Dutta, “Microstructure and electrical relaxation studies of chemically derived Gd–Nd co-doped nanocrystalline ceria electrolytes,” Solid State Ionics, vol. 270, pp. 73–83, 2015.spa
dc.relation.referencesH. L. Tuller, S. R. Bishop, D. Chen, Y. Kuru, J. Kim, and T. S. Stefanik, “Praseodymium doped ceria : Model mixed ionic electronic conductor with coupled electrical , optical , mechanical and chemical properties,” Solid State Ionics, vol. 225, pp. 194–197, 2012.spa
dc.relation.referencesG. C. Kostogloudis, A. Ahmad-Khanlou, A. Naoumidis, and D. Stöver, “Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte,” Solid State Ionics, vol. 134, no. 1, pp. 127–138, 2000.spa
dc.relation.referencesL. G. Rovira et al., “Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation,” Catal. Today, vol. 180, no. 1, pp. 167–173, 2012.spa
dc.relation.referencesM. B. Kolli et al., “Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension,” Biomaterials, vol. 35, no. 37, pp. 9951–9962, Dec. 2014.spa
dc.relation.referencesE. C. Martín, “Síntesis y caracterización de materiales cerámicos y/o metálicos y desarrollo de ensamblajes de electrodo-membrana, para aplicaciones electroquímicas y electrocatalíticas,” Universidad Autónoma de Madrid, 2003.spa
dc.relation.referencesR. M. Ormerod, “Solid oxide fuel cells,” Chem. Soc. Rev., vol. 32, no. 1, pp. 17–28, Dec. 2003.spa
dc.relation.referencesF. Deganello, G. Marcì, and G. Deganello, “Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach,” J. Eur. Ceram. Soc., vol. 29, no. 3, pp. 439–450, 2009.spa
dc.relation.referencesV. Sarıboğa and M. A. Faruk Öksüzömer, “Cu-CeO2 anodes for solid oxide fuel cells: Determination of infiltration characteristics,” J. Alloys Compd., vol. 688, pp. 323–331, 2016.spa
dc.relation.referencesB. Chen, G. Rao, S. Wang, Y. Lan, L. Pan, and X. Zhang, “Facile synthesis and characterization of Mn3O4 nanoparticles by auto-combustion method,” Mater. Lett., vol. 154, pp. 160–162, Sep. 2015.spa
dc.relation.referencesM. H. Castaño, R. Molina, and S. Moreno, “Catalizadores de manganeso sintetizados por autocombustión y coprecipitación y su empleo en la oxidación del 2-propanol,” Rev. Acad. Colomb. Cienc, vol. 39, pp. 26–35, 2015.spa
dc.rightsCopyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcPerovskita
dc.subject.armarcPilas de combustible
dc.subject.armarcMaestría en Química - Tesis y disertaciones académicas
dc.subject.armarcNanopartículasspa
dc.subject.armarcMateriales de nanoestructurasspa
dc.subject.proposalMétodo de combustiónspa
dc.subject.proposalNanomaterialesspa
dc.subject.proposalOxido de ceriospa
dc.subject.proposalPraseodimiospa
dc.subject.proposalSOFCspa
dc.titleSíntesis y caracterización de óxidos nanoestructurados de cerio modificados con praseodimio para ser aplicados en pilas de combustible de óxido sólidospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
TGT_1204.pdf
Size:
5.41 MB
Format:
Adobe Portable Document Format
Description:
Archivo principal
Descargar
Loading...
Thumbnail Image
Name:
A_AFCP.pdf
Size:
657.37 KB
Format:
Adobe Portable Document Format
Description:
Autorización publicación
Descargar
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
14.45 KB
Format:
Item-specific license agreed upon to submission
Description:
Descargar