Estudio del efecto de los parámetros de síntesis sobre las propiedades físicoquímicas y fotocatalíticas de sistemas Pt-F-TiO2

dc.contributor.advisorMurcia Mesa, Julie Joseanespa
dc.contributor.advisorRojas Sarmiento, Hugo Alfonsospa
dc.contributor.authorCely Macias, Angela Carolina
dc.date.accessioned2019-03-27T22:29:20Z
dc.date.available2019-03-27T22:29:20Z
dc.date.issued2018
dc.description1 recurso en línea (87 páginas) : ilustraciones color, figuras, tablas.spa
dc.description.abstractCurrently, Titanium dioxide (TiO2) is one of the most used materials in different fields, such as: materials engineering, environment and electronics. This material has attracted the attention of hundreds of chemists, physicists, and engineers who have explored the properties of this oxide as a semiconductor and catalyst, it has been applied in pigments, as support in catalysis, photoconductors, dielectric materials, paints, and personal care products, among others. Titanium dioxide is the most commonly used semiconductor in photocatalytic processes and different strategies have been employed to improve the physicochemical properties and photo efficiency of this oxide; within these strategies are different methods of synthesis and surface modification treatments; from these treatments it is possible to modify the crystal size, particle size, surface area, amount of hydroxyl groups and band-gap. From these properties it is possible to obtain TiO2 with high efficiency in the degradation of toxic organic compounds and in the elimination of microbial species present in different contaminated environments. The main objective of this research was focused on the study of the effect of the synthesis parameters on the physicochemical properties of the obtained materials. Initially, the obtention of TiO2 was evaluated by two methods: Hydrothermal and Sol-gel, commercial TiO2 was also used as a reference material. In addition, and in order to improve their photocatalytic properties, these oxides were modified by fluorization treatment and subsequent addition of platinum nanoparticles. In order to obtain information about the physical and chemical properties, a complete characterization of the materials obtained was carried out; different techniques were employed to achieve this objetive: X-ray diffraction (XRD), N2 adsorption-desorption (SBET), X-ray fluorescence spectrometry (XRF), Spectrophotometry UV-Vis diffuse reflectance (UV-Vis DRS), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The thesis of Master in Chemistry was developed in the Grupo de Catálisis de la Universidad Pedagógica y Tecnológica de Colombia and to advance some of the physicochemical analysis involved in the experimental work, it was supported by different institutions such as the Instituto para la Investigación e Innovación en Ciencia y Tecnología de los Materiales (INCITEMA), Universidad Industrial de Santender (UIS), Instituto de Ciencia de Materiales de Sevilla (ICMS). All of the above derive in the obtaining of a very complete research work and of great contribution in the subject of Heterogeneous Photocatalysis applied in the treatment of industrial wastewater. This work was financed by the Universidad Pedagógica y Tecnológica de Colombia and Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Fondo Francisco José de Caldas (COLCIENCIAS), this institution funded the author's studies of the Master's Degree of the present work. The thesis document is divided into 4 main sections, the first of which corresponds to the conceptual and theoretical component within which the work was framed, a second section includes the description of the experimental development, the results and analyzes obtained from the characterization of photocatalytic materials and finally the results of the effectiveness of these materials in the treatment of commercial anilines and industrial effluents derived from the handicraft industry in the town of Nobsa, department of Boyacá. In general, the characterization made it possible to observe that the modifications made to titanium dioxide alter its physicochemical properties and give new properties to this oxide, which allows it to be more active in environmental decontamination processes. Regarding the effectiveness of the photocatalytic materials synthesized, it was observed that the fluorinated catalysts favor the formation of the Anatase crystalline phase, allowing a greater degradation of the commercial anilines and a high rate of elimination of pathogenic microorganisms present in the wastewater analyzed. It was also observed that the addition of Pt in the photocatalytic materials represents for many authors a positive strategy in the improvement of the effectiveness; in the present investigation it was possible to determine that the homogeneous dispersion of the particles is related to the surface area and the Anatase phase; Regarding the effectiveness of the photocatalytic materials synthesized, it was generally observed that in the fluorinated photocatalysts the formation of the Anatase crystalline phase is favored, allowing a greater degradation of the commercial anilines and a high rate of elimination of pathogenic microorganisms present in the wastewater analyzed. This represents an important contribution in the search for solutions to the environmental problems currently facing the department and will be an interesting alternative that encourages applied research and encourages the University - Government - Company - Community. Resulting in active materials in the visible region. These results will be discussed in detail throughout this document.eng
dc.description.abstractEl dióxido de titanio (TiO2) es uno de los materiales más utilizados en los últimos años, en diferentes campos como la ingeniería de materiales, el medio ambiente y la electrónica. Este material ha llamado la atención de cientos de químicos, físicos, e ingenieros quienes han explorado las propiedades de este óxido como semiconductor y catalizador, este se ha aplicado en pigmentos, soporte en catálisis, fotoconductores, materiales dieléctricos, pinturas, productos del cuidado personal, etc. El dióxido de titanio es el semiconductor más utilizado en procesos fotocatalíticos y a lo largo de los años se han empleado diferentes estrategias orientadas al mejoramiento sus propiedades físicoquímicas y de fotoeficiencia, dentro de las estrategias empleadas se encuentran diferentes métodos de síntesis y tratamientos de modificación superficial; a partir de estos tratamientos es posible modificar el tamaño de cristal, tamaño de partícula, área superficial, cantidad de grupos hidroxilo y band-gap. A partir de estas propiedades es posible obtener TiO2 con alta eficiencia en la degradación de compuestos orgánicos tóxicos y en la eliminación de especies microbianas presentes en diferentes ambientes contaminados. El objetivo principal de esta investigación se centró en el estudio del efecto de los parámetros de síntesis sobre las propiedades físicoquímicas de los materiales obtenidos. Inicialmente, se evaluó la obtención del dióxido de titanio a través de dos metodologías: Hidrotermal y Sol-gel, también se usó como material de referencia el TiO2 comercial; adicionalmente, y a fin de mejorar sus propiedades fotocatalíticas, éstos óxidos se modificaron con un tratamiento de Fluorización y posterior adición de nanopartículas de platino. Con el fin de obtener información de las propiedades físico-químicas de los materiales obtenidos a través de la modificación de los parámetros de síntesis bajo estudio se realizó una completa caracterización morfológica y estructural usando diferentes técnicas como: Difracción de rayos-X (DRX), Adsorción-desorción de N2 (SBET), Espectrometría de fluorescencia de rayos-X (FRX), Espectrofotometría UV-Vis de reflectancia difusa (UV-Vis DRS), Microscopía Electrónica de transmisión (TEM), Espectroscopia fotoelectrónica de rayos-X (XPS) y Espectroscopia infrarroja con transformada de Fourier (FT-IR). La tesis de Maestría en Química fue desarrollada en el grupo de Catálisis de la Universidad Pedagógica y Tecnológica de Colombia (UPTC) y para adelantar algunos de los análisis fisicoquímicos involucrados en el trabajo experimental se contó con el apoyo de diferentes instituciones como el Instituto para la Investigación e Innovación en Ciencia y Tecnología de los Materiales de la UPTC (INCITEMA), Universidad Industrial de Santander (UIS) e Instituto de Ciencia de Materiales de Sevilla - España (ICMS). Todo lo anterior derivó en la obtención de un trabajo de investigación muy completo y de gran aporte en la temática de la Fotocatálisis Heterogénea aplicada al tratamiento de efluentes contaminados derivados de la industria de artesanías. El trabajo desarrollado contó con el financiamiento de la Universidad Pedagógica y Tecnológica de Colombia y del Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Fondo Francisco José de Caldas (COLCIENCIAS), esta institución también financió los estudios de Maestría de la autora del presente trabajo. El documento de Tesis se encuentra presentado en 4 secciones principales, la primera de ellas corresponde al componente conceptual y teórico dentro del que se enmarcó el trabajo de investigación, una segunda sección incluye la descripción del desarrollo experimental, posteriormente se describen los análisis y resultados obtenidos de la caracterización de los materiales fotocatalíticos y por último se presentan los resultados de la efectividad de estos materiales en el tratamiento de anilinas comerciales y efluentes industriales derivados de la industria de artesanías en la población de Nobsa en el departamento de Boyacá. En general, la caracterización realizada permitió observar que los métodos sol-gel e hidrotermal son viables para la obtención de TiO2 activo y efectivo en reacciones de descontaminación ambiental; adicionalmente, las modificaciones realizadas al dióxido de titanio alteran sus propiedades físicoquímicas y le otorgan nuevas propiedades, lo que le permite ser más activo en los procesos de descontaminación ambiental. La modificación del TiO2 por fluorización y/o adición de Pt, permite un aumento de la absorción de este material en la región visible del espectro electromagnético, también aporta nuevos centros activos a la superficie de los materiales, favorece la presencia de una mayor área superficial y evitando la sinterización de las partículas de material durante la calcinación y con ello la rutilización, lo que lleva a la formación preferencial de la fase Anatasa del TiO2. Respecto de la efectividad de los materiales fotocatalíticos sintetizados, se observó en general, que en los fotocatalizadores fluorizados se favorece la formación de la fase cristalina Anatasa, permitiendo una mayor degradación de las anilinas comerciales y una alta tasa de eliminación de microorganismos patógenos presentes en las aguas residuales analizadas. Lo anterior representa un aporte importante en la búsqueda de soluciones frente a las problemáticas ambientales que enfrenta actualmente el departamento y será una alternativa interesante que fomente la investigación aplicada e incentive el vínculo Universidad – Gobierno – Empresa - Comunidad. Cada uno de los resultados obtenidos se discutirán detalladamente a lo largo del presente documento.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Químicaspa
dc.description.notesBibliografía y webgrafía: páginas 81-87.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCely Macias, A. C. (2018). Estudio del efecto de los parámetros de síntesis sobre las propiedades físicoquímicas y fotocatalíticas de sistemas Pt-F-TiO2. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2496spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2496
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.publisher.facultyFacultad de Ciencias. Escuela de posgrados. Maestría en Químicaspa
dc.relation.referencesS. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal. Today. 147 (2009) 1–59.spa
dc.relation.referencesK. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C Photochem. Rev. 13 (2012) 169–189.spa
dc.relation.referencesA. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515–582.spa
dc.relation.referencesI. Fechete, Y. Wang, J.C. Védrine, The past, present and future of heterogeneous catalysis, Catal. Today. 189 (2012) 2–27.spa
dc.relation.referencesD. Robert, S. Malato, Solar photocatalysis: A clean process for water detoxification, Sci. Total Environ. 291 (2002) 85–97.spa
dc.relation.referencesC. Gitrowski, A.R. Al-Jubory, R.D. Handy, Uptake of different crystal structures of TiO2 nanoparticles by Caco-2 intestinal cells, Toxicol. Lett. 226 (2014) 264–276.spa
dc.relation.referencesM.J. López-Muñoz, A. Revilla, G. Alcalde, Brookite TiO2-based materials: Synthesis and photocatalytic performance in oxidation of methyl orange and As(III) in aqueous suspensions, Catal. Today. 240 (2015) 138–145.spa
dc.relation.referencesB. Sun, G. Zhou, Y. Zhang, R. Liu, T. Li, Photocatalytic properties of exposed crystal surface-controlled rutile TiO2nanorod assembled microspheres, Chem. Eng. J. 264 (2015) 125–133.spa
dc.relation.referencesD.M. Tobaldi, R.C. Pullar, A.F. Gualtieri, M.P. Seabra, J.A. Labrincha, Phase composition, crystal structure and microstructure of silver and tungsten doped TiO2 nanopowders with tuneable photochromic behaviour, Acta Mater. 61 (2013) 5571–5585.spa
dc.relation.referencesM. Fernández-García, A. Martínez-Arias, J.C. Hanson, J.A. Rodriguez, Nanostructured oxides in chemistry: Characterization and properties, Chem. Rev. 104 (2004) 4063–4104.spa
dc.relation.referencesT.L. Thompson, J.T. Yates, Surface science studies of the photoactivation of TIO2 New photochemical processes, Chem. Rev. 106 (2006) 4428–4453.spa
dc.relation.referencesJ. Ryu, W. Choi, Substrate-Specific Photocatalytic Activities of TiO2 and Multiactivity Test for Water Treatment Application Substrate-Specific Photocatalytic Activities of TiO 2 and Multiactivity Test for Water Treatment Application, Environ. Sci. Technol. 42 (2008) 294–300.spa
dc.relation.referencesS. Malato, Propiedades coloidales de partículas de TiO2: Aplicación al tratamiento fotocatalítico solar de aguas., Libr. Editor. CIEMAT. (2004) 1–293.spa
dc.relation.referencesA. V. Vorontsov, E.N. Savinov, J. Zhensheng, Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation, J. Photochem. Photobiol. A Chem. 125 (1999) 113–117.spa
dc.relation.referencesR. Abe, K. Sayama, H. Arakawa, Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: Suppression of backward reaction, Chem. Phys. Lett. 371 (2003) 360–364.spa
dc.relation.referencesR.R. Zapico, P. Marín, F. V. Díez, S. Ordóñez, Influence of operation conditions on the copper-catalysed homogeneous wet oxidation of phenol: Development of a kinetic model, Chem. Eng. J. 270 (2015) 122–132.spa
dc.relation.referencesA.N. Deva, C. Arun, G. Arthanareeswaran, P. Sivashanmugam, Extraction of peroxidase from waste Brassica oleracea used for the treatment of aqueous phenol in synthetic waste water, J. Environ. Chem. Eng. 2 (2014) 1148–1154.spa
dc.relation.referencesX. Wang, L. Sø, R. Su, S. Wendt, P. Hald, A. Mamakhel, C. Yang, Y. Huang, B.B. Iversen, F. Besenbacher, The influence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol, J. Catal. 310 (2014) 100–108.spa
dc.relation.referencesD. Chen, A.K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension, Water Res. 32 (1998) 3223–3234spa
dc.relation.referencesR.R. Bacsa, J. Kiwi, Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid, Appl. Catal. B Environ. 16 (1998) 19–29.spa
dc.relation.referencesM.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res. 44 (2010) 2997–3027.spa
dc.relation.referencesJ.M. Herrmann, Heterogeneous photocatalysis: State of the art and present applications, Top. Catal. 34 (2005) 49–65.spa
dc.relation.referencesY. Chen, F. Chen, J. Zhang, Effect of surface fluorination on the photocatalytic and photo-induced hydrophilic properties of porous TiO2 films, Appl. Surf. Sci. 255 (2009) 6290–6296.spa
dc.relation.referencesS.S. Srinivasan, J. Wade, E.K. Stefanakos, Y. Goswami, Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2, J. Alloys Compd. 424 (2006) 322–326.spa
dc.relation.referencesJ. Araña, J.M. Doña-Rodríguez, O. González-Díaz, E. Tello Rendón, J.A. Herrera Melián, G. Colón, J.A. Navío, J. Pérez Peña, Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu, J. Mol. Catal. A Chem. 215 (2004) 153–160.spa
dc.relation.referencesJ.J. Murcia, M.C. Hidalgo, J.A. Navío, V. Vaiano, D. Sannino, P. Ciambelli, Cyclohexane photocatalytic oxidation on Pt/ TiO2 catalysts, Catal. Today. 209 (2013) 164–169.spa
dc.relation.referencesR.I. Bickley, T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, R.J.D. Tilley, A structural investigation of titanium dioxide photocatalysts, J. Solid State Chem. 92 (1991) 178–190.spa
dc.relation.referencesA. Mills, S. Le Hunte, An overview of semiconductor photocatalysis, 108 (2000) 1–35.spa
dc.relation.referencesS. Sivakumar, P.K. Pillai, P. Mukundan, K.G.K. Warrier, Sol-gel synthesis of nanosized anatase from titanyl sulfate, Mater. Lett. 57 (2002) 330–335.spa
dc.relation.referencesS.S. Watson, D. Beydoun, J.A. Scott, R. Amal, The effect of preparation method on the photoactivity of crystalline titanium dioxide particles, Chem. Eng. J. 95 (2003)spa
dc.relation.referencesO. Arce, Aplicación del dióxido de titanio para mejorar la eficiencia del método SODIS., Universidad Mayor de San Simón, Bolivia,2006.spa
dc.relation.referencesL. Hu, H. Yuan, L. Zou, F. Chen, X. Hu, Adsorption and visible light-driven photocatalytic degradation of Rhodamine B in aqueous solutions by AgBr/SBA-15, Appl. Surf. Sci. (2015). doi:10.1016/j.apsusc.2015.04.166.spa
dc.relation.referencesJ. Zhu, S. Wang, Z. Bian, S. Xie, C. Cai, J. Wang, H. Yang, H. Li, Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity, CrystEngComm. 12 (2010) 2219.spa
dc.relation.referencesN. Lakshminarasimhan, E. Bae, W. Choi, Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method: Role of interparticle charge transfer, J. Phys. Chem. C. 111 (2007) 15244–15250.spa
dc.relation.referencesA. Hagfeldt, M. Grätzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev. 95 (1995) 49–68.spa
dc.relation.referencesN. Murakami, S. Kawakami, T. Tsubota, T. Ohno, Dependence of photocatalytic activity on particle size of a shape-controlled anatase titanium(IV) oxide nanocrystal, J. Mol. Catal. A Chem. 358 (2012) 106–111.spa
dc.relation.referencesH. Atout, M.G. Álvarez, D. Chebli, A. Bouguettoucha, D. Tichit, J. Llorca, F. Medina, Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods, Mater. Res. Bull. 95 (2017) 578–587.spa
dc.relation.referencesM. Saif, S.M.K. Aboul-Fotouh, S.A. El-Molla, M.M. Ibrahim, L.F.M. Ismail, Improvement of the structural, morphology, and optical properties of TiO2 for solar treatment of industrial wastewater, J. Nanoparticle Res. 14 (2012) 1227.spa
dc.relation.referencesE.I. Seck, J.M. Doña-Rodríguez, E. Pulido Melián, C. Fernández-Rodríguez, O.M. González-Díaz, D. Portillo-Carrizo, J. Pérez-Peña, Comparative study of nanocrystalline titanium dioxide obtained through sol-gel and sol-gel-hydrothermal synthesis, J. Colloid Interface Sci. 400 (2013) 31–40.spa
dc.relation.referencesH. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobiol. C Photochem. Rev. 15 (2013) 1–20.spa
dc.relation.referencesH. Park, W. Choi, Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors, J. Phys. Chem. B. 108 (2004) 4086–4093.spa
dc.relation.referencesX. Quan, X. Zhao, S. Chen, H. Zhao, J. Chen, Y. Zhao, Enhancement of p,p′-DDT photodegradation on soil surfaces using TiO2induced by UV-light, Chemosphere. 60 (2005) 266–273.spa
dc.relation.referencesM.S. Vohra, S. Kim, W. Choi, Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium, J. Photochem. Photobiol. A Chem. 160 (2003) 55–60.spa
dc.relation.referencesL. SHI, D. WENG, Highly active mixed-phase TiO2 photocatalysts fabricated at low temperatureand the correlation between phase compositionand photocatalytic activity, J. Environ. Sci. 20 (2008) 1263–1267.spa
dc.relation.referencesA. Jańczyk, E. Krakowska, G. Stochel, W. Macyk, Singlet oxygen photogeneration at surface modified titanium dioxide, J. Am. Chem. Soc. 128 (2006) 15574–15575.spa
dc.relation.referencesG. Veréb, Z. Ambrus, Z. Pap, Á. Kmetykó, A. Dombi, V. Danciu, A. Cheesman, K. Mogyorósi, Comparative study on UV and visible light sensitive bare and doped titanium dioxide photocatalysts for the decomposition of environmental pollutants in water, Appl. Catal. A Gen. 417–418 (2012) 26–36.spa
dc.relation.referencesA. Torrents, A.T. Stone, A. Torrents, Catalysis of Picolinate Ester Hydrolysis at the Oxide/Water Interface: Inhibition by Adsorbed Natural Organic Matter, Environ. Sci. Technol. 27 (1993) 2381–2386.spa
dc.relation.referencesA. Vijayabalan, K. Selvam, R. Velmurugan, M. Swaminathan, Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4, J. Hazard. Mater. 172 (2009) 914–921spa
dc.relation.referencesJ.J. Murcia, M.C. Hidalgo, J.A. Navío, J. Araña, J.M. Doña-Rodríguez, Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition, Appl. Catal. B Environ. 179 (2015) 305–312.spa
dc.relation.referencesJ.J. Murcia, J.R. Guarín, A.C. Cely Macías, H. Rojas, J.A. Cubillos, M.C. Hidalgo, J.A. Navío, Methylene blue degradation over M- TiO2 photocatalysts (M= Au or Pt), Cienc. En Desarro. 8 (2017) 109–117.spa
dc.relation.referencesC.R. J.A Navio, M. Macias, F.J. Marcheda, Preparation and characterization of M/ TiO2 catalysts (M=Pt, Ru, Rh) usinh metal acetylacetonate complexes, Stud. Surf. Sci. Catal. 72 (1992) 423–433.spa
dc.relation.referencesS. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res. 38 (2004) 3001–3008.spa
dc.relation.referencesJ. Kim, W. Choi, TiO2 modified with both phosphate and platinum and its photocatalytic activities, Appl. Catal. B Environ. 106 (2011) 39–45.spa
dc.relation.referencesS.K. Lee, A. Mills, Platinum and palladium in semiconductor photocatalytic systems, Platin. Met. Rev. 47 (2003) 61–72.spa
dc.relation.referencesV. Vaiano, G. Iervolino, D. Sannino, J.J. Murcia, M.C. Hidalgo, P. Ciambelli, J.A. Navío, Photocatalytic removal of patent blue V dye on Au- TiO2 and Pt- TiO2 catalysts, Appl. Catal. B Environ. 188 (2016) 134–146.spa
dc.relation.referencesM.A. Mueses, F. Machuca-Martinez, G. Li Puma, Effective quantum yield and reaction rate model for evaluation of photocatalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactors, Chem. Eng. J. 215–216 (2013) 937–947.spa
dc.relation.referencesM.L. Posada Parra, J.A. Pulido Cano, Evaluación de la degradación de un colorante directo utilizado en la industria textil usando la tecnología de oxidación fotocatalítica heterogénea, Universidad de la Salle, 2011.spa
dc.relation.referencesA. Anastasi, B. Parato, F. Spina, V. Tigini, V. Prigione, G.C. Varese, Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes, N. Biotechnol. 29 (2011) 38–45.spa
dc.relation.referencesA. Anastasi, V. Prigione, G.C. Varese, Industrial dye degradation and detoxification by basidiomycetes belonging to different eco-physiological groups, J. Hazard. Mater. 177 (2010) 260–267.spa
dc.relation.referencesA. Anastasi, F. Spina, V. Prigione, V. Tigini, P. Giansanti, G.C. Varese, Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta, Bioresour. Technol. 101 (2010) 3067–3075.spa
dc.relation.referencesKirk-Othmer, Encyclopedia of Chemical Technology, 5th ed., New York, 2007.spa
dc.relation.referencesD. Marcano, Introducción a la Química de los Colorantes, 1er ed., Venezuela, 1990.spa
dc.relation.referencesColor Index, The society of dyers and colourists, 3th ed., American Chemical Society, New York, 1924.spa
dc.relation.referencesR. Gup, E. Giziroglu, B. Kirkan, Synthesis and spectroscopic properties of new azo-dyes and azo-metal complexes derived from barbituric acid and aminoquinoline, Dye. Pigment. 73 (2007) 40–46.spa
dc.relation.referencesR. Djellabi, F.M. Ghorab, S. Nouacer, A. Smara, O. Khireddine, Cr(VI) photocatalytic reduction under sunlight followed by Cr(III) extraction from TiO2 surface, Mater. Lett. 176 (2016) 106–109.spa
dc.relation.referencesL. Junqi, W. Defang, L. Hui, H. Zuoli, Z. Zhenfeng, Synthesis of fluorinated TiO2 hollow microspheres and their photocatalytic activity under visible light, Appl. Surf. Sci. 257 (2011) 5879–5884spa
dc.relation.referencesE.R. Bandala, M.A. Peláez, A.J. García-López, M. de J. Salgado, G. Moeller, Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes, Chem. Eng. Process. Process Intensif. 47 (2008) 169–176.spa
dc.relation.referencesP.A. Soares, R. Souza, J. Soler, T.F.C.V. Silva, S.M.A.G.U. Souza, R.A.R. Boaventura, V.J.P. Vilar, Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes, Sep. Purif. Technol. 172 (2017) 450–462.spa
dc.relation.referencesS. Rodríguez Couto, J.L. Toca Herrera, Industrial and biotechnological applications of laccases: A review, Biotechnol. Adv. 24 (2006) 500–513.spa
dc.relation.referencesE.P. Chagas, L.R. Durrant, Decolourization of Azo Dyes by Phanerochaete Chrysosporium and Pleurotus Sajorcaju, Enzyme Microb. Technol. 29 (2001) 473–477spa
dc.relation.referencesI. Nilsson, A. Möller, B. Mattiasson, M.S.T. Rubindamayugi, U. Welander, Decolorization of synthetic and real textile wastewater by the use of white-rot fungi, Enzyme Microb. Technol. 38 (2006) 94–100.spa
dc.relation.referencesM. Al-Sheikh, H.Y. Medrasi, K.U. Sadek, R.A. Mekheimer, Synthesis and spectroscopic properties of new azo dyes derived from 3-Ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole, Molecules. 19 (2014) 2993–3003.spa
dc.relation.referencesD. Rawat, V. Mishra, R.S. Sharma, Detoxification of azo dyes in the context of environmental processes, Chemosphere. 155 (2016) 591–605.spa
dc.relation.referencesK. Soutsas, V. Karayannis, I. Poulios, A. Riga, K. Ntampegliotis, X. Spiliotis, G. Papapolymerou, Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes, Desalination. 250 (2010) 345–350.spa
dc.relation.referencesM.A. Lara, M.J. Sayagués, J.A. Navío, M.C. Hidalgo, A facile shape-controlled synthesis of highly photoactive fluorine containing TiO2 nanosheets with high {001} facet exposure, J. Mater. Sci. 53 (2018) 435–446.spa
dc.relation.referencesK. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes, Water Res. 34 (2000) 327–333.spa
dc.relation.referencesH. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Appl. Catal. B Environ. 39 (2002) 75–90.spa
dc.relation.referencesJ.J. Murcia, Control de la Nanoestructura de Sistemas M-TiO2 ( M = Pt y Au ) Preparados por Fotodeposición con Propiedades Fotocatalíticas Optimizadas, Universidad de Sevilla, 2013.spa
dc.relation.referencesE.M. Carstea, J. Bridgeman, A. Baker, D.M. Reynolds, Fluorescence spectroscopy for wastewater monitoring: A review, Water Res. 95 (2016) 205–219.spa
dc.relation.referencesP. Kubelka, F. Munk, Ein Beitrag Zur Optik Der Farbanstriche, Zeitschrift Für Tech. Phys. 12 (1931) 593–601.spa
dc.relation.referencesT.S. P., G.J. P., Measurement of Forbidden Energy Gap of Semiconductors by Diffuse Reflectance Technique, Phys. Status Solidi. 38 (2006) 363–367.spa
dc.relation.referencesUniversity of leipzing, Unifit 2009, (2009). www.uni-leipzig.de/∼unifit.spa
dc.relation.referencesL.M. Ahmed, I. Ivanova, F.H. Hussein, D.W. Bahnemann, Role of platinum deposited on TiO2 in photocatalytic methanol oxidation and dehydrogenation reactions, Int. J. Photoenergy. (2014).spa
dc.relation.referencesA.C. Cely Macías, Fotocatálisis aplicada al tratamiento de residuos de colorantes provenientes de la tinción de fibras y lanas en Boyacá., Universidad Pedagógica y Tecnológica de Colombia, 2016.spa
dc.relation.referencesAPHA, Standard methods for examination of water and wastewater, 22 th edit, Washington, D.C., United States, 2012.spa
dc.relation.referencesD. Li, H. Haneda, S. Hishita, N. Ohashi, N.K. Labhsetwar, Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde, J. Fluor. Chem. 126 (2005) 69–77.spa
dc.relation.referencesE.M. Samsudin, S.B. Abd Hamid, J.C. Juan, W.J. Basirun, G. Centi, Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts, Appl. Surf. Sci. 370 (2016) 380–393.spa
dc.relation.referencesM.C. Hidalgo, M. Maicu, J.A. Navío, G. Colón, Study of the synergic effect of sulphate pre-treatment and platinisation on the highly improved photocatalytic activity of TiO2, Appl. Catal. B Environ. 81 (2008) 49–55.spa
dc.relation.referencesL. Félix, Preparación y estudio de las propiedades estructurales, opticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos, Ipn. (2009) 106spa
dc.relation.referencesJ.C. Correa Zapata, C.D. Aguirre Hernández, Obtención, Caracterización y actividad fotocatalítica del óxido de titanio dopado con nitrógeno a partir de úrea nitrato de amonio para su utilización en la región del visible del espectro electromagnético, (2014) 109.spa
dc.relation.referencesJ.J. Murcia, M.C. Hidalgo, J.A. Navío, J. Araña, J.M. Doña-Rodríguez, Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2, Appl. Catal. B Environ. 150–151 (2014) 107–115.spa
dc.relation.referencesM. de Ambiente, Los ministros de la protección social y de ambiente , vivienda resuelve : CAPÍTULO I, (2007).spa
dc.relation.referencesM.C. Hidalgo, M. Maicu, J.A. Navío, G. Colón, Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition, Catal. Today. 129 (2007) 43–49.spa
dc.relation.referencesY. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol. A Chem. 106 (1997) 51–56.spa
dc.relation.referencesJ.J. Murcia, E.G. Ávila-Martínez, H. Rojas, J.A. Navío, M.C. Hidalgo, Study of the E. coli elimination from urban wastewater over photocatalysts based on metallized TiO2, Appl. Catal. B Environ. 200 (2017) 469–476.spa
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcDióxido de titanio
dc.subject.armarcCompuestos de titanio
dc.subject.armarcFotocatálisis
dc.subject.armarcAlteración hidrotermal
dc.subject.armarcIngeniería de materiales
dc.subject.armarcCiencia de los materiales
dc.subject.armarcMaestría en Química - Tesis y disertaciones académicas
dc.titleEstudio del efecto de los parámetros de síntesis sobre las propiedades físicoquímicas y fotocatalíticas de sistemas Pt-F-TiO2spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
TGT-1185.pdf
Size:
3.4 MB
Format:
Adobe Portable Document Format
Description:
Archivo principal
Descargar
Loading...
Thumbnail Image
Name:
A_ACCM.pdf
Size:
713.68 KB
Format:
Adobe Portable Document Format
Description:
Autorización publicación
Descargar
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
14.45 KB
Format:
Item-specific license agreed upon to submission
Description:
Descargar