Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja)

dc.contributor.advisorPacheco Maldonado, José Constantino
dc.contributor.advisorRodríguez Molano, Luis Ernesto
dc.contributor.advisorArias Moreno, Diana Marcela
dc.contributor.authorAraque Barrera, Eyda Johanna
dc.date.accessioned2021-08-18T16:19:02Z
dc.date.available2021-08-18T16:19:02Z
dc.date.issued2020
dc.description.abstractSpa: La papa amarilla diploide conocida como “papa criolla” (Solanum tuberosum Grupo Phureja), es cultivada en la región oriental de los Andes en altitudes de 2000–3400 m, se caracteriza por presentar ciclo corto y ausencia de periodo de reposo. En Colombia, la papa criolla constituye el sustento y fuente de recursos económicos de numerosas familias que habitan las zonas rurales. Los materiales silvestres y comerciales del grupo Phureja son clones altamente heterocigóticos por lo que presentan alta diversidad genética para caracteres de interés agronómico y nutricional aún no explorados, que pueden ser utilizados en programas de fitomejoramiento. Durante más de 100 años, los estudios genéticos de la papa se han visto limitados por dos aspectos de su biología, la poliploidía y la auto-incompatibilidad los cuales restringen su reproducción, rendimiento y producción. Por tanto, es pertinente crear y/o aplicar biotecnologías, y metodologías alternativas a las tradicionales que permitan mejorar y aprovechar variantes genéticas de interés en favor de optimizar la productividad y la rentabilidad del cultivo de papa. Considerando lo anterior, se planteó como objetivo inducir regeneración adventicia a partir de cultivo in vitro de anteras en papa amarilla diploide (Solanum tuberosum grupo Phureja). Racimos de botones florales de 0.2 – 2.0 cm fueron escindidos y clasificados de acuerdo tamaño y al desarrollo de las microsporas de las anteras. Los botones florales fueron desinfectados con NaClO, se escindieron las anteras y se sembraron medio MS sin reguladores de crecimiento y suplementado diferentes fitohormonas en diferentes concentraciones. Para conocer el estado de desarrollo de las células de las anteras cultivadas in vitro, se extrajo una antera de cada tratamiento y se le realizó un raspado a su interior en una gota de Orceína Acética. Enseguida se observó el micropreparado en un microscopio óptico, se realizó registro fotográfico, y se determinó el tipo de célula y el número de núcleos de las células en división. Finalmente, y con apoyo de redes neuronales artificiales se realizó una clasificación de botones florales para determinar aquellos botones que pueden desarrollar procesos organogénicos y/o embriogénicos. Como resultado del trabajo de investigación se evidenció que el tamaño del botón floral presenta relación con la etapa de desarrollo de las células de la antera. Así como que las condiciones fisicoquímicas indujeron cambios morfológicos en las anteras cultivadas, estimularon la producción de callo y regeneración de embriones somáticos, y que en los casos que hubo dicha regeneración, las células mostraron una división celular asimétrica. Los resultados obtenidos constituirán un medio rápido para obtención de líneas totalmente homocigotas de gran valor utilizables como progenitores de cultivares F1 en programas de mejoramiento. Lo anterior, contribuirá a los procesos de selección fenotípica para características cualitativas y cuantitativas de manera más eficiente, beneficiando a todos los actores de la cadena de la papa.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Biológicasspa
dc.format.extent1 recurso en línea (164 páginas) : ilustraciones, tablas, figuras.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationAraque Barrera, E. J. (2020). Regeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja). (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/3682spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/3682
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.publisher.facultyFacultad Cienciasspa
dc.publisher.placeTunjaspa
dc.publisher.programMaestría en Ciencias Biológicasspa
dc.relation.referencesAdjemout, O., Hammouche, K., & Diaf, M. (2007). Automatic seeds recognition by size, form and texture features. En 9th International Symposium on Signal Processing and Its Applications (pp. 1-4). https://doi.org/10.1109/ISSPA.2007.4555428spa
dc.relation.referencesAguirre, G., Baudoin, J., & Arnéz, L. (2016). Aplicación del cultivo de tejidos en la multiplicación y conservación de los recursos fitogenéticos. CochambaBolibia: Comisión Universitaria para el Desarrollo (CUD)-Consejo Interuniversitario de la Comunidad Francesa de Bélgia CIUF.spa
dc.relation.referencesAkbar-Anjum, M., & Hakoomat, A. (2004). Effect of Culture Medium on Direct Organogenesis from Different Explants of Various Potato Genotypes. Biotechnology, 3(2), 187-193.spa
dc.relation.referencesAli, A., Qadri, S., Mashwani, W. K., Belhaouari, S. B., Naeem, S., Rafique, S., … Rafique, S. (2020). Machine learning approach for the classification of corn seed using hybrid features. International Journal of Food Properties, 23(1), 1110-1124. https://doi.org/10.1080/10942912.2020.1778724spa
dc.relation.referencesAlvarez, R. (2009). Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. European Journal of Agronomy, 30(2), 70-77. https://doi.org/https://doi.org/10.1016/j.eja.2008.07.005spa
dc.relation.referencesAndrade, E. (2013). Estudio de los principales tipos de redes neuronales y las herramientas para su aplicación. Universidad Politécnica Salesiana. Recuperado de http://dspace.ups.edu.ec/handle/123456789/4098spa
dc.relation.referencesAnónimo. (2017). Inteligencia Artificial: ¿Qué es? Recuperado de https://www.salesforce.com/mx/blog/2017/6/Que-es-la-inteligencia-artificial.htmlspa
dc.relation.referencesArab, M., Yadollahi, A., Shojaeiyan, A., & Ahmadi, H. (2016). Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock. Frontiers in Plant SRecuperado de https://www.frontiersin.org/article/10.3389/fpls.2016.01526cience.spa
dc.relation.referencesArellano, M., Villavicencio, E., & Garcia, S. (2010). Producción de plántulas y semilla prebásica de variedades comerciales de papa libres de enfermedades (Primera). México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias Centro de Investigación Regional Noreste Campo Experimental Saltillo.spa
dc.relation.referencesAsakaviciute, R., Clement, C., & Razukas, A. (2007). The genetic aspect in anther culture of Lithuanian potato (Solanum tuberosum L.) cultivars. Biologija, 18(1), 19-22.spa
dc.relation.referencesAzamathulla, H., & Ghani, A. (2011). Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams. Water Resources Management, 25(6), 1537-1544. https://doi.org/10.1007/s11269-010-9759-9spa
dc.relation.referencesSunderland, N., Collins, G. B., & Lane, C. (1974). The Role of Nuclear Fusion in Pollen Embryogenesis of Datura innoxia Mill. Planta (Berl.), 117, 227-241.spa
dc.relation.referencesTang, K., Sun, X., & Zhang, Z. (1998). Anther culture response of wild Oryza species. Plant Breeding, 117, 443-446. zygotic embryos in white pine (Pinus strobus L.). Plant Cell Reports, 24(1), 1-9. https://doi.org/10.1007/s00299-005-0914-3spa
dc.relation.referencesTouraev, A., Pfosser, M., & Heberle-Bors, E. (2001). The Microspore: A Haploid Multipurpose Cell. Advances in Botanical Research, 35, 53–109.spa
dc.relation.referencesTur-Giménez, L. (2020). Cultivo de anteras y microsporas aisladas con extractos purificados de endospermo líquido de Cocos nucifera. Universitat Politécnica de Valencia.spa
dc.relation.referencesVural, G., Ari, E., Zengin, S., & Ellialtioglu, S. (2019). Development of Androgenesis Studies on Eggplant (Solanum melongena L.) in Turkey from Past to Present. Applied Life Sciencies, (IntechOpen), 27. https://doi.org/10.5772/intechopen.88299spa
dc.relation.referencesWang, L., Zhang, B., Guo, J., & Yang, G. (2004). Studies of effects of several factors on anther culture of Capsicum annuum L. Acta horticulturae, 31, 199-204.spa
dc.relation.referencesWang, M., Bergen, S. Van, & Duijn, B. Van. (2000). Insights into a Key Developmental Switch and Its Importance for Efficient Plant Breeding. Plant physiology, 124, 523-530.spa
dc.relation.referencesYeung, E. (1995). Patrones estructurales y de desarrollo en embriogénesis somática. En T. Thorpe (Ed.), In vitro Embriogénesis en Plantas. Ciencia vegetal actual y biotecnología en la agricultura (Vol. 20, pp. 205-247). Springer, Dordrecht. https://doi.org/https://doi.org/10.1007/978-94-011-0485-2_6spa
dc.relation.referencesZagorska, N., Shtereva, A., Dimitrov, B., & Kruleva, M. (1998). Induced androgenesis in tomato (Lycopersicon esculentum Mill.). Plant Cell Reports, 17, 968-973.spa
dc.relation.referencesBali, S., Patel, G., Novy, R., Vining, K., Brown, C., Holm, D., … Sathuvalli, V. (2018). Evaluation of genetic diversity among Russet potato clones and varieties from breeding programs across the United States. PLoS ONE, 13(8), 1-18. https://doi.org/10.1371/journal.pone.0201415spa
dc.relation.referencesCámara de Comercio de Bogotá. (2015). Manual Papa. Programa de apoyo agrícola y agroindustrial. Bogotá D.C. Colombia.spa
dc.relation.referencesZamir, D., Jones, R. A., & Kedar, N. (1980). Anther culture of male-sterile tomato (Lycopersicon esculentum mill.) mutants. Plant Science Letters, 17(3), 353-361. https://doi.org/https://doi.org/10.1016/0304-4211(80)90168-6spa
dc.relation.referencesZeng, F., Zhang, X., Jin, S., Cheng, L., Liang, S., Hu, L., … Cao, J. (2007). Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell Tissue and Organ Culture, 90, 63-70. https://doi.org/10.1007/s11240-007-9253-0spa
dc.relation.referencesZhang, C., Tsukuni, T., Ikeda, M., Sato, M., Okada, H., Ohashi, Y., … Komori, S. (2013). Effects of the Microspore Development Stage and Cold Pre-treatment of Flower Buds on Embryo Induction in Apple (Malus × domestica Borkh.) Anther Culture. Journal of the Japanese Society for Hoticultural Science, 82(2), 114-124.spa
dc.relation.referencesBamberg, J. B., Martin, M. W., Abad, J., Jenderek, M. M., Tanner, J., Donnelly, D. J., … Novy, R. G. (2016). In vitro technology at the US Potato Genebank. In vitro Cellular and Developmental Biology - Plant, 52(3), 213-225. https://doi.org/10.1007/s11627-016-9753-xspa
dc.relation.referencesBarbosa, C. D., Viana, A. P., Quintal, S. S. R., & Pereira, M. G. (2011). Artificial neural network analysis of genetic diversity in Carica papaya L. Crop Breeding and Applied Biotechnology, 11(3), 224-231. https://doi.org/10.1590/s1984- 70332011000300004spa
dc.relation.referencesBarragán, J. (2019). Descripción y análisis del abastecimiento en las principales centrales de abastos del país. Revista de Papa, 49, 44-48.spa
dc.relation.referencesBarrero, I., & Chaparro, A. (2008). Expresión Gus en explantes de (en explantes de Solanum phureja (Juz. et. Buk) Var. Criolla Colombia, transformados con Agrobacterium tumefaciens. Acta biol.Colomb., 13(1), 119- 130.spa
dc.relation.referencesBengio, Y. (2016). Aprendizaje profundo. Investigación y Ciencia. Prensa Científica, S.A. Recuperado 30 de octubre de 2020, de https://www.investigacionyciencia.es/revistas/investigacion-y- ciencia/el-augede-los-mamferos-678/aprendizaje-profundo-14415spa
dc.relation.referencesBenítez, R., Escudero, G., Kanaan, S., & Masip, D. (2014). Inteligencia Artificial Avanzada. Barcelona, España: Editorial UOC.spa
dc.relation.referencesBever, J., & Felber, F. (1992). The theoretical population genetics of autopolyploidy. En D. Futuyma & J. Antonovics (Eds.), Oxford surveys in evolutionary biology (Vol. 8, pp. 185–218). New York: Oxford University Press.spa
dc.relation.referencesCappadocia, M., Cheng, D., & Ludlum, R. (1986). Self-compatibility in doubled haploids and their hybrids, regenerated via anther culture in self-incompatible Solanum chacoense Bitt. Theoretical and Applied Genetics, 72, 66-69spa
dc.relation.referencesBishop, C. (2006). Reconocimiento de patrones y aprendizaje automático. New York: Springer-Verlag.spa
dc.relation.referencesBlakeslee, A., Bellin, J., Farnhaz, M., & Bergn, D. (1922). A haploid mutant in the Jimson weed, Datura stramonium. Science, 55(1433), 646-647.spa
dc.relation.referencesBlum, J. (2019). La Inteligencia Artificial y su Impacto en los Negocios Digitales. Recuperado 21 de agosto de 2019, de https://www.jonathanblum.tv/es/lainteligencia-artificial-y-su-impacto-en-los-negocios- digitales/spa
dc.relation.referencesBobkov, S. (2014). Obtaining Calli and regenerated plants in anther cultures of pea. Czech Journal of Genetics and Plant Breeding, 50(2), 123-129. https://doi.org/10.17221/137/2013-cjgpbspa
dc.relation.referencesBohórquez, M. (2019). Estudio de la Microsporogénesis y Determinación de la Curva de Radiosensibilidad de Polen a la Radiación Gamma Co60 en Papa (Solanum tuberosum Grupo Phureja). Universidad Pedagógica y Tecnológica de Colombia.spa
dc.relation.referencesBonilla, M. H., Cardozo, F., & Morales, A. (2009). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de la papa en Colombia, con énfasis en papa criolla. Bogotá, Colombia.spa
dc.relation.referencesBradshaw, J., Hackett, C., Lowe, R., McLean, K., Stewart, H., Tierney, I., … Bryan, G. (2006). Detection of a quantitative trait locus for both foliage and tuber resistance to late blight Phytophthora infestans (Mont. de Bary) on chromosome 4 of a dihaploid potato clone (Solanum tuberosum subsp. tuberosum). Theor Appl Genet, 113, 943-951.spa
dc.relation.referencesBrenes, A. (2010). Producción de plantas haploides de papa (Solanum spp.) por medio del cultivo in vitro de anteras. Cartago.spa
dc.relation.referencesBreukelen, E. (1981). Pseudogamic production ofdihaploids and monoploids in Solanum tuberosura and some related species. Pudoc, Wageningen. 121 p. Wageningen: Centre for Agricultural Publishing and Documentation.spa
dc.relation.referencesBreukelen, E. W. M. V., M.S.Ramanna, & J.G.Th.Hermsen. (1977). Parthenogenetic monohaploids (2n=2=12) from solanum tuberosum L.and the production of homozygous potato diploids. Euphytica, 26, 263-271.spa
dc.relation.referencesCappadocia, M., Cheng, D., & Ludlum, R. (1986). Self-compatibility in doubled haploids and their hybrids, regenerated via anther culture in self-incompatible Solanum chacoense Bitt. Theoretical and Applied Genetics, 72, 66-69spa
dc.relation.referencesBritt, A. B., & Kuppu, S. (2016). Cenh3: An emerging player in haploid induction technology. Frontiers in Plant Science, 7, 1-10. https://doi.org/10.3389/fpls.2016.00357spa
dc.relation.referencesCaicedo, E. (2012). Redes Neuronales Artificiales Arquitecturas y Aprendizaje. PSI Percepción y Sistemas Inteligentes. Cali. Recuperado de https://www.academia.edu/8172191/Redes_Neuronales_Artificiales_Arquitectur as_y_Aprendizajespa
dc.relation.referencesCalvo, D. (2017). Clasificación de redes neuronales artificiales. Recuperado 5 de noviembre de 2019, de https://www.diegocalvo.es/clasificacion-de-redesneuronales-artificiales/spa
dc.relation.referencesCárdenas, R. (2006). Inteligencia Artificial. Práctica 2. Redes Neuronales. Recuperado de https://www2.ulpgc.es/hege/almacen/download/38/38584/practica_ia_2.pdfspa
dc.relation.referencesCardoso, J., Abdelgalel, A., Chiancone, B., Latado, R., & Lain, O. (2016). Gametic and somatic embryogenesis through in vitro anther culture of different Citrus genotypes. Plant Biosystems, 150(2), 304-312. https://doi.org/http://dx.doi.org/10.1080/11263504.2014.987847spa
dc.relation.referencesCarron, M., D’Auzac, J., Etienne, H., E, H., Housti, F., Michaux, N., & Montoro, P. (1992). Biochemical and histological features of somatic embryogenesis in Hevea brasiliensis. Indian Journal Natural Rubber Research, 5(1-2), 7-17. Recuperado de http://www.biomedcentral.com/1471-2229/12/244spa
dc.relation.referencesChandra, K., Sekhar, N., & Sawhney, N. (1984). A scanning electron microscopy study of the developmental and surface features of floral organs of tomato (Lycopersicon esculentum). Canadian Journal of Botany, 62, 2403-2413.spa
dc.relation.referencesChanvivattana, Y., Bishopp, A., Schubert, D., Stock, C., Moon, Y., Sung, Z. R., & Goodrich, J. (2004). Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development, 131(21), 5263-5276. https://doi.org/10.1242/dev.01400spa
dc.relation.referencesCharbit, E., Legavre, T., Lardet, L., Bourgeois, E., Ferrière, N., & Carron, M. (2004). Identification of differentially expressed cDNA sequences and histological characteristics of Hevea brasiliensis calli in relation to their embryogenic and regenerative capacities. Plant Cell Reports, 22(8), 539-548. https://doi.org/10.1007/s00299-003-0737-zspa
dc.relation.referencesDatta, S. K. (2005). Androgenic haploids: Factors controlling development and its application in crop improvement. Current Science, 89(11), 1870-1878. Recuperado de http://www.jstor.org/stable/24111119spa
dc.relation.referencesIbaraki, Y., & Kenji, K. (2001). Application of image analysis to plant cell suspension cultures. Computers and Electronics in Agriculture, 30(1), 193-203. https://doi.org/https://doi.org/10.1016/S0168-1699(00)00164-2spa
dc.relation.referencesDong, Y. Q., Zhao, W. X., Li, X. H., Liu, X. C., Gao, N. N., Huang, J. H., … Tang, Z. H. (2016). Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Reports, 35(10), 1991-2019. https://doi.org/10.1007/s00299-016-2018-7spa
dc.relation.referencesDudits, D., Bogre, L., & Gyorgyey, J. (1991). Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. Journal of Cell Science, 99, 475-484.spa
dc.relation.referencesDutta, S., & Pattanayak, A. (2017). Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato. In vitro Cellular and Developmental Biology - Plant, 53(6), 520-526. https://doi.org/10.1007/s11627-017-9825-6spa
dc.relation.referencesDwivedi, S. L., Britt, A. B., Tripathi, L., Sharma, S., Upadhyaya, H. D., & Ortiz, R. (2015). Haploids: Constraints and opportunities in plant breeding. Biotechnology Advances, 33(6 Pt 1), 812-829. https://doi.org/10.1016/j.biotechadv.2015.07.001spa
dc.relation.referencesElhiti, M., Stasolla, C., & Wang, A. (2013). Molecular regulation of plant somatic embryogenesis. In vitro Cellular & Developmental Biology-Plant, 49(632-642). https://doi.org/10.1007/s11627- 013-9547-3spa
dc.relation.referencesElhiti, M., Tahir, M., Gulden, R. H., Khamiss, K., & Stasolla, C. (2010). Modulation of embryoforming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. Journal of Experimental Botany, 61(14), 4069-4085. https://doi.org/10.1093/jxb/erq222spa
dc.relation.referencesEllialtioğlu, S., Başay, S., & Kuşvuran, Ş. (2012). Investigations on the Pollen Dimorphism and its relationship with Anther Culture in Eggplant. Tarım Bilimleri Araştırma Dergisi, 5(1), 149-152.spa
dc.relation.referencesEmamgholizadeh, S., Parsaeian, M., & Baradaran, M. (2015). Seed yield prediction of sesame using artificial neural network. European Journal of Agronomy, 68, 89-96. https://doi.org/https://doi.org/10.1016/j.eja.2015.04.010spa
dc.relation.referencesFan, Z., Armstrong, K. C., & Keller, W. A. (1988). Development of microsporesin vivo andin vitro inBrassica napus L. Protoplasma, 147(2), 191-199. https://doi.org/10.1007/BF01403347spa
dc.relation.referencesFerrie, A., Irmen, K., Beattie, A., & Rossnagel, B. (2014). Isolated microspore culture of oat (Avena sativa L.) for the production of doubled haploids: effect of pre-culture and post-culture conditions. Plant Cell, Tissue and Organ Culture, 116(1), 89-96. https://doi.org/10.1007/s11240- 013-0385-0spa
dc.relation.referencesIbrahim, A. M., Kayat, F. B., Mat, Z., Susanto, D., & Ariffulah, M. (2014). Determination of Suitable Microspore Stage and Callus Induction from Anthers of Kenaf (Hibiscus cannabinus L.). The Scientific World Journal, 2014, 5-10.spa
dc.relation.referencesFerrie, A., & Keller, W. (1997). Production of haploids in Brassica spp . via microspore. Plan Tissue Culture Manual E6, 1-17.spa
dc.relation.referencesGermana, M. (2011a). Anther culture for haploid and doubled haploid production. Plant Cell Tissue and Organ Culture, 104, 283-300. https://doi.org/10.1007/s11240-010-9852-zspa
dc.relation.referencesGermana, M. (2011b). Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports, 30, 839-857. https://doi.org/10.1007/s00299-011-1061-7spa
dc.relation.referencesGonzález, J., & Jouve, N. (2005). Microspore development during in vitro androgenesis in triticale. Biologia Plantarum, 49(1), 23-28. https://doi.org/10.1007/s10535-005-3028-4spa
dc.relation.referencesGrafi, G., Ben-Meir, H., Avivi, Y., Moshe, M., Dahan, Y., & Zemach, A. (2007). Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. Developmental Biology, 306(2), 838-846. https://doi.org/https://doi.org/10.1016/j.ydbio.2007.03.023spa
dc.relation.referencesGrando, M., & Moraes, M. (1997). Two point deterministic model for acquisition of in vitro pollen grain androgenetic capacity based on wheat studies. Brazilian Journal of Genetics, 20(3), 467- 476. https://doi.org/10.1590/S0100-84551997000300018spa
dc.relation.referencesGresshoff, P., & Doy, C. (1972). Development and Differentiation of Haploid Lycopersicon esculentum (Tomato). Planta, 107(2), 161-170.spa
dc.relation.referencesGreyson, R., & Sawhney, V. (1972). Initiation and early growth of flower organs of Nigella and Lycopersicon: Insights from allometry. Gaceta Botánica, 133(2), 184-190.spa
dc.relation.referencesGuzmán, E., Ramírez, C., Güitrón, M., Palmeros, P., & Espino, A. (2020). Cultivo de anteras e inducción de callo haploide en germoplasma bc3 de girasol (Helianthus annuus L.). Acta Universitaria, 30, 1-15. https://doi.org/10.15174/au.2020.2765spa
dc.relation.referencesHand, C., Maki, S., & Reed, B. M. (2014). Modeling optimal mineral nutrition for hazelnut micropropagation. Plant Cell, Tissue and Organ Culture (PCTOC), 119(2), 411-425. https://doi.org/10.1007/s11240-014-0544-yspa
dc.relation.referencesIrikova, T., & Grozeva, S. (2011). Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Phy, 33, 1559-1570. https://doi.org/10.1007/s11738-011-0736-6spa
dc.relation.referencesHaroon, R., & Hussain, L. (2015). Seed Classification using Machine Learning Techniques. Journal of Multidisciplinary ENgineering Sciencie and Techonology (JMEST), 2(5), 1098-1102.spa
dc.relation.referencesHernández, A., & Díaz, H. (2019). Inducción in vitro de callo embriogenico a partir del cultivo de anteras en «papa amarilla» Solanum goniocalyx Juz. & Bukasov (Solanaceae). Arnaldoa, 26(1), 277-286. https://doi.org/http://doi.org/10.22497/arnaldoa.261.26111 ISSN:spa
dc.relation.referencesHuamán, Z., & Spooner, D. (2002). Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). American Journal of Botany, 89(947-965), 2002.spa
dc.relation.referencesIvers, D. R., Palmer, R. G., & Fehr, W. (1974). Anther Culture in Soybeans. Crop Breeding and Applied Biotechnology, 14, 891-893.spa
dc.relation.referencesKaltchuk, E., Mariath, J. E., Mundstock, E., Hu, C., & Bodanese, M. H. (1997). Cytological analysis of early microspore divisions and embryo formation in cultured soybean anthers. Plant Cell Tiss, 49, 107-115.spa
dc.relation.referencesKasha, K. (2005). Chromosome doubling and recovery of doubled-haploid plants. En C. Palmer, W. Keller, & K. Kasha (Eds.), Biotechnology in agriculture and forestry (pp. 123-152). Springer. https://doi.org/https://doi.org/https://doi.org/10.1007/3-540- 26889-8_7spa
dc.relation.referencesKasperbauer, M., & Wilson, H. (1979). Haploid plant production and use. En R. Durbin (Ed.), Nicotiana procedures for experimental use (pp. 33-39). U.S. Dept. Agr. Tecnhol. Bul. 1586.spa
dc.relation.referencesKim, M., Kim, J., Yoon, M., Choi, D., & Lee, K. (2004). Origin of multicellular pollen and pollen embryos in cultured anthers of pepper (Capsicum annuum). Plant Cell Tissue and Organ Culture, 77, 63-72spa
dc.relation.referencesKomamine, A., Murata, N., & Nomura, K. (2005). 2004 SIVB Congress Symposium Proceeding: Mechanisms of Somatic Embryogenesis in Carrot Suspension Cultures – Morphology, Physiology, Biochemistry, And Molecular Biology. In vitro Cellular & Developmental BiologyPlant, 41, 6-10. https://doi.org/10.1079/IVP2004593spa
dc.relation.referencesKoul, A. K., & Karihaloo, J. L. (1977). In vivo embryoids from anthers of Narcissus biflorusCurt. Euphytica, 26(1), 97-102. https://doi.org/10.1007/BF00032074spa
dc.relation.referencesRashid, A. (1983). Pollen dimorphism in relation to pollen plant formation. Physiologia Plantarum, 58, 544-548.spa
dc.relation.referencesKurtulmus, F., Alibas, İ., & Kavdir, I. (2016). Classification of pepper seeds using machine vision based on neural network. Int. J. Agri. Biol., 9(1), 51-62. https://doi.org/10.3965/j.ijabe.20160901.1790spa
dc.relation.referencesLantos, C., Juhász, A., Somogyi, G., Ötvös, K., Somogyii, N., & Pauk, J. (2009). Improvement of isolated microspore culture of pepper (Capsicum annuum L.) via co-culture with ovary tissues of pepper or wheat. Plant Cell Tissue and Organ Culture, 97, 285-293. https://doi.org/10.1007/s11240-009-9527-9spa
dc.relation.referencesLauxen, M., Kaltchuk-Santos, E., Hu, C., Callegari, S., & Bodanese-Zanettini, M. H. (2003). Association between Floral Bud Size and Developmental Stage in Soybean Microspores. Brazilian Archives of Biology and Technology, 46(4), 515-520.spa
dc.relation.referencesMahajan, S., Mittal, S. K., & Das, A. (2018). Machine vision based alternative testing approach for physical purity, viability and vigour testing of soybean seeds (Glycine max). Journal of Food Science and Technology, 55(10), 3949-3959. https://doi.org/10.1007/s13197-018-3320-xspa
dc.relation.referencesMansouri, A., Fadavi, A., & Mahdi, S. (2015). Effects of length and position of hypocotyl explants on Cuminum cyminum L. callogensis by image processing analysis. Plant Cell, Tissue and Organ Culture, 121(3), 657-666. https://doi.org/10.1007/s11240-015-0736-0spa
dc.relation.referencesMaraschin, S., De-Priester, W., Spaink, H. P., & Wang, M. (2005). Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany, 56(417), 1711-1726. https://doi.org/10.1093/jxb/eri190spa
dc.relation.referencesMedeiros, A., Capobiango, N., Da-SIlva, J., Da-Silva, L., Barboza, C., & Fernandes, D. (2020). Interactive machine learning for soybean seed and seedling quality classification. Scientific Reports, 10, 1-10.spa
dc.relation.referencesMomin, M., Yamamoto, K., Miyamoto, M., Kondo, N., & Grift, T. (2017). Machine vision based soybean quality evaluation. Computers and Electronics in Agriculture, 140, 452-460. https://doi.org/10.1016/j.compag.2017.06.023spa
dc.relation.referencesMosquera, T., Del-Castillo, S., Cuéllar, D., & Rodríguez, L. E. (2018). Breeding Differently : Participatory Selection and Scaling Up Innovations in Colombia. Potato Research, 60, 361-381.spa
dc.relation.referencesMurashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. https://doi.org/DOI: 10.1111/j.1399-3054.1962.tb08052.xspa
dc.relation.referencesRêgo, E., Finger, F., & Monteiro, M. (2012). Types, Uses and Fruit Quality of Brazilian Chili Peppers. Spices: Types, Uses and Health Benefits, 131-144.spa
dc.relation.referencesNiazian, M., Sadat-Noori, S., Abdipour, M., Tohidfar, M., & Mahadi, S. (2018). Image Processing and Artificial Neural Network-Based Models to Measure and Predict Physical Properties of Embryogenic Callus and Number of Somatic Embryos in Ajowan (Trachyspermum ammi (L.) Sprague). In vitro Cellular & Developmental Biology - Plant, 54(1), 54-68. https://doi.org/10.1007/s11627-017-9877-7spa
dc.relation.referencesNiazian, M., Shariatpanahi, M., Abdipour, M., & Oroojloo, M. (2019). Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma, 256, 1317-1332.spa
dc.relation.referencesNishi, A., Kato, K., Takahashi, M., & Yoshida, R. (1977). Partial Synchronization of Carrot Cell Culture by Auxin Deprivation. Physiologia Plantarum, 39(1), 9-12. https://doi.org/10.1111/j.1399- 3054.1977.tb09277.xspa
dc.relation.referencesNowaczyk, L., Nowaczyk, P., & Olszewska, D. (2016). Treating donor plants with 2,4- dichlorophenoxyacetic acid can increase the effectiveness of induced androgenesis in Capsicum spp. Scientia Horticulturae, 205, 1-6. https://doi.org/10.1016/j.scienta.2016.03.044spa
dc.relation.referencesNúñez, V. (2020). La tecnología doble haploide en el mejoramiento genético de frutas exóticas: uchuva, Physalis peruviana L., como estudio de caso. Revista Colombiana de Biotecnología, 22(1), 2-5. https://doi.org/10.15446/rev.colomb.biote.v22n1.88590spa
dc.relation.referencesOlszewska, D., Kisiala, A., Niklas-nowak, A., & Nowaczyk, P. (2014). Study of in vitro anther culture in selected genotypes of genus Capsicum. Turkish Journal of Biology, 38, 118-124. https://doi.org/10.3906/biy-1307-50spa
dc.relation.referencesPandey, D., Singh, A., & Chaudhary, B. (2012). Boron-Mediated Plant Somatic Embryogenesis: A Provocative Model. Journal of Botany, 2012, 1-9. https://doi.org/10.1155/2012/375829spa
dc.relation.referencesPeña, C., Restrepo-Sánchez, L. P., Kushalappa, A., Rodríguez-Molano, L. E., Mosquera, T., & Narváez-Cuenca, C. E. (2015). Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT - Food Science and Technology, 62(1), 76-82. https://doi.org/10.1016/j.lwt.2015.01.038spa
dc.relation.referencesPiyatrakul, P., Putranto, R.-A., Martin, F., Rio, M., Dessailly, F., Leclercq, J., … Montoro, P. (2012). Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis. Plant Biology, 12(244), 1-20. Recuperado de http://www.biomedcentral.com/1471-2229/12/244spa
dc.relation.referencesPok, P., Oh, E. U., Yi, K., Kang, J. H., Ko, B. Y., & Kim, H. B. (2015). Characterization of Microspore Development and Pollen Tube Growth Response to Self- and Cross-pollination in Jeju Old Local Citrus Species. Horticulture, Environment, and Biotechnology, 56(2), 225-232. https://doi.org/10.1007/s13580-015-0133-yspa
dc.relation.referencesRêgo, M., Rêgo, E., & Farias, L. (2012). Induced anther callogenesis of Capsicum annuum L. Acta Horticulturae, 929, 411-416. https://doi.org/DOI: 10.17660 / ActaHortic.2012.929.59, https://doi.org/10.17660/ActaHortic.2012.929.59.spa
dc.relation.referencesPrakash, M. G., & Gurumurthi, K. (2009). Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell, Tissue and Organ Culture (PCTOC), 100(1), 13. https://doi.org/10.1007/s11240-009-9611-1spa
dc.relation.referencesQuevedo, L. (2018). Comunicación Personal. Universidad Distrital Francisco José de Caldas. Bogotá D. C.spa
dc.relation.referencesRamanna, M. S., & Hermsen, J. G. T. (1974). Embryoid formation in the anthers of some interspecific hybrids in Solanum. Euphytica, 23(2), 423-427. https://doi.org/10.1007/BF00035889spa
dc.relation.referencesRodríguez, L., Ñustez, C., & Estrada, N. (2009). Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomia Colombiana, 27(3), 289-303.spa
dc.relation.referencesRodríguez, M., Latsague, M., Chacón, M., & Astorga, P. (2014). Inducción in vitro de callogénesis y organogénesis indirecta a partir de explantes de cotiledón, hipocótilo y hoja en Ugni molinae. Bosque, 35(1), 111-118. https://doi.org/10.4067/S0717-92002014000100011spa
dc.relation.referencesSantana, N. (1982). Determinación de un medio para la obtención de callos en variedades de caña de azúcar (Saccharum spp. híbrido) in vitro. Cultivos Tropicales, 24, 566-577.spa
dc.relation.referencesSAS Institute Inc. (2019). SAS University edition virtual application. Cary, NC, USA, 2019. Recuperado de http://www.sas.com/en_us/software/university-edition.htmlspa
dc.relation.referencesSchiavone, F., & Cooke, T. (2011). A geometric analysis of somatic embryo formation in carrot cell cultures. Canadian Journal of Botany, 63, 1573-1578. https://doi.org/10.1139/b85-218spa
dc.relation.referencesSchiavone, F., & Racusen, R. (1991). Regeneration of the root pole in surgically transected carrot embryos occurs by position-dependent, proximodistal replacement of missing tissues. Development (Cambridge, England), 113(4), 1305-1313.spa
dc.relation.referencesSeguí-Simarro, J. (2016). Chapter 9: Androgenesis in Solanaceae. En In vitro Embryogenesis in Higher Plants (Vol. 1359, p. 4939). https://doi.org/10.1007/978-1-4939-3061-6_9.spa
dc.relation.referencesAziz, a. N., Seabrook, J. E. a., Tai, G. C. C., & Jong, H. (1999). Screening diploid Solarium genotypes responsive to different Anther culture conditions and ploidy assessment of Anther-derived roots and plantlets. American Journal of Potato Research, 76(1), 9-16. https://doi.org/10.1007/BF02853552spa
dc.relation.referencesSeguí-Simarro, J. M., Corral-Martínez, P., Parra-Vega, V., & González-García, B. (2011). Androgenesis in recalcitrant solanaceous crops. Plant Cell Reports, 30(5), 765-778. https://doi.org/10.1007/s00299-010-0984-8spa
dc.relation.referencesSeguí-Simarro, J., & Nuez, F. (2005). Meiotic metaphase I to telophase II as the most responsive stage during microspore development for callus induction in tomato (Solanum lycopersicum ) anther cultures. Acta Physiologiae Plantarum, 27(4), 675-685. https://doi.org/10.1007/s11738-005-0071-xspa
dc.relation.referencesSeguí-Simarro, J., & Nuez, F. (2007). Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. Journal of Experimental Botany, 58(5), 1119-1132. https://doi.org/10.1093/jxb/erl271spa
dc.relation.referencesSharp, W. R., Dougall, D. K., & Paddock, E. F. (1971). Haploid Plantlets and Callus from Immature Pollen Grains of Nicotiana and Lycopersicon. Bulletin of the Torrey Botanical Club, 98(4), 219-222. https://doi.org/10.2307/2483689spa
dc.relation.referencesSharp, W., & Raskin, R. (1972). The Use of Nurse Culture in the Development of Haploid Clones in Tomato. Planta, 104, 357-361.spa
dc.relation.referencesShriram, V., Kumar, V., & Shitole, M. G. (2008). Indirect organogenesis and plant regeneration in Helicteres isora L., an important medicinal plant. In vitro Cellular & Developmental Biology - Plant, 44(3), 186-193. https://doi.org/10.1007/s11627-008-9108-3spa
dc.relation.referencesSmith, R. (2013). Plant tissue culture: Techniques and experiments. Londres, UK: Academic Press Elsevier.spa
dc.relation.referencesSood, S., Dwivedi, S., Reddy, T., Prasanna, P., & Sharma, N. (2013). Improving androgenesismediated doubled haploid production efficiency of FCV tobacco (Nicotiana tabacum L.) through in vitro colchicine application. Plant Breeding, 132, 764-771. https://doi.org/10.1111/pbr.12114spa
dc.relation.referencesSouthwort, D. (2001). Sperm and Generative Cell. Isolation and Manipulation. En S. Bhojwani & W. Soh (Eds.), Current Trends in the Embryology of Angiosperms (pp. 17-32). SpringerScience+Business Media, B.Vspa
dc.relation.referencesSuescún, L., Herrera, J., & Acuña, J. (2020). Estudio de los factores limitantes para la obtención de plantas haploides de Coffea arabica. Revista Cenicafé, 71(1), 32-47. https://doi.org/10.38141/10778/1118spa
dc.relation.referencesBajaj, Y., & Sopory, S. (1986). Biotechnology of potato improvement. En Y. Bajaj (Ed.), Biotechnology in agriculture and forestry (Vol. 2, pp. 429-454). Berlin Heidelberg New York Tokyo: Crops I. Springer.spa
dc.relation.referencesSummers, W., Jaramillo, J., & Bailey, T. (1992). Microspore Developmental Stage and Anther Length Influence the Induction of Tomato Anther Callus. Horticultural Science, 27(7), 838-840.spa
dc.rightsCopyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsLicencia Creative Commons Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.agrovocuriPapa criolla: Solanum phureja
dc.subject.armarcCitogenética vegetal
dc.subject.armarcCélulas germinales
dc.subject.armarcGermoplasma vegetal
dc.subject.armarcCultivo de células vegetales
dc.subject.armarcMaestría en Ciencias Biológicas - Tesis y disertaciones académicas
dc.subject.proposalAnterasspa
dc.subject.proposalCallospa
dc.subject.proposalCultivo in vitro,spa
dc.subject.proposalCultivo de anterasspa
dc.subject.proposalEmbriogénesisspa
dc.subject.proposalOrganogénesisspa
dc.subject.proposalPapa criolla y regeneración.spa
dc.titleRegeneración adventicia a través del cultivo de anteras en papa amarilla diploide (solanum tuberosum grupo phureja)spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audienceInvestigadoresspa
dcterms.audienceDocentesspa
dcterms.audienceEstudiantesspa
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Regeneracion_adventicia_cultivo_anteras.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format
Description:
Archivo principal
Descargar
Loading...
Thumbnail Image
Name:
A_EJAB.pdf
Size:
41.45 KB
Format:
Adobe Portable Document Format
Description:
Autorización de publicación
Descargar
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
14.45 KB
Format:
Item-specific license agreed upon to submission
Description:
Descargar