Estudio teórico-experimental de la síntesis y propiedades físico-químicas de derivados de N-bencil-1-(2-furanil) Metanamina
dc.contributor.advisor | Gómez Castaño, Jovanny Arlés | spa |
dc.contributor.author | Corredor Montaña, Jeisson David | |
dc.date.accessioned | 2019-03-29T16:17:56Z | |
dc.date.available | 2019-03-29T16:17:56Z | |
dc.date.issued | 2018 | |
dc.description | 1 recurso en línea (100 páginas) : figuras, tablas. | spa |
dc.description.abstract | Theoretical and experimental study of the reaction system and DA cycloaddition products of N-benzyl-1-(furan-2-yl)methanamine (1a), and N-benzyl-N-(furan-2-ylmethyl)acetamide (1b) was developed using maleic anhydride (AnM) as dienophile. Organic synthesis was carried out by adjusting the experimental methodologies within the framework of green chemistry. Spectroscopic characterization of all the molecules was completed through one and two-dimensional NMR, FTIR, FTRaman, Mass Spectrometry and computational vibrational calculations at the B3LYP/6-31G+(d) level. Cycloaddition adduct of amine 1a was obtained as a racemic mixture of exo isomer with monoclinic crystalline structure. The molecules are arranged forming central-symmetric dimers linked by hydrogen bonds. Preliminary computational study at the level B3LYP/6-31G+(d) of transition structures proposed for this system, allowed to identify some factors that can determine the mechanism of reaction. The two evaluated routes present factors can lead exo selectivity of the adduct. Experimental evidence of NMR and FTIR require complementary analyzes to give clarity regarding the intermediary detected. Amide 1b obtained by acetylation of amine 1a, was obtained as a mixture of E-Z isomers and conformers that presents differentiation of shields in NMR. Its cycloaddition produced the Z-exo isomer of the adduct, which presents cycloreversibility in solution at room temperature, regenerating the E-Z isomeric mixture. Also, the synthesis of the organic salts maleate and acetate of amine 1a was reported. | eng |
dc.description.abstract | Se desarrolló el estudio teórico-experimental del sistema de reacción y los productos de cicloadición DA de N-bencil-1-(2-furanil)metanamina (1a), y N-bencil-N-(2-furanilmetilen)acetamida (1b); empleando como dienófilo anhídrido maléico (AnM). La síntesis se llevó a cabo modificando las metodologías experimentales en el marco de la química verde. La caracterización espectroscópica de todas las moléculas se realizó mediante espectroscopia de RMN mono y bidimensional, FTIR, FTRaman, Espectrometría de masas y cálculos computacionales vibracionales al nivel B3LYP/6-31G+(d). El aducto de cicloadición de la amina 1a se obtuvo como una mezcla racémica del isómero exo con estructura cristalina monoclínica. Las moléculas se acomodan formando dímeros centro-simétricos enlazados por puentes de hidrógeno. El estudio computacional preeliminar al nivel B3LYP/6-31G+(d) de estructuras de transición propuestas para éste sistema, permitió identificar algunos factores que pueden determinar el mecanismo de reacción. Las dos rutas evaluadas presentan factores que pueden conducir a la selectividad exo del aducto. Las evidencias experimentales de RMN y FTIR requieren análisis complementarios para dar claridad respecto al intermediario detectado. La amida 1b obtenida por acetilación de la amina 1a, se obtuvo como una mezcla de isómeros E-Z y confórmeros que presenta diferenciación de ambientes en RMN. Su cicloadición DA produjo el isómero Z-exo del aducto, que presenta cicloreversibilidad en solución a temperatura ambiente, regenerando la mezcla isomérica E-Z. También, se reportó la síntesis de las sales orgánicas maleato y acetato de la amina 1a. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Química | spa |
dc.description.notes | Bibliografía y webgrafía: páginas 93-99. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Corredor Montaña, J. D. (2018). Estudio teórico-experimental de la síntesis y propiedades físico-químicas de derivados de N-bencil-1-(2-furanil) Metanamina. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2506 | spa |
dc.identifier.uri | http://repositorio.uptc.edu.co/handle/001/2506 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Pedagógica y Tecnológica de Colombia | spa |
dc.publisher.faculty | Facultad de Ciencias, Escuela de Posgrados. Maestría en Química | spa |
dc.relation.references | J. A. Joule and K. Mills, Heterocyclic Chemistry, 5th ed. John Wiley y Sons Ltd, 2010. | spa |
dc.relation.references | K. C. Nicolaou, S. A. Snyder, T. Montagnon, and G. Vassilikogiannakis, “The Diels-Alder Reaction in Total Synthesis,” Angew. Chemie, vol. 41, pp. 1668–1698, 2002. | spa |
dc.relation.references | A. Taticchi and F. Fringuelli, The Diels-Alder Reaction Selected practical methods, vol. 3. 2002. | spa |
dc.relation.references | D. Prajapati, D. Borthakur, and J. Sandhu, “Intramolecular Diels-Alder Reaction with Furans: Effect of the Substitution Pattern Reinvestigated,” J. Chem. Soc., vol. 40, pp. 142–143, 1993. | spa |
dc.relation.references | R. Murali, H. S. Surya Prakash Rao, and H. W. Scheeren, “Intra-molecular Diels-Alder reactions of citraconamic acids from furfurylamines and citraconic anhydride: Effects of substitution in the furan ring on regioselectivity,” Tetrahedron, vol. 57, no. 15, pp. 3165–3174, 2001. | spa |
dc.relation.references | V. P. Zaytsev, N. M. Mikhailova, I. K. Airiyan, E. V Galkina, V. D. Golubev, E. V Nikitina, F. I. Zubkov, and A. V Varlamov, “Cycloaddition of Furfurilamines to Maleic Anhidride and its Substituted derivatives,” Chem. Heterocycl. Compd., vol. 48, no. 3, pp. 505–513, 2012. | spa |
dc.relation.references | F. I. Zubkov, E. V Boltukhina, K. F. Turchin, S. Borisov, and A. V Varlamov, “New synthetic approach to substituted isoindolo [2,1-a] quinoline carboxylic acids via intramolecular Diels–Alder reaction of 4-(N-furyl-2)-4-arylaminobutenes-1 with maleic anhydride,” Tetrahedron, vol. 61, pp. 4099–4113, 2005 | spa |
dc.relation.references | A. V. Varlamov, E. V. Boltukhina, F. I. Zubkov, N. V. Sidorenko, A. I. Chernyshev, and D. G. Grudinin, “Preparative Synthesis of 7-Carboxy-2-R-isoindol-1-ones,” Chem. Heterocycl. Compd., vol. 40, no. 1, pp. 22–28, 2004. | spa |
dc.relation.references | P. Sarang, A. Yadav, P. Patil, U. Krishna, G. Trivedi, and M. Salunkhe, “Synthesis of Advanced Intermediates of Lennoxamine Analogues,” Synthesis (Stuttg)., vol. 2007, no. 7, pp. 1091–1095, 2007. | spa |
dc.relation.references | D. Lednicer, Organic Chemistry of Drug Synthesis. Volumen 7. New Jersey: John Wiley y Sons Ltd, 2008. | spa |
dc.relation.references | K. Lewis, “Platforms for antibiotic discovery,” Nat. Rev. Drug Discov., vol. 12, no. 5, pp. 371–387, 2013. | spa |
dc.relation.references | A. R. Katritzky, H. He, K. Suzuki, D. A. D. C. J. Am, and C. Soc, “N-Acylbenzotriazoles: Neutral Acylating Reagents for the Preparation of Primary , Secondary , and Tertiary Amides,” J. Org. Chem., vol. 65, no. 24, pp. 8210–8213, 2000 | spa |
dc.relation.references | S. Paul, P. Nanda, R. Gupta, and A. Loupy, “Zinc Mediated Friedel-Crafts Acylation in Solvent-Free Conditions under Microwave Irradiation,” Synthesis (Stuttg)., no. 18, pp. 2877–2881, 2003 | spa |
dc.relation.references | I. M. Alecu, J. Zheng, Y. Zhao, and D. G. Truhlar, “Computational thermochemistry: Scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries,” J. Chem. Theory Comput., vol. 6, no. 9, pp. 2872–2887, 2010 | spa |
dc.relation.references | M. Pretsch, Erno; Buhlmann, Philippe; Badertscher, Structure Determination of Organic Compounds, 4th ed. Springer, 2009 | spa |
dc.relation.references | T. Steiner, “The hydrogen bond in the solid state.,” Angew. Chem. Int. Ed., vol. 41, no. 1, pp. 49–76, 2002. | spa |
dc.relation.references | G. M. Florio, T. S. Zwier, E. M. Myshakin, K. D. Jordan, E. L. Sibert, G. M. Florio, and T. S. Zwier, “Theoretical modeling of the OH stretch infrared spectrum of carboxylic acid dimers based on first-principles anharmonic couplings,” J. Chem. Phys., vol. 118, no. 4, pp. 1735–1746, 2003. | spa |
dc.relation.references | W. E. Stewart and T. H. Siddall, “Nuclear magnetic resonance studies of amides,” Chem. Rev., vol. 70, no. 5, pp. 517–551, 1970. | spa |
dc.relation.references | R. J. Abraham, L. Griffiths, and M. Perez, “1H NMR spectra. Part 30: 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group,” Magn. Reson. Chem., vol. 51, no. 3, pp. 143–155, 2013. | spa |
dc.relation.references | J. M. Fox, O. Dmitrenko, L. Liao, and R. D. Bach, “Computational Studies of Nucleophilic Substitution at Carbonyl Carbon : the SN2 Mechanism versus the Tetrahedral Intermediate in Organic Synthesis,” J. Org. Chem., vol. 69, no. 6, pp. 7317–7328, 2004. | spa |
dc.relation.references | B. Maggio, D. Raffa, M. Valeria, M. Grazia, F. Plescia, S. Cascioferro, G. Cancemi, M. Lauricella, D. Carlisi, and G. Daidone, “Synthesis and antiproliferative activity of new derivatives containing the polycyclic system 5,7:7,13-dimethanopyrazolo[3,4-b]pyrazolo[30,40:2,3]azepino[4,5-f]azocine,” Eur. J. Med. Chem., vol. 72, pp. 1–9, 2014. | spa |
dc.relation.references | S. De Cesco, S. Deslandes, E. Therrien, D. Levan, M. Cueto, R. Schmidt, L. D. Cantin, A. Mittermaier, L. Juillerat-Jeanneret, and N. Moitessier, “Virtual screening and computational optimization for the discovery of covalent prolyl oligopeptidase inhibitors with activity in human cells,” J. Med. Chem., vol. 55, no. 14, pp. 6306–6315, 2012 | spa |
dc.relation.references | M. E. Welsch, S. a Snyder, and B. R. Stockwell, “Privileged Scaffolds for Library Design and Drug Discovery,” NIH Public Access, vol. 14, no. 3, pp. 347–361, 2010. | spa |
dc.relation.references | C. Reyes, F. Muñoz, G. Llanos, M. Nuñez, and I. Torrecillas, “Estructuras privilegiadas basadas en productos naturales, alternativa en la búsqueda de nuevos agentes quimioterapeuticos,” Biocancer, vol. 5, pp. 171–182, 2011. | spa |
dc.relation.references | A. Messeguer, “Los Químicos Y El Descubrimiento De Fármacos,” The Spanish ion Channel Initiative, Barcelona, 2010. | spa |
dc.relation.references | F. Peláez, “Paradigmas actuales en las etapas tempranas del proceso de descubrimiento y desarrollo de nuevos fármacos,” An. Quím., vol. 107, no. 1, pp. 36–45, 2011. | spa |
dc.relation.references | K. C. Nicolaou, D. Vourloumis, N. Winssinger, and P. S. Baran, “The Art and Science of Total Synthesis,” Angew. Chemie, vol. 39, pp. 44–122, 2000. | spa |
dc.relation.references | P. Cabildo, P. Cornago, C. León, E. Santos, A. Farfan, M. Perez, and D. Sanz, Procesos orgánicos de bajo impacto ambiental . Química verde, 1st ed. Madrid: Libreria UNED, 2006 | spa |
dc.relation.references | E. US EPA, OCSPP,OPPT, “Basics of Green Chemistry,” 2016. [Online]. Available: http://www2.epa.gov/green-chemistry/basics-green-chemistry#bookmarks | spa |
dc.relation.references | D. Claeys, “Combination of Experimental and Computational Chemistry in the Synthesis of New Azaheterocycles,” 2009. | spa |
dc.relation.references | E. G. Lewars, Computational Chemistry. Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2nd ed. Ontario: Springer, 2011. | spa |
dc.relation.references | J. Foresman and Ae. Frisch, Exploring Chemistry With Electronic Structure Methods, 2nd ed. Gaussian Inc, 1998. | spa |
dc.relation.references | M. I. Flores, “Estudio de la reaccion de Diels-Alder por etapas y multicomponentes promovidas por radiacion infrarroja,” Instituto Politecnico Nacional de Mexico, 2008 | spa |
dc.relation.references | P. Sykes, Mecanismos De Reacción En Química Orgánica, 6th ed. Barcelona: Reverté, 1985. | spa |
dc.relation.references | D. Yepes, O. Donoso-tauda, P. Pe, P. Politzer, and P. Jaque, “The reaction force constant as an indicator of synchronicity/nonsynchronicity in [4+2] cycloaddition processes,” Phys. Chem. Chem. Phys., vol. 15, pp. 7311–7320, 2013. | spa |
dc.relation.references | L. R. Domingo, “Why Diels-Alder Reactions Are Non-Concerted Processes,” J. Chile Chem. Soc., vol. 59, no. 3, pp. 2615–2618, 2014. | spa |
dc.relation.references | J. S. Murray, D. Yepes, P. Jaque, and P. Politzer, “Insights into some Diels–Alder cycloadditions via the electrostatic potential and the reaction force constant,” Comput. Theor. Chem., vol. 1053, pp. 270–280, 2015. | spa |
dc.relation.references | L. R. Domingo, “State of the Art of the Bonding Changes along the Diels-Alder Reaction between Butadiene and Ethylene: Refuting the Pericyclic Mechanism,” Org. Chem. Curr. Res., vol. 2, no. 3, 2013. | spa |
dc.relation.references | D. Yepes, J. S. Murray, P. Pérez, L. R. Domingo, P. Politzer, and P. Jaque, “Complementarity of reaction force and electron localization function analyses of asynchronicity in bond formation in Diels–Alder reactions,” Phys. Chem. Chem. Phys., vol. 16, pp. 6726–6734, 2014 | spa |
dc.relation.references | T. A. Eggelte, H. de Koning, and H. O. Huisman, “Diels-Alder reaction of furan with some dienophiles,” Tetrahedron, vol. 29, no. 16, pp. 2491–2493, 1973. | spa |
dc.relation.references | J. D. Corredor, “Revisión: Cicloadición Diels Alder de furano en agua,” Investig. Joven, vol. 4, no. 1, pp. 23–28, 2017 | spa |
dc.relation.references | W. C. Lee, Martin W; Herndon, “Stereochemistry of the Furan-Maleic Anhydride Cycloaddition,” J. Org. Chem. Notes, vol. 43, no. 3, p. 518, 1978. | spa |
dc.relation.references | C. García-Astrain, A. Gandini, D. Coelho, I. Mondragon, A. Retegi, A. Eceiza, M. A. Corcuera, and N. Gabilondo, “Green chemistry for the synthesis of methacrylate-based hydrogels crosslinked through Diels-Alder reaction,” Eur. Polym. J., vol. 49, no. 12, pp. 3998–4007, 2013 | spa |
dc.relation.references | A. Sanyal, “Diels-alder cycloaddition-cycloreversion: A powerful combo in materials design,” Macromol. Chem. Phys., vol. 211, no. 13, pp. 1417–1425, 2010. | spa |
dc.relation.references | M. A. Tasdelen, “Diels–Alder ‘click’ reactions: recent applications in polymer and material science,” Polym. Chem., vol. 2, no. 10, p. 2133, 2011 | spa |
dc.relation.references | A. Gandini, “The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis,” Prog. Polym. Sci., vol. 38, no. 1, pp. 1–29, 2013. | spa |
dc.relation.references | R. Conyers, J. Mazzone, M. Siegler, and G. Posner, “Regiocontrolled and stereocontrolled syntheses of polysubstituted aminocyclohexanes: mild inverse-electron-demand Diels–Alder cycloadditions,” Tetrahedron Lett., 2016. | spa |
dc.relation.references | L. Brulíková, A. Harrison, and M. Miller, “Stereo and regioselectivity of the hetero-Diels–Alder reaction of nitroso derivatives with conjugated dienes,” Beilstein J. Chem., 2016 | spa |
dc.relation.references | C. Chapuis, D. Skuy, and J. de Saint Laumer, “Endo/exo Stereoselectivity in Diels Alder Reactions of α, β Dialkylated Conjugated Enals to Cyclic 1, 3 Dienes: Intermediates in the Synthesis of (−)β Santalol,” Chemistry (Easton)., 2014. | spa |
dc.relation.references | J. Hooper, N. James, and E. Bozkurt, “Medium-Ring Effects on the Endo/Exo Selectivity of the Organocatalytic Intramolecular Diels–Alder Reaction,” J. Org. Chem., 2015. | spa |
dc.relation.references | M. Davis and J. Pacheco, “Diels-Alder reactions catalyzed by Lewis acid containing solids: renewable production of bio-plastics,” US Pat. 9108979, 2015 | spa |
dc.relation.references | J. Ishihara, S. Nakadachi, and Y. Watanabe, “Lewis Acid Template-Catalyzed Asymmetric Diels–Alder Reaction,” J. Org. Chem., 2015 | spa |
dc.relation.references | T. Gatzenmeier, M. van Gemmeren, and Y. Xie, “Asymmetric Lewis acid organocatalysis of the Diels–Alder reaction by a silylated C–H acid,” J. Org. Chem., 2016. | spa |
dc.relation.references | J. Bah and J. Franzén, “Carbocations as Lewis Acid Catalysts in Diels–Alder and Michael Addition Reactions,” Eur. J. Chem., 2014. | spa |
dc.relation.references | L. He, G. Laurent, P. Retailleau, and B. Folléas, “Highly Enantioselective Aza‐Diels–Alder Reaction of 1‐Azadienes with Enecarbamates Catalyzed by Chiral Phosphoric Acids,” Angew. Chemie, 2013. | spa |
dc.relation.references | M. Lalonde and M. McGowan, “Enantioselective Formal Aza-Diels–Alder Reactions of Enones with Cyclic Imines Catalyzed by Primary Aminothioureas,” J., 2013 | spa |
dc.relation.references | X. Jiang and R. Wang, “Recent developments in catalytic asymmetric inverse-electron-demand Diels–Alder reaction,” Chem. Rev., 2013. | spa |
dc.relation.references | K. Speck and T. Magauer, “The chemistry of isoindole natural products,” Beilstein J. Org. Chem., vol. 9, pp. 2048–2078, 2013. | spa |
dc.relation.references | Y. Zhou, P. Chen, X. Lv, J. Niu, Y. Wang, M. Lei, and L. Hu, “A facile and efficient method for the synthesis of N-substituted isoindolin-1-one derivatives under Pd(OAc)2/HCOOH system,” Tetrahedron Lett., vol. 58, no. 23, pp. 2232–2235, 2017. | spa |
dc.relation.references | Y. Tian, J. Wei, M. Wang, G. Li, and F. Xu, “Hantzsch ester triggered metal-free cascade approach to isoindolinones,” Tetrahedron Lett., vol. 59, no. 19, pp. 1866–1870, 2018. | spa |
dc.relation.references | Y. Jiang, K. Xu, and C. Zeng, “Use of Electrochemistry in the Synthesis of Heterocyclic Structures,” Chem. Rev., vol. 118, pp. 4485–4540, 2017. | spa |
dc.relation.references | P. Wu, A. Michael, R. Guilleux, M. Ohsten, and T. E. Nielsen, “Tandem Mannich/Diels–Alder reactions for the synthesis of indole compound libraries,” RCS Adv., vol. 6, pp. 46654–46657, 2016 | spa |
dc.relation.references | M. H. El-Wakil, H. M. Ashour, M. N. Saudi, A. M. Hassan, and I. M. Labouta, “Design, synthesis and molecular modeling studies of new series of antitumor 1,2,4-triazines with potential c-Met kinase inhibitory activity,” Bioorg. Chem., vol. 76, pp. 154–165, 2018 | spa |
dc.relation.references | R. Dua, S. Shrivastava, S. L. Shrivastava, and S. K. Srivastava, “Green Chemistry and Environmentally Friendly Technologies: A Review,” Middle-East J. Sci. Res., vol. 11, no. 7, pp. 846–855, 2012. | spa |
dc.relation.references | A. Miranda, Rene; Penieres, Jose; Obaya, Quimica Verde Experimental, Primera Ed. Ciudad de Mexico, 2013 | spa |
dc.relation.references | M. L. M. Galicia, J. O. Martínez, L. B. Reyes-sánchez, O. Martín, G. A. A. Razo, A. Obaya, and R. Miranda, “¿Qué tan verde es un experimento?,” Educ. Quim., vol. 22, no. 3, pp. 240–248, 2011. | spa |
dc.relation.references | F. Carey and R. Sundberg, Advanced Organic Chemistry. Reactions and Synthesis, 5th ed. Springer, 2007. | spa |
dc.relation.references | B. T. Cho and S. K. Kang, “Direct and indirect reductive amination of aldehydes and ketones with solid acid-activated sodium borohydride under solvent-free conditions,” Tetrahedron, vol. 61, pp. 5725–5734, 2005. | spa |
dc.relation.references | M. B. Smith, “Preparation of Amines,” in Compendium of Organic Synthetic Method, vol. 9, pp. 117–139, 2014. | spa |
dc.relation.references | Y. Bekdemir and K. Efil, “Microwave Assisted Solvent-Free Synthesis of Some Imine Derivatives,” Org. Chem. Int., pp. 1–5, 2014. | spa |
dc.relation.references | K. Nagaiah, V. N. Kumar, R. S. Rao, and B. V. S. Reddy, “Efficient Protocol for Reductive Amination of Aldehydes and Ketones with Sodium Borohydride in an Ionic Liquid/H2O System,” Synth. Comun. An Int. J. rapid Comun. Synth. Org. Chem., vol. 36, no. 22, pp. 3345–3352, 2006 | spa |
dc.relation.references | Z. Hu, N. Ma, J. Zhang, W. Hu, and H. Wang, “Paladium meditated C Phenyl–H bond activation of 2-furylimines versus tert-2-furylbenzylamines,” Polyhedron, 2014 | spa |
dc.relation.references | F. A. Carey, Organic Chemistry, 4th ed. McGraw-Hill, 2000. | spa |
dc.relation.references | H. Lundberg, F. Tinnis, N. Selander, and H. Adolfsson, “Catalitic amide formation from non-activated carboxylic acids and amines,” Chem. Soc. Rev., vol. 43, pp. 2714–2742, 2014. | spa |
dc.relation.references | G. Brahmachari, S. Laskar, and S. Sarkar, “A green approach to chemoselective N-acetylation of amines using catalytic amount of zinc acetate in acetic acid under microwave irradiation,” Indian J. Chem., vol. 49, no. B, pp. 1274–1281, 2010. | spa |
dc.relation.references | G. Brahmachari and S. Laskar, “A very simple and highly efficient procedure for N-formylation of primary and secondary amines at room temperature under solvent-free conditions,” Tetrahedron Lett., vol. 51, no. 17, pp. 2319–2322, 2010. | spa |
dc.relation.references | G. Brahmachari, S. Laskar, and S. Sarkar, “Metal acetate/metal oxide in acetic acid: an efficient reagent for the chemoselective N-acetylation of amines under green conditions,” J. Chem. Res., pp. 288–295, 2010. | spa |
dc.relation.references | M. Hosseini-Sarvari and H. Sharghi, “ZnO as a New Catalyst for N-Formylation of Amines under Solvent-Free Conditions ZnO under solvent-free conditions,” J. Org. Chem. Note, vol. 71, no. 17, pp. 6652–6654, 2006. | spa |
dc.relation.references | M. Hosseini-sarvari, “Greener Solvent-Free Reactions on ZnO,” in Green Chemistry-Environmentally Benign Approaches, vol. 1, pp. 103–120, 2012. | spa |
dc.relation.references | M. Hosseini Sarvari and H. Sharghi, “Zinc oxide (ZnO) as a new, highly efficient, and reusable catalyst for acylation of alcohols, phenols and amines under solvent free conditions,” Tetrahedron, vol. 61, no. 46, pp. 10903–10907, 2005. | spa |
dc.relation.references | S. Narayan, J. Muldoon, M. G. Finn, V. V Fokin, H. C. Kolb, and K. B. Sharpless, “‘On Water’: Unique Reactivity of Organic Compounds in Aqueous Suspension,” Angew. Chemie, vol. 44, pp. 3275–3279, 2005. | spa |
dc.relation.references | A. Chanda and V. V Fokin, “Organic Synthesis ‘On Water,’” Chem. Rev., vol. 109, pp. 725–748, 2009. | spa |
dc.relation.references | C. Li, “Organic Reactions in Aqueous Media with a Focus on Carbon−Carbon Bond Formations: A Decade Update,” Chem. Rev., vol. 105, pp. 3095–3165, 2005. | spa |
dc.relation.references | S. Higson, F. Subrizi, T. D. Sheppard, and H. C. Hailes, “Chemical cascades in water for the synthesis of functionalized aromatics from furfurals,” Green Chem., vol. 18, no. 7, pp. 1855–1858, 2016. | spa |
dc.relation.references | A. Meijer, S. Otto, and J. B. F. N. Engberts, “Effects of the Hydrophobicity of the Reactants on Diels-Alder Reactions in Water,” J. Org. Chem., vol. 63, no. 24, pp. 8989–8994, 1998. | spa |
dc.relation.references | S. Otto and J. B. F. N. Engberts, “Diels–Alder reactions in water,” Pure Appl. Chem., vol. 72, no. 7, pp. 1365–1372, 2000. | spa |
dc.relation.references | M. V. Gil, V. Luque-Agudo, E. Roman, and J. A. Serrano, “ChemInform Abstract: Expeditious ′On-Water′ Cycloaddition Between N-Substituted Maleimides and Furans.,” Synlett, vol. 25, no. 11, pp. 2179–2183, 2014. | spa |
dc.relation.references | J. Soto-delgado, A. Aizman, R. Contreras, and L. R. Domingo, “On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study,” Molecules, vol. 17, pp. 13687–13703, 2012. | spa |
dc.relation.references | J. Chandrasekhar, S. Shariffskul, and W. L. Jorgensen, “QM/MM Simulations for Diels-Alder Reactions in Water: Contribution of Enhanced Hydrogen Bonding at the Transition State to the Solvent Effect,” J. Phys. Chem. B, vol. 106, no. 33, pp. 8078–8085, 2002. | spa |
dc.relation.references | A. Gómez, Implementación de Cálculos computacionales en la enseñanza de las propiedades periódicas de los elementos, las moléculas y el enlace químico. Tunja: Universidad Pedagógica y Tecnológica de Colombia, 2013. | spa |
dc.relation.references | J. W. Ochterski, “Thermochemistry in Gaussian,” Gaussian, vol. 1, p. 19, 2000. | spa |
dc.relation.references | S. Maeda, Y. Harabuchi, Y. Ono, T. Taketsugu, and K. Morokuma, “Intrinsic reaction coordinate: Calculation, bifurcation, and automated search,” Int. J. Quantum Chem., vol. 115, no. 5, pp. 258–269, 2015. | spa |
dc.relation.references | A. M. Sarotti, R. A. Spanevello, and A. G. Suárez, “Assessing the halogen effect in Diels-Alder reactions involving chiral α-halo enones. A combined experimental and DFT computational approach,” Tetrahedron Lett., vol. 52, no. 32, pp. 4145–4148, 2011. | spa |
dc.relation.references | B. S. Jursic, “Suitability of furan, pyrrole and thiophene as dienes for Diels–Alder reactions viewed through their stability and reaction barriers for reactions with acetylene, ethylene and cyclopropene. An AM1 semiempirical and B3LYP hybrid density functional theory s,” J. Mol. Struct. Theochem, vol. 454, no. 2–3, pp. 105–116, 1998. | spa |
dc.relation.references | S. Bouacha, A. K. Nacereddine, and A. Djerourou, “A theoretical study of the mechanism, stereoselectivity and Lewis acid catalyst on the Diels-Alder cycloaddition between furan and activated alkenes,” Tetrahedron Lett., vol. 54, no. 31, pp. 4030–4033, 2013. | spa |
dc.relation.references | R. S. Paton, S. Kim, A. G. Ross, S. J. Danishefsky, and K. N. Houk, “Experimental Diels-Alder reactivities of cycloalkenones and cyclic dienes explained through transition-state distortion energies,” Angew. Chemie - Int. Ed., vol. 50, no. 44, pp. 10366–10368, 2011. | spa |
dc.relation.references | X. S. Xue, B. J. Levandowski, C. Q. He, and K. N. Houk, “Origins of Selectivities in the Stork Diels-Alder Cycloaddition for the Synthesis of (±)-4-Methylenegermine,” Org. Lett., vol. 20, pp. 6108–6111, 2018. | spa |
dc.relation.references | K. Ramírez-Gualito, N. López-Mora, H. A. Jiménez-Vázquez, J. Tamariz, and G. Cuevas, “The role of supramolecular intermediates in the potential energy surface of the Diels-Alder reaction,” J. Mex. Chem. Soc., vol. 57, no. 4, pp. 267–275, 2013. | spa |
dc.relation.references | L. J. Smith, S. M. Taimoory, R. Y. Tam, A. E. G. Baker, N. Binth Mohammad, J. F. Trant, and M. S. Shoichet, “Diels-Alder Click-Cross-Linked Hydrogels with Increased Reactivity Enable 3D Cell Encapsulation,” Biomacromolecules, vol. 19, no. 3, pp. 926–935, 2018 | spa |
dc.relation.references | D. D. Claeys, K. Moonen, B. I. Roman, V. N. Nemykin, V. V Zhdankin, M. Waroquier, V. Van Speybroeck, and C. V Stevens, “Synthesis of Tricyclic Phosphonopyrrolidines via IMDAF: Stereoselectivity,” no. d, pp. 7921–7927, 2008. | spa |
dc.relation.references | G. M. Sheldrick, “SHELXS.” Acta Cryst., p. A64, 112–122., 2008. | spa |
dc.relation.references | K. Dr. H. Putz & Dr. K. Brandenburg GbR, “Diamond-Crystal and Molecular Structure Visualization Crystal Impact.” Germany, p. 102, 53227 Bonn | spa |
dc.relation.references | S. Ouarna, H. K’tir, S. Lakrout, H. Ghorab, A. Amira, Z. Aouf, M. Berredjem, and N. E. Aouf, “An eco-friendly and highly efficient route for N-acylation under catalyst-free conditions,” Orient. J. Chem., vol. 31, no. 2, pp. 913–919, 2015. | spa |
dc.relation.references | D. J. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenb, “Gaussian 03.” Gaussian, Inc., Wallingford CT, 2009. | spa |
dc.relation.references | C. F. Lo, K. Karan, and B. R. Davis, “Kinetic Studies of Reaction between Sodium Borohydride and Methanol, Water, and Their Mixtures,” Ind. Eng. Chem., vol. 46, no. 17, pp. 5478–5484, 2007. | spa |
dc.relation.references | M. (Mike) Lancaster and Royal Society of Chemistry (Great Britain), Green chemistry : an introductory text. Royal Society of Chemistry, 2010. | spa |
dc.relation.references | Normang. Gaylor, “Reduction with Complex Metal Hydrides,” ACS B. Rev., p. 5135, 1956. | spa |
dc.relation.references | B. Culbertson, B.; Trivedi, Maleic Anhidryde. New York, 1981. | spa |
dc.relation.references | J. Koskikallio, “Kinetics of the hydrolisis and formation of dimethylmaleic anhidride in solvent mixtures,” Acta Chem. Scand., vol. 10, pp. 822–830, 1956. | spa |
dc.rights | Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.armarc | Reacción de Diels-Alder | |
dc.subject.armarc | Síntesis orgánica | |
dc.subject.armarc | Cicloadición | |
dc.subject.armarc | Maestría en Química - Tesis y disertaciones académicas | |
dc.title | Estudio teórico-experimental de la síntesis y propiedades físico-químicas de derivados de N-bencil-1-(2-furanil) Metanamina | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- TGT-1191.pdf
- Size:
- 8.25 MB
- Format:
- Adobe Portable Document Format
- Description:
- Archivo principal
Descargar
Loading...
- Name:
- A_JDCM.pdf
- Size:
- 704.25 KB
- Format:
- Adobe Portable Document Format
- Description:
- Autorización publicación
Descargar
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 14.45 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
Descargar