Validación del modelo matemático de un panel solar empleando la herramienta Simulink de Matlab
dc.contributor.author | Vera Dávila, Anderson Guillermo | |
dc.contributor.author | Delgado Ariza, Jhan Carlos | |
dc.contributor.author | Sepúlveda Mora, Sergio Basilio | |
dc.date.accessioned | 2018-09-11T22:18:28Z | |
dc.date.available | 2018-09-11T22:18:28Z | |
dc.date.issued | 2018-06-01 | |
dc.description | 1 recurso en línea (páginas 343-356). | spa |
dc.description.abstract | El objetivo de este trabajo es realizar un análisis estadístico y una validación de los resultados obtenidos de las simulaciones de un panel solar, con la herramienta Matlab/Simulink. Se realizaron una serie de mediciones de la potencia generada por el panel solar, bajo diferentes condiciones de radiación y temperatura de operación; luego se simuló el comportamiento del panel mediante el modelo matemático y el modelo del mismo establecido por Simulink; por último, se realizó un análisis de la aproximación de cada una de las simulaciones con los datos reales. Los resultados indican que, para la simulación por medio del modelo matemático del panel solar, se obtuvo un coeficiente de determinación de 0.9889, mientras que, para el modelo del panel solar establecido por Simulink fue de 0,8673. Lo anterior evidencia la buena correlación de cada una de las simulaciones realizadas con los valores reales, llegando a la conclusión que, aunque los dos métodos utilizados se acercan a la realidad, el modelo matemático del panel solar consigue una mejor aproximación. | spa |
dc.description.abstract | The aim of this work is to perform a statistical analysis and validation of the results obtained from the simulations of a solar panel with Matlab / Simulink tool. To achieve this, a series of measurements of the power generated by the solar panel under different conditions of radiation and operating temperature were made. Later, the behaviour of the solar panel was simulated through the mathematical model and the model established by Simulink. Finally, an analysis of the approximation of each of the simulations with the real data was performed. The obtained results indicate that for the simulation by means of the mathematical model of the solar panel, a coefficient of determination of 0.9889 was obtained, whereas, for the model of the solar panel established by Simulink was 0.8673. The above shows the good correlation of each of the simulations performed with real values, reaching the conclusion that although the two methods used are close enough to reality, the mathematical model of the solar panel has a better approximation. | eng |
dc.description.notes | Bibliografía y webgrafía: páginas 355-356. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Vera Dávila, A. G., Delgado Ariza, J. C. & Sepúlveda Mora, S. B. (2018). Validación del modelo matemático de un panel solar empleando la herramienta Simulink de Matlab. Revista de Investigación, Desarrollo e Innovación, 8 (2), 343-356. DOI: https://doi.org/10.19053/20278306.v8.n2.2018.7972. http://repositorio.uptc.edu.co/handle/001/2188 | spa |
dc.identifier.doi | 10.19053/20278306.v8.n2.2018.7972 | |
dc.identifier.issn | 2389-9417 | |
dc.identifier.uri | http://repositorio.uptc.edu.co/handle/001/2188 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Pedagógica y Tecnológica de Colombia | spa |
dc.relation.ispartofjournal | Revista de Investigación, Desarrollo e Innovación;Volumen 8, número 2 (Enero-Junio 2018) | spa |
dc.relation.references | Acevedo-Luna, A., & Morales-Acevedo, A. (2018). Study of validity of the single-diode model for solar cells by I–V curves parameters extraction using a simple numerical method. Journal of Materials Science: Materials in Electronics, 1–7. doi: http://doi.org/10.1007/s10854-018-8793-x | spa |
dc.relation.references | Agency, I. I. E. (2016). Tracking Clean Energy Progress 2016. Recuperado de: www.iea.org/etp/tracking for | spa |
dc.relation.references | Altas, I. H., & Sharaf, A. M. (2007). A Photovoltaic Array Simulation Model for Matlab-Simulink GUI Environment. In International Conference on Clean Electrical Power, 341–345. Capri, Italy: IEEE. | spa |
dc.relation.references | De Soto, W., Klein, S. A., & Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80 (1), 78–88. doi: http://doi.org/10.1016/j. solener.2005.06.010 | spa |
dc.relation.references | González-Longatt, F. (2005). Model of photovoltaic module in Matlab. In Ii Cibelec, (2006), 1–5. Recuperado: http://www.academia.edu/875827/ Model_of_Photovoltaic_Module_in_Matlab | spa |
dc.relation.references | Granda-Gutiérrez, E. E., Orta-Salomón, O. A., Díaz-Guillén, J. C., Jimenez, M. A., Osorio, M., & González, M. A. (2013). Modelado y Simulacion de Celdas y Paneles Solares. Congreso Internacional de Ingeniería Electrónica 2013. 17–22. doi: http://doi. org/10.13140/2.1.4192.8968 | spa |
dc.relation.references | Icaza-Alvarez, D., Calle-Castro, C. J., Córdova- González, F., Lojano-Uguña, A., & Toledo-Toledo, J. F. (2017). Modeling and Simulation of a hybrid system Solar panel and wind turbine in the locality of Molleturo in Ecuador. In 6th International Conference on Renewable Energy Research and Applications (5), 620–625. San Diego: IEEE. doi: http://doi.org/10.1109/DISTRA.2017.8191134 | spa |
dc.relation.references | Ideam. (2017). Atlas de Radiación Solar. Recuperado de: http://atlas.ideam.gov.co/ basefiles/RadiacionPDF/Cucuta.pdf | spa |
dc.relation.references | Jimenez, F., & Solé, D. B. (2009). Estudio y simulación de sistemas de conversión fotovoltaica-eléctrica mediante Matlab/Simulink. Saaei’09. | spa |
dc.relation.references | Kapoor, D., Sodhi, P., & Deb, D. (2012). Solar panel simulation using adaptive control. In International Conference on Control Applications, 1124–1130. Dubrovnik, Croatia. doi: http://doi.org/10.1109/ CCA.2012.6402674 | spa |
dc.relation.references | Marín, C. E. (2004). La Energía Solar Fotovoltaica En España. Ninbus, 13–14, 5–31. | spa |
dc.relation.references | MathWorks. (2017a). Evaluating Goodness of Fit. Recuperado de: https://www.mathworks.com/ help/curvefit/evaluating-goodness-of-fit.html | spa |
dc.relation.references | MathWorks. (2017b). PV Array. Recuperado de: https://www.mathworks.com/help/physmod/sps/ powersys/ref/pvarray.html | spa |
dc.relation.references | Navidi, W. (2006). Estadística para ingenieros y científicos. México: M.-H. Interamericana, Ediciones. | spa |
dc.relation.references | Nguyen, X. H., & Nguyen, M. P. (2015). Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink. Environmental Systems Research, 4 (1), 24. doi: http://doi.org/10.1186/ s40068-015-0047-9 | spa |
dc.relation.references | Reyes-Caballero, F., Fernández-Morales, F., & Duarte, J. (2016). Panorama energético. Revista de Investigación, Desarrollo e Innovación, 7 (1), 151- 163. doi:http://dx.doi.org/10.19053/20278306. v7.n1.2016.5605 | spa |
dc.relation.references | Rezk, H., & Hasaneen, E. S. (2015). A new MATLAB/ Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems. Ain Shams Engineering Journal, 6 (3), 873–881. doi: http://doi. org/10.1016/j.asej.2015.03.001 | spa |
dc.relation.references | Salmi, T., Bouzguenda, M., Gastli, A., & Masmoudi, A. (2012). MATLAB / Simulink Based Modelling of Solar Photovoltaic Cell. International Journal of Renewable Energy Research, 2(2), 213–218. doi: http://doi.org/10.1234/IJRER.V2I2.157 | spa |
dc.relation.references | Selmi, T., & Belghouthi, R. (2017). A novel widespread Matlab/Simulink based modeling of InGaN double hetero-junction p-i-n solar cell. International Journal of Energy and Environmental Engineering, 8 (4), 273–281. doi: http://doi. org/10.1007/s40095-017-0243-7 | spa |
dc.relation.references | Setiawan, E. A., Setiawan, A., & Siregar, D. (2017). Analysis on solar panel performance and PVinverter configuration for tropical region. Journal of Thermal Engineering, 3 (3), 1259–1270. doi: http://doi.org/10.18186/journal-of-thermalengineering. 323392 | spa |
dc.relation.references | Silvestre, S., Castañar, L., & Guasch, D. (2008). Herramientas de Simulación para Sistemas Fotovoltaicos en Ingeniería. Formación Universitaria, 1 (1), 13–18. doi: http://doi. org/10.4067/S0718-50062008000100003 | spa |
dc.relation.references | Smets, A., Jäger, K., Isabella, O., Van Swaaij, R., & Zeman, M. (2016). Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. UK: Uit Cambridge. | spa |
dc.relation.references | Tsai, H., Tu, C., & Su, Y. (2008). Development of Generalized Photovoltaic Model Using MATLAB / SIMULINK. In Proceedings of the World Congress on Engineering and Computer Science 2008 WCECS 2008, 6. San Francisco, USA. | spa |
dc.rights | Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.source | https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/7972/6512 | spa |
dc.subject.armarc | Energía solar | |
dc.subject.armarc | Generación de energía fotovoltaica | |
dc.subject.armarc | Sistemas de energía fotovoltaica | |
dc.subject.armarc | Sistemas dinámicos diferenciales | |
dc.subject.proposal | Coeficiente de determinación | spa |
dc.subject.proposal | Modelo matemático | spa |
dc.subject.proposal | Panel solar | spa |
dc.subject.proposal | Matlab | spa |
dc.title | Validación del modelo matemático de un panel solar empleando la herramienta Simulink de Matlab | spa |
dc.title.alternative | Validation of the mathematical model of a solar panel using Matlab/Simulink tool | eng |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/ART | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PPS_912_Validacion_modelo_matematico_panel.pdf
- Size:
- 532.2 KB
- Format:
- Adobe Portable Document Format
- Description:
- Archivo principal
Descargar
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 14.45 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
Descargar