Show simple item record

dc.contributor.authorCely Niño, Víctor Hugo
dc.contributor.authorCifuentes Aya, Héctor
dc.contributor.authorTorre Marín, Gemma Cervantes
dc.date.accessioned2018-09-10T15:38:14Z
dc.date.available2018-09-10T15:38:14Z
dc.date.issued2018-01-15
dc.identifier.citationCely Niño, V. H., Cifuentes Aya, H. & Torre Marín, G. C. (2018). Rational efficiency in agro-industrial process with cold chain: Thermodynamic and exergoeconomic measurement. Revista Facultad de Ingeniería, 27 (47), 39-49. https://doi.org/10.19053/01211129.v27.n47.2018.7750. http://repositorio.uptc.edu.co/handle/001/2166spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2166
dc.description1 recurso en línea (páginas 39-49).spa
dc.description.abstractThe cold chain is the succession of links such as pre-cooling, refrigeration, freezing, and refrigerated transport. The physical variables of the heat transfer process are temperature control, relative humidity, dew point, and cooling surface. This paper aims at highlighting the use of thermodynamic tools such as exergy, anergy and entropy to measure rational efficiency in the different equipment and flows of a thermal process, through a transversal methodology that quantifies efficiencies in a relative, absolute, and comparative way. This study focused on the production structure of the agro-industrial cold chain by steam compression (refrigerant R404A), for the meat processing in channel, in the “Rastro Frigorífico Servicios Integrales del Bajío-TIF 333” in the city of Leon-Guanajuato, central region of Mexico. The results from the literature allowed to classify the critical points of greater exergy destruction, and the unproductive teams responsible for inefficiencies and residues production, which impact the hidden cost structure of the process, and affect negatively the process sustainability. This work integrates the thermoeconomic and productivity concepts that direct the nonlinear learning of thermodynamic science, relevant in the formation of an engineer.eng
dc.description.abstractA corrente de frio é uma sucessão de elos, como pré-resfriamento, refrigeração, congelação e transporte refrigerado. As variáveis físicas do processo de transferência de calor são: temperatura, humidade relativa, ponto de condensação e superfície de refrigeração. O propósito do artigo é visibilizar o uso de ferramentas termodinâmicas, como exergia, anergia e entropia, para medir a eficiência racional nos diferentes equipamentos e fluxos de um processo térmico, mediante uma metodologia transversal para quantificar as eficiências em forma relativa, comparada e absoluta. Partiu-se de uma estrutura produtiva de corrente de frio agroindustrial por compressão de vapor (com refrigerante R404A), para o processamento de carne em carcaça, no “Rastro Frigorífico Servicios Integrales del Bajío-TIF 333”, na cidade de León-Guanajuato, centro do México. Os resultados obtidos e contrastados permitem classificar os pontos críticos de maior destruição de exergia e os equipamentos improdutivos responsáveis de ineficiências e produção de resíduos, com incidência na estrutura de custos ocultos do processo e impacto negativo sobre a sustentabilidade do processo. Este trabalho integra conceitos como termoeconomia e produtividade, que direcionam a aprendizagem não lineal da ciência termodinâmica, relevante na formação do engenheiro.por
dc.description.abstractLa cadena de frío es una sucesión de eslabones, como preenfriamiento, refrigeración, congelación y transporte refrigerado. Las variables físicas del proceso de transferencia de calor son: temperatura, humedad relativa, punto de rocío y superficie de refrigeración. El propósito del artículo es visibilizar el uso de herramientas termodinámicas, como exergía, anergía y entropía, para medir la eficiencia racional en los diferentes equipos y flujos de un proceso térmico, mediante una metodología transversal para cuantificar las eficiencias en forma relativa, comparada y absoluta. Se partió de una estructura productiva de cadena de frío agroindustrial por compresión de vapor (con refrigerante R404A), para el procesamiento de carne en canal, en el “Rastro Frigorífico Servicios Integrales del Bajío-TIF 333”, en la ciudad de León-Guanajuato, centro de México. Los resultados obtenidos y contrastados permiten clasificar los puntos críticos de mayor destrucción de exergía y los equipos improductivos responsables de ineficiencias y producción de residuos, con incidencia en la estructura de costos ocultos del proceso e impacto negativo sobre la sostenibilidad del proceso. Este trabajo integra conceptos como termoeconomía y productividad, que direccionan el aprendizaje no lineal de la ciencia termodinámica, relevante en la formación del ingeniero.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ingenieria/article/view/7750/6140spa
dc.titleRational efficiency in agro-industrial process with cold chain : thermodynamic and exergoeconomic measurementspa
dc.title.alternativeEficiencia racional en un proceso agroindustrial con cadena de frío : medición termodinámica y exergoeconómicaspa
dc.title.alternativeEficiência racional em um processo agroindustrial com corrente de frio : medição termodinâmica e exergoeconômicaspa
dc.typeArtículo de revistaspa
dc.description.notesBibliografía: página 49.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.lembCold storage
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.19053/01211129.v27.n47.2018.7750
dc.relation.referencesY. Cengel, and M. Boles. Termodinámica. 7nd ed. México DF: Mc Graw-Hill, 2012.spa
dc.relation.referencesV.H. Cely, “Medición de la productividad en procesos que integren cadena de frío, basada en evaluaciones de exergoeconomía y ecoeficiencia,” Ph.D. dissertation, Universidad Nacional de Colombia, Bogotá, D.C., 2017.spa
dc.relation.referencesA. Valero, and C. Torres, “Thermoeconomic Analysis,” in Exergy, Energy System Analysis and Optimization, Vol II. C.A. Frangopoulos Ed. Oxford: Eolss Publishers Co., chapter 1, pp.1-35, 2009.spa
dc.relation.referencesS. Kelly, “Energy system improvements based on endogenous and exogenous exergy destruction,” Ph.D. dissertation, Technische Universitat Institute for Energy Engineering Germany, Berlin, 2008.spa
dc.relation.referencesI. Dincer, and M. Rosen, Exergy, Energy, Environment and Sustainable Development. Ontario, Canada: Elsevier Publication Books, 2007.spa
dc.relation.referencesJ. Dewulf, et al. “Critical Review. Exergy: Its Potential and Limitations in Environmental Science and Technology,” Environmental Science & Technology, vol. 42 (7), pp. 2221-2232, Apr. 2008. DOI: http://doi.org/10.1021/es071719a.spa
dc.relation.referencesM. Suresh, K. Reddy, and A. Kolar A. “4-E: Energy, Exergy, Environment, and Economic, analysis of solar thermal aided coal-fired power plants,” Energy for Sustainable Development, vol. 14 (4), pp. 267- 279, Dec. 2010. DOI: http://doi.org/10.1016/j. esd.2010.09.002.spa
dc.relation.referencesK. Manesh, et al., “Exergoeconomic and exergoenvironmental evaluation of the coupling of a gas fired steam power plant with a total site utility system,” Energy Conversion and Management, vol. 77, pp. 469-483, Jan. 2014. DOI: http://doi. org/10.1016/j.enconman.2013.09.053.spa
dc.relation.referencesW. Kaminsky, “Refrigeration and the World Food Industry,” Logistec, vol. 45, pp. 13-17, May. 2012.spa
dc.relation.referencesS. Kalaiselvam, and R. Saravan. “Exergy Analysis of scroll compressors working with R22, R407C, and R417A as refrigerant for HVAC system,” Thermal Science, vol.13 (1), pp. 175-184, Jan. 2009. DOI: http://doi.org/10.2298/TSCI0901175K.spa
dc.relation.referencesD. Yu D, H. Van Paassen, and R. Siamak, “General modeling for model based FDD on building HVAC system,” Simulation Practice and Theory, vol. 9 (6-8), pp. 387-397, May. 2002. DOI: http://doi. org/10.1016/S1569-190X(02)00062-X.spa
dc.relation.referencesR. Yin, Case Study Research Design & Methods, 5nd. ed. Thousand Oaks, USA: Sage; 2014.spa
dc.relation.referencesJ. Ahamed, R. Saidur, and H. Masjuki, “A review on exergy analysis of vapor compression refrigeration system,” Renewable and Sustainable Energy Reviews, vol. 15 (3), pp. 1593-1600, Apr. 2011. DOI: http://doi.org/10.1016/j.rser.2010.11.039.spa
dc.relation.referencesÖ. Kizilkan, A. Kabul and A. Yakut. “Exergetic performance assessment of a variable speed R404A refrigeration system,” International Journal of Energy Research, vol. 34 (6), pp. 463-475, May. 2010. DOI: http://doi.org/10.1002/er.1553.spa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalCold chainspa
dc.subject.proposalHidden costsspa
dc.subject.proposalProductivity efficiencyspa
dc.subject.proposalThermal irreversibilityspa
dc.relation.ispartofjournalRevista Facultad de Ingeniería;Volumen 27, número 47 (Enero-Abril 2018)spa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
Except where otherwise noted, this item's license is described as Copyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia