Show simple item record

dc.contributor.advisorParra Vargas, Carlos Arturospa
dc.contributor.advisorSarmiento Santos, Armandospa
dc.contributor.authorSupelano García, Iván
dc.date.accessioned2019-03-06T22:42:36Z
dc.date.available2019-03-06T22:42:36Z
dc.date.issued2015
dc.identifier.citationSupelano García, I. (2015). Estudio experimental de las propiedades estructurales y transición magnética del sistema CaMn1-xMoxO3 (0,07<x<0,34). (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2478spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/2478
dc.description1 recurso en línea (128 páginas) : ilustraciones, figuras, tablas.spa
dc.description.abstractWe show the results about production of CaMn1-xMoxO3 (0.07<x<0.34) system, synthesized by the solid state reaction method. The samples were structurally characterized by XRD technique, at room temperature, and the Rietveld refinement technique (Fullprof software). The study allowed to prove that stoichiometries with x <0.13 are pure phase and for higher stoichiometries a second phase appears. The magnetic response was analyzed by magnetization measurements as a function of temperature and applied field, showing antiferromagnetic behavior at low temperatures. The samples with x = 0.08, 0.10 and 0.12, were produced with three different conditions in the sintering step. The samples produced at a heating rate of 2.5 ° C/min shows a similar magnetic behavior in comparison with samples produced at a rate of 1.8 ° C/min, this group of samples was structurally and magnetically characterized by neutron diffraction technique (performed in the Institut Max von Laue - Paul Langevin ILL) and Rietveld refinement; observing a structural transition from an orthorhombic group (Pnma) to monoclinic (P21/m), and magnetic transition was associated with inflections observed in the magnetization curves. These measures allowed tracking the evolution of the structural parameters as a function of temperature.eng
dc.description.abstractEn el presente trabajo se compila los resultados obtenidos de la producción del sistema CaMn1-xMoxO3 (0,07<x<0,34), sintetizado por el método de reacción en estado sólido. Las muestras fueron caracterizadas estructuralmente por medio de la técnica de DRX, a temperatura ambiente, y la técnica de refinamiento Rietveld (software Fullprof). El estudio permitió demostrar que para estequiometrias con x<0.13 la fase es pura y, para estequiometrias superiores aparece una segunda fase. La respuesta magnética fue analizada por medidas de magnetización en función de la temperatura y del campo aplicado, evidenciando un comportamiento antiferromagnético a bajas temperaturas. Las muestras con x=0,08, 0,10 y 0,12, fueron producidas con tres condiciones diferentes en la etapa de sinterización. La muestras producidas a una rata de calentamiento de 2,5 °C/min muestran un comportamiento magnético similar al de las muestras producidas a una tasa de 1,8 °C/min, a este grupo de muestras se le realizó una caracterización estructural y magnética por medio de difracción de neutrones (realizadas en el Institut Max von Laue – Paul Langevin ILL) y refinamiento Rietveld; observando una transición estructural de un grupo ortorrómbico (Pnma) a uno monoclínico (P21/m) y, una transición magnética asociada con las inflexiones presentes en las curvas de magnetización. Éstas medidas permitieron realizar un seguimiento en la evolución de los parámetros estructurales en función de la temperatura.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsCopyright (c) 2015 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleEstudio experimental de las propiedades estructurales y transición magnética del sistema CaMn1-xMoxO3 (0,07<x<0,34)spa
dc.typeTrabajo de grado - Pregradospa
dc.description.notesBibliografía y webgrafía: páginas 125-128.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.relation.referencesJanaina Viana Barros. Producción, caracterización estructural, morfológica y luminiscente de cerámicas tipo perovskita. Programa de posgrado en Ciencia de Materiales, Universidad Federal de Pernambuco. 2007spa
dc.relation.referencesSandeep Pathak. Manganites: phenonmenology, present understanding and future prospects. Materials Research Center. Indian Institute of Science. Bangalore, India. 560 012.spa
dc.relation.referencesM. Miclau, D. Grebille, C. Martin. Crystal growth of CaMn1-xMoxO3 perovskites by the floating-zone technique (0<x<0.15). Journal of Crystal Growth. 285 (2005) 661-669.spa
dc.relation.referencesA. Maignan, C. Martin, C. Autret, M. Hervieu, B. Raveau, J. Hejtmanek. Structural–magnetic phase diagram of Mo-substituted CaMnO3: consequences for thermoelectric power properties. Journal of Materials Chemistry. (2002) doi:10.1039/B200495J.spa
dc.relation.referencesG. H. Jonker, J. H. van Santen. Ferromagnetic compounds of manganese with perovskite structure. Physica. 16 (1950) 337-349.spa
dc.relation.referencesJ. M. Dai et al. Photoinduced resistivity change in layered manganite La2−2xCa1+2xMn2O7 (x=0.3). Materials Science and Engineering. B76 (2000) 35–37.spa
dc.relation.referencesTaran et al. CE-type antiferromagnetic ordering and martensitic transition in Pr-substituted La0.65Ca0.35MnO3 from magnetic and neutron diffraction studies. Journal of. Physics: Condensed Matter. 19 (2007) 216217.spa
dc.relation.referencesS. M. DunaevskiÏ. Influence of the Degenerate d Level and of the Jahn–Teller Effect on the Manganite Electronic Structure Calculated in the Tight-Binding Approximation. Physics of the Solid State. 43. (2001) 2257–2261.spa
dc.relation.referencesV. A. Khomchenko et al. Crystalline and Magnetic Structures of La1–xBixMnO3+d Manganites. Journal of Experimental and Theoretical Physics. 103 (2006) 54–59.spa
dc.relation.referencesJ. J. Neumeier, J. L. Cohn. Possible signatures of magnetic phase segregation in electron-doped antiferromagnetic CaMnO3. Physical Review B. 61 (2000) 319-322.spa
dc.relation.referencesS. Parashar, E. E. Ebensol, A. R. Raju, C. N. R. Rao. Insulator–metal transitions induced by electric and magnetic fields, in thin films of charge-ordered Pr1-xCaxMnO3. Solid State Communications. 114 (2000) 295–299.spa
dc.relation.referencesS. M. DunaevskiÏ, V. V. Deriglazov. Magnetic and Orbital Structures of Manganites in the Electron Doping Region. Physics of the Solid State. 45 (2003) 714–717.spa
dc.relation.referencesP. R. Sagdeoa, S. Anwara, N. P. Lalla, S. I. Patil. The contribution of grain boundary and defects to the resistivity in the ferromagnetic state of polycrystalline manganites. Journal of Magnetism and Magnetic Materials. 306 (2006) 60–68.spa
dc.relation.referencesL. Bocher et al. High-temperature stability, structure and thermoelectric properties of CaMn1-xNbxO3 phases. Acta Materialia. 57 (2009) 5667–5680.spa
dc.relation.referencesX. Gaojie et al. High-temperature transport properties of Nb and Ta substituted CaMnO3 system. Solid State Ionics. 171 (2004) 147–151.spa
dc.relation.referencesS. Mizusaki, J. Sato, T. Taniguchi, Y. Nagata, S. H. Lai, M.D. Lan, T. Cozawa, Y. Noro, H. Samata. Ferromagnetism in CaMn1−xIrxO3. Journal of. Physics: Condensed Matter 20 (2008) 235242-235249spa
dc.relation.referencesB. Raveau, A. Maignan, C. Martin, M. Hervieu. Re and Ru induced CMR effect in CaMnO3: the prime role of valency. Materials Research Bulletin 35 (2000) 1579–1585spa
dc.relation.referencesC. Martina, A. Maignan, M. Hervieu, B. Raveau, J. Hejtmanek. Extension of ferromagnetism and metallicity to electron-rich manganites by Ru-doping: Generation of new CMR oxides Sm0.2Ca0.8Mn1−xRuxO3, European Physical Journal B. 16 (2000) 469-474spa
dc.relation.referencesM. Miclau, J. Hejtmanek, R. Retoux, K. Knizek, Z. Jirak, R. Fresard, A. Maignan, S. Hébert, M. Hervieu, C. Martin. Structural and Magnetic Transitions in CaMn1-xWxO3, Chemistry of Materials. 19 (2007) 4243-4251spa
dc.relation.referencesS. F. Dubinin et al. Ordering of Oxygen Vacancies in a CaMnO3-d Perovskite Single Crystal. Physics of the Solid State. 47 (2005) 1267–1272.spa
dc.relation.referencesS. F. Dubinin et al. Magnetic Structure of a CaMnO2.75 Crystal with Ordered Oxygen Vacancies. Physics of the Solid State. 48 (2006) 1526–1532.spa
dc.relation.referencesP. M. Woodward. Octahedral Tilting in Perovskites I. Geometrical Considerations. Acta Crystallographica B53 (1997) 32-43.spa
dc.relation.referencesCatalina Salazar Mejía. Análisis de las Propiedades Estructurales y Magnetoeléctricas de la Manganita Sr2TiMnO6. Grupo de Física de Nuevos Materiales Departamento de Física Universidad Nacional de Colombia. 2008.spa
dc.relation.referencesS. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnach, R. Ramesh, L. H. Chen. Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Science. 264 (1994) 413-415spa
dc.relation.referencesNicola A. Spalding. Magnetic Materials. Fundamentals and applications. Second Edition. Cambridge. 2011.spa
dc.relation.referencesCharles Kittel. Introducción a la Física del Estado Sólido, Tercera Edición. Reverté S.A. 1998.spa
dc.relation.referencesK. H. J. Buschow F. R. de Boer. Physics of magnetism and magnetic materials. Kluwer Academic Publishers. 2004.spa
dc.relation.referencesSoshin Chikazumi. Physics of ferromagnetism. International Series of monographs on physics. Oxford Science Publications. Great Britain. 1997spa
dc.relation.referencesMike McElfresh. Fundamentals of magnetism and magnetic measurements. Featuring Quantum Design´s magnetic property measurement system. Quantum Design. 1994.spa
dc.relation.referencesJ. M. D. Coey. Magnetism and magnetic materials. Cambridge University Press. 2009spa
dc.relation.referencesDamien Gignoux, Michel Schlenker. Magnetism Fundamentals. Springer Science + Business media Inc. Estados Unidos. 2005.spa
dc.relation.referencesCarlos Arturo Parra Vargas. Fluctuaciones En Las Propiedades Magnéticas Y De Magnetotransporte De Superconductores De Alta Temperatura Crítica. Universidad Nacional de Colombia sede Bogotá. Facultad de Ciencias Departamento de Física Santafé de Bogotá D. C. 2010spa
dc.relation.referencesRichard J. D. Tilley. Crystals and Crystal Structures. John Wiley & Sons Ltd. Great Britain. 2006.spa
dc.relation.referencesP. C. Susana, C. B. Ronald. Método de Rietveld para el estudio de estructuras cristalinas. Revista de la Facultad de Ciencias de la UNI. (2005)spa
dc.relation.referencesJuan Rodríguez-Carvajal. An introduction to the program FullProf 2000. Laboratoire Léon Brillouin (CEA-CNRS) CEA/Saclay, 91191 Gif sur Yvette Cedex, FRANCE.spa
dc.relation.referencesVersaLab User´s Manual. Quantum Design. Estados Unidos. 2008.spa
dc.relation.referencesTheo Hahn. International tables for crystallography. Volume A Space-Group Symmetry, Edición 5, Publicado por The International Union Of Crystallography, Londres, 2002spa
dc.relation.referencesS.N. Achary, S.J. Patwe, M.D. Mathews, A.K. Tyagi. High temperature crystal chemistry and thermal expansion of synthetic powellite (CaMoO4): A high temperature X-ray diffraction (HT-XRD) study. Journal of Physics and Chemistry of Solids. 67 (2006) 774–781.spa
dc.relation.referencesH.-N. Im, M.-B. Choi, S.-Y. Jeon, S.-J. Song. Structure, thermal stability and electrical conductivity of CaMoO4+d. Ceramics International. 37 (2011) 49–53.spa
dc.relation.referencesJ Simony, J Banysy, J Hoentschy, G Volkely, R Bottchery, A Hofstaetterz, A Scharmann. Indications of a ferroelastic phase transition in CaMoO4 from pulsed electron paramagnetic resonance and dielectric studies. Journal of. Physics: Condensed Matter 8 (1996) L359–L362.spa
dc.relation.referencesG. Erdogan, D. Eugene, J. S. King. Crystal Structure Refinement of SrMo04, SrW04, CaMo04, and BaW04 by Neutron Diffraction. The journal of chemical physics. 55 (1971) 1093-1097.spa
dc.relation.referencesC. Ang, J. R. Jurado, Z. Yu, M. T. Colomer, J. R. Frade, J. L. Baptista. Variable-range-hopping conduction and dielectric relaxation in disordered Sr0.97(Ti1-xFex)O3-d. Physical Review B. 57 (1998) 858-861.spa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.armarcFísica de los materiales
dc.subject.armarcMateriales magnéticos
dc.subject.armarcAleaciones magnéticas
dc.subject.armarcEstequiometría
dc.subject.armarcMaestría en Ciencias-Física - Tesis y disertaciones académicas
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.publisher.facultyFacultad de Ciencias. Maestría en Ciencias - Físicaspa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright (c) 2015 Universidad Pedagógica y Tecnológica de Colombia
Except where otherwise noted, this item's license is described as Copyright (c) 2015 Universidad Pedagógica y Tecnológica de Colombia