Publicación:
Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales

dc.contributor.advisorAranguren Riaño, Nelson Javier
dc.contributor.authorPedroza Ramos, Adriana
dc.date.accessioned2021-08-19T15:43:39Z
dc.date.available2021-08-19T15:43:39Z
dc.date.issued2021
dc.description.abstractSpa: El presente trabajo plantea la conceptualización e implementación de la calidad del agua superficial que permitirá simular la variación temporal de especies de carbono orgánico (como fitoplancton), carbono inorgánico, fósforo y nitrógeno, materia orgánica y oxígeno disuelto, en lagos andinos y predecir su estado de eutrofización asociado. Este estudio contribuirá para la toma de decisiones frente a distintos escenarios de control y operación del recurso hídrico.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Biológicasspa
dc.format.extent1 recurso en línea ( xi, 157 páginas) : ilustraciones, figuras, tablas.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationPedroza Ramos, A. (2021). Análisis de la importancia del carbono orgánico disuelto en lagos andinos tropicales. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja http://repositorio.uptc.edu.co/handle/001/3686spa
dc.identifier.urihttp://repositorio.uptc.edu.co/handle/001/3686
dc.language.isospa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombiaspa
dc.publisher.facultyFacultad Cienciasspa
dc.publisher.placeTunjaspa
dc.publisher.programMaestría en Ciencias Biológicasspa
dc.relation.referencesAranguren-Riaño, N. J., Guisande, C., Shurin, J. B., Jones, N. T., Barreiro, A., & Duque, S. R. (2018). Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity. Oecologia, 187(3), 719– 730. https://doi.org/10.1007/s00442-018-4130-6spa
dc.relation.referencesAstorga, A., Oksanen, J., Luoto, M., Soininen, J., Virtanene, R., & Muotka, T. (2012). Distance decay of similarity in freshwater communities : do macro- and microorganisms follow the same rules ? Global Ecology and Biogeography, 21, 365–375. https://doi.org/10.1111/j.1466-8238.2011.00681.xspa
dc.relation.referencesBarta, B., Mouillet, C., Espinosa, R., Andino, P., Jacobsen, D., & Christoffersen, K. S. (2017). Glacial-fed and páramo lake ecosystems in the tropical high Andes. Hydrobiologia, 813, 19–32. https://doi.org/10.1007/s10750-017-3428-4spa
dc.relation.referencesBellinger, E. G., & Sigee, D. C. (2015). Freshwater Algae: Identification and Use as Bioindicators. (J. Wiley & S. Inc, Eds.) (Second Edi).spa
dc.relation.referencesBhatt, J. P., Manish, K., & Pandit, M. K. (2012). Elevational Gradients in Fish Diversity in the Himalaya : Water Discharge Is the Key Driver of Distribution Patterns. PLoS ONE, 7(9), 1–11. https://doi.org/10.1371/journal.pone.0046237spa
dc.relation.referencesBicudo, C. E. de M., & Menezes, M. (2017). Gêneros de algas de águas continentais do Brasil: chave de identificação e descrições (Terceira E). São Carlos: RiMa.spa
dc.relation.referencesBoltovskoy, D. (1995). Colección de plancton. In E. . Lopretto & G. Tell (Eds.), Ecosistemas de aguas continentales: metodologías para su estudio (Ediciones, pp. 271–295)spa
dc.relation.referencesBorges, K., Teresa, F. B., Ludgero, G., Huszar, V., & Nabout, J. (2016). Comparing the effects of landscape and local environmental variables on taxonomic and functional composition of phytoplankton communities. Journal of Plankton Research, 38(5), 1334–1346. https://doi.org/10.1093/plankt/fbw062.spa
dc.relation.referencesBoxshall, G. A., & Halsey, S. h. (2004). An Introduction to Copepod Diversity. London: Ray Societyspa
dc.relation.referencesBriand, J. F., Leboulanger, C., Humbert, J. F., Bernard, C., & Dufour, P. (2004). Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: Selection, wide physiological tolerance, or global warming? Journal of Phycology, 40(2), 231– 238. https://doi.org/10.1111/j.1529-8817.2004.03118.xspa
dc.relation.referencesBrown, J. H., & Brian, A. M. (1989). Macroecology : The Division of Food and Space Among Species on Continents. Science, 243(4895), 1145–1150. https://doi.org/10.1126/science.243.4895.1145spa
dc.relation.referencesBurford, M. A., & O’Donohue, M. J. (2006). A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs. Freshwater Biology, 51(5), 973–982. https://doi.org/10.1111/j.1365-2427.2006.01536.xspa
dc.relation.referencesBurns, C. W., & Galbraith, L. M. (2007). Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of Plankton Research, 29(2), 127–139. https://doi.org/10.1093/plankt/fbm001spa
dc.relation.referencesCaporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303.QIIMEspa
dc.relation.referencesCaraballo, P., Forsberg, B. R., & Leite, R. G. (2012). Papel trófico del microbial loop en un lago de inundación en la amazonía central. Acta Biológica Colombiana, 17(1), 103–116spa
dc.relation.referencesDallas, T., & Drake, J. M. (2014). Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities. Ecosphere, 5(9), Article 104. https://doi.org/10.1890/ES14-00071.1spa
dc.relation.referencesDe Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., … Declerck, S. A. J. (2012). Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters, 15(7), 740–747. https://doi.org/10.1111/j.1461-0248.2012.01794.xspa
dc.relation.referencesde Paggi, S. J., & Koste, W. (1995). Additions to the Checklist of Rotifers of the Superorder Monogononta Recorded from Neotropis. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, 80(1), 133–140. https://doi.org/10.1002/iroh.19950800116spa
dc.relation.referencesDodds, W. K., Bruckerhoff, L., Batzer, D., Schechner, A., Pennock, C., Renner, E., … Grieger, S. (2019). The freshwater biome gradient framework : predicting macroscale properties based on latitude , altitude , and precipitation. Ecosphere, 10, 1–33. https://doi.org/10.1002/ecs2.2786spa
dc.relation.referencesDonato-Rondon, J. C. (2001). Fitoplancton de los Lagos Andinos del Norte de Sudamérica (Colombia) (Editora Gu). Bogotá: Academia Colombiana de Ciencias Exactas, Físicas y Naturales.spa
dc.relation.referencesDonato, J., González, L., & Rodríguez, C. (1996). Ecología de dos sistemas acuáticos de páramo (Guadalupe). Bogotá: Academia Colombiana de Ciencias Exactas, Físicas y Naturales.spa
dc.relation.referencesEchenique, R. O., Nuñez-Avellaneda, M., & Duque, S. R. (2004). CHLOROCOCCALES DE LA AMAZONIA COLOMBIANA I : Chlorellaceae y Scenedesmaceae Chlorococcales of the Colombia Amazonia I : Chlorellaceae and Scenedesmaceae. Caldasia, 26(1), 37–51.spa
dc.relation.referencesEdgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461. https://doi.org/10.1093/bioinformatics/btq461spa
dc.relation.referencesEdgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194– 2200. https://doi.org/10.1093/bioinformatics/btr381spa
dc.relation.referencesEl Moor-Lourerio, L. M. A. (1997). Manual de identificação de cladóceros límnicos do Brasil (EDITORA UN). Universidade Católica de Brasília.spa
dc.relation.referencesFraisse, S., Bormans, M., & Lagadeuc, Y. (2013). Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasting flow regime. Aquatic Ecology, 47(3), 315–327. https://doi.org/10.1007/s10452-013-9446-zspa
dc.relation.referencesGaston, K. J. (1994). Rarity (Population). London: Chapman & Hall.spa
dc.relation.referencesGaviria, S., & Aranguren-Riaño, N. (2003). Guia de laboratorio para identificación de Cladóceros (Anomopoda y Ctenopoda) y Copépodos (Calanoida y Cyclopoida). Tunja.spa
dc.relation.referencesGaviria, S., & Aranguren-Riaño, N. (2019). Continental copepods ( Crustacea : Hexanauplia ) of Colombia : revision and additions to the inventory. Biota Colombiana, 20(1), 50– 74. https://doi.org/10.21068/c2019.v20n01a04spa
dc.relation.referencesGillooly, J., & Dodson, S. (2000). Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology and Oceanography, 45(1), 22–30. https://doi.org/10.4319/lo.2000.45.1.0022spa
dc.relation.referencesGlockner, F. O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A., & Amann, R. (2000). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Applied and Environmental Microbiology, 66(11), 5053–5065. https://doi.org/10.1128/AEM.66.11.5053-5065.2000spa
dc.relation.referencesGonzález, A. del P., Aranguren- Riaño, N., & Gaviria, S. (2008). Cambios en la estructura de Boeckella gracilis (Crustacea, Centropagidae) en el plancton del Lago de Tota, Boyacá-Colombia. Acta Biologica Colombiana, 13(2), 61–72.spa
dc.relation.referencesHenriques-Silva, R., Pinel-Alloul, B., & Peres-Neto, P. (2016). Climate , history and lifehistory strategies interact in explaining differential macroecological patterns in freshwater zooplankton. Global Ecology and Biogeography, 25(12), 1454–1465. https://doi.org/10.1111/geb.12505spa
dc.relation.referencesHessen, D., Faafeng, B., Smith, V., Bakkestuen, V., & Walseng, B. (2006). Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology, 87(2), 433–443. https://doi.org/10.1890/05-0352spa
dc.relation.referencesHillebrand, H. (2004). On the generality of the latitudinal diversity gradient. The American Naturalist, 163(2), 192–211. https://doi.org/10.1086/381004spa
dc.relation.referencesHobæk, A., Manca, M., & Andersen, T. (2002). Factors influencing species richness in lacustrine zooplankton. Acta Oecologia, 23, 155–163. https://doi.org//10.1016/S1146- 609X(02)01147-5spa
dc.relation.referencesJankowski, T., & Weyhenmeyer, G. A. (2006). The role of spatial scale and area in determining richness-altitude gradients in Swedish lake phytoplankton communities. OIKOS, 115(3), 433–442. https://doi.org//10.1111/j.2006.0030-1299.15295.xspa
dc.relation.referencesKibirige, I., Perissinotto, R., & Nozais, C. (2002). Alternative food sources of zooplankton in a temporarily-open estuary: evidence from δ13C and δ15N. Journal of Plankton Research, 24(10), 1089–1095. https://doi.org/10.1093/plankt/24.10.1089spa
dc.relation.referencesKokociński, M., & Soininen, J. (2012). Environmental factors related to the occurrence of Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) at the north-eastern limit of its geographical range. European Journal of Phycology, 47(1), 12–21. https://doi.org/10.1080/09670262.2011.645216spa
dc.relation.referencesKorhonen, J. J., Wang, J., & Soininen, J. (2011). Productivity-Diversity Relationships in Lake Plankton Communities. PLoS ONE, 6(8), e22041. https://doi.org/10.1371/journal.pone.0022041spa
dc.relation.referencesKörner, C. (2007). The use of ‘ altitude ’ in ecological research. Trends in Ecology and Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006spa
dc.relation.referencesKoste, W. (1978a). Rotatoria, Die Rädertiere Mitteleuropas (I. Texband). Berlin: Gebrüder Borntraeger.spa
dc.relation.referencesKoste, W. (1978b). Rotatoria, Die Rädertiere Mitteleuropas (II. Textba). Berlin: Gebrüder Borntraeger.spa
dc.relation.referencesKotov, A. A., & Fuentes-Reinés, J. M. (2015). An annotated checklist of the Cladocera (Crustacea: Branchiopoda) of Colombia. Zootaxa, 4044(4), 493–510. https://doi.org/10.11646/zootaxa.4044.4.2spa
dc.relation.referencesKülköylüglu, O., Sari, N., Akdemir, D., Yavuzatmaca, M., & Altinbag, C. (2012). Distribution of Sexual and Asexual Ostracoda (Crustacea) from Different Altitudinal Ranges in the Ordu Region. High Altitude Medicine & Biology, 13(2), 126–137. https://doi.org/10.1089/ham.2011.1111spa
dc.relation.referencesLegendre, P., & Andersson, M. J. (1999). Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69(1), 1–24. https://doi.org/10.1890/0012- 9615(1999)069[0001:DBRATM]2.0.CO;2spa
dc.relation.referencesLegendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data, 2001(July), 271–280. https://doi.org/10.1007/s004420100716spa
dc.relation.referencesLegendre, P., & Legendre, L. (2012). Numerical Ecology (Third Engl). Elsevier.spa
dc.relation.referencesLegendre, P., Oksanen, J., & Braak, C. J. F. (2011). Testing the significance of canonical axes in redundancy analysis. Methods in Ecology and Evolution, 2, 269–277. https://doi.org/10.1111/j.2041-210X.2010.00078.xspa
dc.relation.referencesLeibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., … Gonzalez, A. (2004). The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7(7), 601–613. https://doi.org/10.1111/j.1461- 0248.2004.00608.xspa
dc.relation.referencesLewis, W. M., & Wendula, R. (1982). Phytoplankton composition and morphology in Lake Valencia, Venezuela. Int. Revue Ges. Hydrobiol., 67(3), 297–322.spa
dc.relation.referencesLindeman, R. L. (1942). The trophic-dynamic aspect o f ecology. Ecology, 23(4), 399–417. https://doi.org/10.2307/1930126spa
dc.relation.referencesLomolino, M. (2001). Elevation gradients of species-density : historical and prospective views. Global Ecology and Biogeography, 10(1), 3–13. https://doi.org//10.1046/j.1466- 822x.2001.00229.xspa
dc.relation.referencesMaldonado-Ocampo, A., Ortega-Lara, J. S., Usma Oviedo, G., Galvis Vergara, Francisco Antonio Villa-Navarro, L., Vásquez Gamboa, S., Prada-Pedreros, C., & Ar 69–85. https://doi.org/10.15446/rcdg.v22n2.37018dila Rodríguez. (2005). Peces De Los Andes De Colombia Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Retrieved fromspa
dc.relation.referencesGu, B., Schelske, C. L., & Waters, M. N. (2011). Patterns and controls of seasonal variability of carbon stable isotopes of particulate organic matter in lakes. Oecologia, 165(4), 1083–1094. https://doi.org/10.1007/s00442-010-1888-6spa
dc.relation.referencesHakspiel-Segura, C., Canosa-Torrado, A., & Niño-García, J. P. (2015). Variación espacial y temporal del bacterioplancton en un reservorio de alta montaña en los Andes Colombianos. Hidrobiologica, 25(1), 62–73.spa
dc.relation.referencesHobbie, J. E. (1991). Microbial control of dissolved organic carbon in lakes: research for the future. Hydrobiologia., 229, 169–180.spa
dc.relation.referencesJudd, K., Crump, B., & Kling, G. (2006). Variation in dissolved organic matter controls bacterial production and community composition. Ecology, 87(8), 2068–2079.spa
dc.relation.referencesKarlsson, J., Jonsson, A., & Jansson, M. (2001). Bacterioplankton production in lakes along an altitude gradient in the Subarctic North of Sweden. Microbial Ecology, 42(3), 372– 382. https://doi.org/10.1007/s00248-001-0009-9spa
dc.relation.referencesLangille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., … Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814–821. https://doi.org/10.1038/nbt.2676spa
dc.relation.referencesLindeman, R. L. (1942). The trophic-dynamic aspect o f ecology. Ecology, 23(4), 399–417. https://doi.org/10.2307/1930126spa
dc.relation.referencesMargalef, R. (1983). Limnología (Ediciones). Barcelona.spa
dc.relation.referencesMeneses-Ortegón, L., & Herrera-Martínez, Y. (2015). Bacterioplancton de tres humedales altoandinos de la cordillera Oriental de Colombia. Biota Colombiana, 16(1), 1–10.spa
dc.relation.referencesMladenov, N., Pulido-Villena, E., Morales-Baquero, R., Ortega-Retuerta, E., Sommaruga, R., & Reche, I. (2008). Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity. Journal of Geophysical Research: Biogeosciences, 113(G00D1), 2-1O. https://doi.org/10.1029/2008jg000699spa
dc.relation.referencesNürnberg, G. K., & Shaw, M. (1999). Productivity of clear and humic lakes: Nutrients, phytoplankton, bacteria. Hydrobiologia, 382(1–3), 97–112.spa
dc.relation.referencesPacheco, F. S., Roland, F., & Downing, J. A. (2014). Eutrophication reverses whole-lake carbon budgets. Inland Waters, 4(1), 41–48. https://doi.org/10.5268/IW-4.1.614spa
dc.relation.referencesPinilla, G. A., Canosa, A., Vargas, A., Gavilán, M., & López, L. (2007). Acoplamiento entre las comunidades planctonicas de un lago amazonico de aguas claras (lago Boa, Colombia). Limnetica, 26(1), 53–65.spa
dc.relation.referencesPrairie, Y. T. (2008). Carbocentric limnology : looking back , looking forward 1. Canadian Journal of Fisheries and Aquatic Sciences, 65(3), 543–548. https://doi.org/10.1139/F08- 011spa
dc.relation.referencesRejas, D., Muylaert, K., & De Meester, L. (2005). Trophic interactions within the microbial food web in a tropical floodplain lake (Laguna Bufeos, Bolivia). Revista de Biologia Tropical, 53(1–2), 85–96.spa
dc.relation.referencesRicaurte, L. F., Patiño, J. E., Restrepo, D., Arias-G, J. C., Acevedo, O., Aponte, C., … Junk, W. (2019). A Classification System for Colombian Wetlands : an Essential Step Forward in Open Environmental Policy-Making. Wetlands, 1–20. https://doi.org//10.1007/s13157-019-01149-8 GENERAL WETLAND SCIENCE Aspa
dc.relation.referencesSantiago, L. S., Silvera, K., Andrade, L. J., & Dawson, T. E. (2005). El uso de isótopos estables en biología tropical. Interciencia, 30(9), 536–542.spa
dc.relation.referencesSchulhof, M. A., Allen, A. E., Allen, E. E., Mladenov, N., McCrow, J. P., Jones, N. T., … Shurin, J. B. (2020). Sierra Nevada mountain lake microbial communities are structured by temperature, resources and geographic location. Molecular Ecology, 29(11), 2080– 2093. https://doi.org/10.1111/mec.15469spa
dc.relation.referencesSobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., & Cole, J. J. (2007). Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnology and Oceanography, 52(3), 1208–1219. https://doi.org/10.4319/lo.2007.52.3.1208spa
dc.relation.referencesSommaruga, R., Psenner, R., Schafferer, E., Koinig, K. A., & Sommaruga-Wögrath, S. (1999). Dissolved Organic Carbon Concentration and Phytoplankton Biomass in Highmountain Lakes of the Austrian Alps: Potential Effect of Climatic Warming on UV Underwater Attenuation. Arctic, Antarctic, and Alpine Research, 31(3), 247–253. https://doi.org/10.1080/15230430.1999.12003305spa
dc.relation.referencesTorres-Bejarano, A. M., Duque, S. R., & Caraballo, P. (2014). The trophic role of zooplankton in a floodplain lake of Colombian amazon, through stable isotopes analysis. Caldasia, 36(2), 331–344. https://doi.org/10.15446/caldasia/v36n2.47488spa
dc.relation.referencesWebster, K. E., Soranno, P. A., Baines, S. B., Kratz, T. K., Bowser, C. J., Dillon, P. J., … Hecky, R. E. (2000). Structuring features of lake districts: landscape controls on lake chemical responses to drought. Freshwater Biology, 43(3), 499–515. https://doi.org/10.1046/j.1365-2427.2000.00571.xspa
dc.relation.referencesWetzel, R. (1992). Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia, 229(1), 181–198. https://doi.org/10.1007/BF00007000spa
dc.relation.referencesWetzel, R. (2001). Limnology, Lakes and River (Third Edit). San Diego: Academic Press.spa
dc.relation.referencesWilliamson, C. E., Morris, D. P., Pace, M. L., & Olson, O. G. (1999). Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnology and Oceanography, 44(3_part_2), 795–803. https://doi.org/10.4319/lo.1999.44.3_part_2.0795spa
dc.rightsCopyright (c) 2021 Universidad Pedagógica y Tecnológica de Colombiaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsLicencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.armarcComunidades bióticas
dc.subject.armarcCalidad del agua
dc.subject.armarcEcosistemas acuáticos
dc.subject.armarcFitoplancton
dc.subject.armarcLagos
dc.subject.armarcMaestría en Ciencias Biológicas - Tesis y disertaciones académicas
dc.titleAnálisis de la importancia del carbono orgánico disuelto en lagos andinos tropicalesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dcterms.audienceInvestigadoresspa
dcterms.audienceDocentesspa
dcterms.audienceEstudiantesspa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Analisis_carbono_organico_lagos.pdf
Tamaño:
2.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Archivo principal
Cargando...
Miniatura
Nombre:
A_APR.pdf
Tamaño:
145.81 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.45 KB
Formato:
Item-specific license agreed upon to submission
Descripción: